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Abstract
Many studies on differential item functioning (DIF) detection rely on single detection methods
(SDMs), each of which necessitates specific assumptions that may not always be validated. Using an
inappropriate SDM can lead to diminished accuracy in DIF detection. To address this limitation, a
novel multi-detector combination (MDC) approach is proposed. Unlike SDMs, MDC effectively
evaluates the relevance of different SDMs under various test conditions and integrates them using
supervised learning, thereby mitigating the risk associated with selecting a suboptimal SDM for DIF
detection. This study aimed to validate the accuracy of the MDC approach by applying five types of
SDMs and four distinct supervised learning methods in MDC modeling. Model performance was
assessed using the area under the curve (AUC), which provided a comprehensive measure of the
ability of the model to distinguish between classes across all threshold levels, with higher AUC
values indicating higher accuracy. The MDC methods consistently achieved higher average AUC
values compared to SDMs in both matched test sets (where test conditions align with the training
set) and unmatched test sets. Furthermore, MDC outperformed all SDMs under each test
condition. These findings indicated that MDC is highly accurate and robust across diverse test
conditions, establishing it as a viable method for practical DIF detection.
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Introduction

Differential item functioning (DIF) refers to functional differences across groups that are unrelated
to the purpose of the test. Specifically, it describes the tendency of a test item to be easier or more
difficult for one group of test takers compared to another group of equally competent individuals.
DIF detection is a valuable statistical tool for identifying potential test bias (Ackerman, 1992).
Therefore, developing accurate DIF detection methods remains a key focus in both applied and
methodological research.

Given the various interpretations and definitions of DIF, numerous DIF detection methods have
been developed (Hutchinson & Mitchell, 2019). Recent advancements have further refined these
methods (Bauer, 2023; Hladká et al., 2023). Many DIF detection studies employ a single detection
method (SDM). However, each SDM relies on specific assumptions and may be influenced by
varying test conditions. These conditions can be categorized into observable and unobservable
types. Observable conditions, such as sample size, can impact DIF detection; for example, when
sample sizes per group are fewer than 500, applying Item Response Theory (IRT) methods to
estimate DIF becomes challenging (Martinková et al., 2017). Unobservable conditions, such as
proportions of DIF items (Gierl et al., 2004) and DIF types (uniform and nonuniform) (Berger &
Tutz, 2016), add further complexity. The interaction of these factors can complicate the iden-
tification of appropriate DIF detection methods, posing challenges even for experienced
researchers.

Additionally, DIF detection results from different methods often exhibit inconsistencies
(Karami & Salmani Nodoushan, 2011). Relying solely on one method can introduce significant
risks, underscoring the need for multiple methods to achieve more robust results. While several
software packages offer a range of DIF detection methods (Magis et al., 2010; Martinkova &
Hladka, 2018), current practice typically involves either listing results from different methods or
using a simple average or voting method without a comprehensive synthesis of the outcomes.
Methods that integrate multiple DIF detection results in a simplistic manner (e.g., voting) are
termed simple integration methods (SIMs), which often oversimplify the process. These methods
do not account for the varying weights of results derived from different methods under specific
testing conditions. For example, in small sample sizes, non-IRT DIF detection methods should be
prioritized over IRT methods. Furthermore, integrated results may be unstable; for instance,
employing more IRT methods in small sample sizes can yield less reliable results compared to
using only non-IRT methods.

In contrast to the aforementioned approaches, the proposed Multi-Detectors Combination
(MDC) framework facilitates the simultaneous application of multiple SDMs under specific test
conditions and integrates the results into a final prediction using supervised learning methods.
This study aimed to evaluate the effectiveness of the MDC approach in DIF detection by ad-
dressing the following questions: (1) Overall Accuracy: Does the MDC framework offer superior
overall accuracy compared to individual SDMs? (2) Robustness: Can the MDC framework
maintain high accuracy across various test conditions?

The remainder of this study is structured as follows: Section 2 reviews related work supporting
the MDC framework. Section 3 details the MDC procedures. Sections 4 (Method) and 5 (Results)
validate the MDC through simulation experiments. Section 6 applies the MDC to a real data
example. Finally, Section 7 discusses the findings.
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Related Works

DIF Detection Methods

Mantel-Haenszel (MH). The MH method is similar to a chi-square test and is expressed by the

formula (Holland & Thayer, 1986; Martinková et al., 2017): χ2MH ¼
n���P
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In this formula, Ak and Bk represent the counts of examinees in the reference group that scored “k”
and answered correctly or incorrectly, respectively, whileCk andDk denote the counts for the focal
group. Here, Nk ¼ Ak þ Bk þ Ck þ Dk .

Standardization Approach. The Standardization approach (Dorans et al., 1992) is another com-

monly used method defined as follows: STDP � DIF ¼
P

fWS ½Pfs�Prs�gP
fWSg , where WsP

fWSg denotes the

weighting factor based on the focal group distribution, implemented at the score level designated
as “S,” ½Pfs � Prs� represents the difference in the proportions of correct responses between the
focal group (Pfs) and the reference group (Prs).

Logistic Regression (LR). The LR formula is expressed as follows (Rogers & Swaminathan, 1993):
Z ¼ τ0 þ τ1θ þτ2g þ τ3ðθgÞ, where Z denotes the probability of a correct response, θ is the
observed trait level of the examinee (usually total test score), and g represents group membership. τ1
is a main effect of score, τ2 is a main effect of group, and τ3 is an interaction of score with group.

Lord’s Chi-Squared Test. Lord’s Chi-squared method is based on the IRT framework. For example,
using the two-parameter IRT model, the formula is represented as

P
�
Ui, j¼ 1jθi, αj, βj

� ¼ exp
�
αj
�
θi � βj

��

1þ exp
�
αj
�
θi � βj

�� (1)

where (P) represents the probability of respondent (i) answering item (j) correctly, θi denotes the
ability of respondent (i), αj denotes the discrimination of item item (j), and βj denotes the item
difficulty. This method first estimates the item parameters for both the focal and reference groups
separately. Lord’s chi-squared test then evaluates whether the item parameters are equal across the
subpopulations; if not, the item is flagged as exhibiting DIF (McLaughlin & Drasgow, 1987).

Raju Area. The Raju area method estimates the significance of the area between two Item Re-
sponse Functions (IRFs; Raju, 1990). It provides the asymptotic sampling distribution for the area
between the IRFs of the focal and reference groups, which helps determine if the differences in
IRFs are significant for detecting DIF.

Supervised Learning

Commonly used supervised learning methods include LR, Naive Bayes (NB), Support Vector
Machine (SVM), and Tree Augmented Naive Bayes (TAN).

The formula for LR is

PðTrueDIFj SDMÞ ¼ 1

1þ e�ðβ0þβ1SDM1:::βnSDMnÞ (2)
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Based on the training dataset, the coefficients {β0,…βn} are estimated, with each βi repre-
senting the weight of SDMi in predicting TrueDIF.

The NB method operates probabilistically, assuming independence among different SDMs,
resulting in the following formula:

PðTrueDIFjSDMÞ ¼ 1

z
PðTrueDIFÞ∏

n

i¼1
PðSDMijTrueDIFÞ (3)

Here, Z is a scaling factor ensuring that probabilities remain between 0 and 1. The conditional
distributions PðSDMij TrueDIFÞ represent the influence of each SDM on TrueDIF.

The TAN method addresses the independence assumption of NB by incorporating a tree
structure (Friedman et al., 1997). This is represented graphically in Figure S1, where circles denote
variable nodes such as TrueDIF and SDMs, and directed edges (arrows) indicate relationships
between nodes. Specifically, an arrow from TrueDIF to SDMs suggests that TrueDIF influences
SDMs, indicating PðSDMiÞ ≠PðSDMij TrueDIFÞ. The directed edges can be denoted as Parent
(SDMi) = { TrueDIF}. Unlike NB, where no edges exist between SDMs, TAN facilitates in-
terdependence between SDMs. For example, SDM1 influences SDM2 in TAN, indicating that
Parent (SDM2) = {TrueDIF , SDM1}.

The formulation for TAN extends Formula (3) as follows:

PðTrueDIFjSDMÞ ¼ 1

z
PðTrueDIFÞ∏

n

i¼1
PðSDMijParentðSDMiÞÞ (4)

Structural learning is employed to determine the relationships between nodes. This process
involves computing the mutual information between pairs of SDMs, selecting the pair with the
maximum mutual information to establish the initial edge, and constructing a tree structure based
on pairwise mutual information (Chow & Liu, 1968). The formula for mutual information is as

follows: IðXi,XjÞ ¼
P

Xi,Xj
PðXi,XjÞlog PðXi ,XjÞ

PðXiÞPðXjÞ. Here, Xi represents the nodes.

SVM is a robust supervised learning algorithm commonly used for classification and regression
tasks (Cervantes et al., 2020). The core concept of SVM is to identify an optimal hyperplane that
maximally separates different classes of data points. In a two-dimensional space with features
(SDM1 and SDM2) and a binary target variable (TrueDIF), SVM aims to find the hyperplane that
best distinguishes data points where TrueDIF equals 1 from those where TrueDIF equals 0. This
concept can be extended to higher-dimensional spaces (SDM1 …SDMi), where the hyperplane
becomes a higher-dimensional decision boundary. SVM is particularly effective in high-
dimensional spaces and is robust to overfitting, especially when the number of dimensions
exceeds the number of samples. However, SVMmay become less efficient with very large datasets
and requires careful tuning of parameters such as the kernel type and regularization term.

Model Evaluation Metrics and Thresholds

In supervised learning, prediction results are expressed as probability values. By applying a
threshold, these probabilities can be converted into binary outcomes: DIF or noDIF. Specificity
and Sensitivity are commonly used metrics for evaluating models with binary outcomes.
Specificity is defined as P (True Value = DIF | Prediction = DIF), which is equivalent to 1 minus
the Type I error rate. Sensitivity, akin to power, is defined as P (True Value = noDIF | Prediction =
noDIF). As the threshold increases, classifying a case as DIF becomes more challenging.
Consequently, specificity increases while sensitivity decreases. The variability in specificity and
sensitivity complicates direct comparisons between models.
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To address this issue, the Area Under the Curve (AUC) provides a more stable and com-
prehensive assessment (Jin & Ling, 2005). The AUC is introduced as a robust evaluation criterion,
as supported by previous research (Magis & Tuerlinckx, 2016). As illustrated in Figure S2, the
receiver operating characteristic (ROC) curve is plotted by graphing sensitivity against (1 -
specificity) at various thresholds. The area under this curve quantifies the model’s predictive
performance. For example, Model B exhibits a higher AUC than Model A, indicating that for the
same sensitivity level (e.g., 81.4%), Model B achieves a higher specificity (75%) compared to
Model A (30%).

When converting final results into binary outcomes, researchers can select a threshold based on
given preferences for sensitivity or specificity. In the absence of a clear preference, a classic
approach involves maximizing the sum of sensitivity and specificity, which corresponds to finding
the threshold that maximizes the distance from the identity (diagonal) line (Youden, 1950). As
depicted in Figure S2, by exhaustively evaluating all possible thresholds, the optimal threshold
(Best_T) is identified as the point that maximizes the combined sum of sensitivity and specificity.

Procedures of Multi-Detectors Combination (MDC) Framework

The MDC framework involves three primary stages: establishing a training dataset, MDC
modeling, and applying the MDC. DIF analysis on a target dataset involves the following steps:

Establishing the Training Dataset

The objective of this stage is to establish a training dataset that accurately represents the target
data. The training data is generated through simulation.

Step 1: Generating Response Data. This involves selecting a measurement model and setting
the test conditions. For each combination of test conditions, several replications are sim-
ulated to serve as representatives of the target dataset.

Step 2: Calculating SDM. For each data unit, different DIF detection methods are applied to
obtain the iSDM.

Step 3: Constructing the Training Set. The SDM results of each item are combined with its
TrueDIF label, and the results of all replications are merged to form the overall training set.

MDC Modeling

Step 4: Model Training. Supervised learning methods are applied on the training dataset. In this
process, TrueDIF serves as the dependent variable, while SDM values are the independent
variables. This results in the construction of S Models, where S represents the number of
supervised learning approaches employed.

Step 5: Setting Thresholds. The models developed in Step 4 generate probability values. A
threshold is applied to classify items as DIF or non-DIF. The threshold is determined based
on specific criteria, such as the Youden Index.

Applying MDC

The MDC framework is applied to the target dataset. The SDM values (as described in Step 2) are
calculated and used as predictor variables. The trained models and thresholds (from Steps 4 and 5)
are utilized to determine whether an item is flagged as DIF (binary classification).
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Methodology

Simulated Data

This study employed the two-parameter IRT model (Formula (1)) to investigate uniform and
nonuniform DIF. Item parameters for the focal and reference groups were used to calculate the
probability (P) of correctly answering each item under various test conditions, and response data
matrices were subsequently generated based on (P).

The test conditions for data simulation were designed to generate three primary categories: the
Training Set (TS), the Matching Test Set (MTS), which aligns with the conditions of the training
set, and the Unmatching Test Set (UMTS), which does not match the conditions of the training set
and was used to assess the generalizability of the model (Goretzko & Bühner, 2020). The detailed
specifications are provided in Table S1.

Observable Test Conditions: TheMDC framework relies on specific observable test conditions.
Thus, TS, MTS, and UMTS were set with consistent observable parameters, including: sample
size at three levels—Small (n = 500), Medium (n = 1000), and Large (n = 2000) (Ma et al., 2021);
sample size ratio at two levels—Balanced (0.5, indicating that the reference group constitutes 50%
of the total sample) and Unbalanced (0.8, indicating that the reference group constitutes 80%) (Jin
et al., 2018); test length at three levels: Short (20 items), Medium (40 items), and Long (60 items)
tests.

DIF-Related Test Conditions: DIF types were defined based on differences in item parameters
between the focal and reference groups. The discrimination differences (two levels) were of two
types: uniform (Δ alpha = 0) and nonuniform DIF (Δ alpha = �1). The difficulty differences (two
levels) were of two types: small (Δ beta = 0.4) and large effects (Δ beta = 0.8) (Jiang, 2019). The
extent of parameter differences considered as DIF was determined based on specific research
objectives or preferences. Consequently, TS, MTS, and UMTS were established with consistent
DIF definitions. Proportions of DIF (two levels), which indicate the proportion of items displaying
DIF: mild (0.2) and severe (0.3) in TS and MTS (Lim et al., 2022; Liu & Jane Rogers, 2022), and
mild (0.1) and severe (0.4) in UMTS (Ma et al., 2021), with no overlap between conditions.

Other unobservable test conditions: Impact represents the differences in ability distributions
between the focal and reference groups. TS and MTS had two levels: No Impact (R: N (0,1),
indicating the ability distribution of the reference group R follows a normal distribution with
mean = 0 and SD = 1; F: N (0,1)); Impact (R: N (0,1); F: N (�0.5,1)) (Lim et al., 2022). In UMTS
(two levels): Significant impact (R: N (0,1); F: N (�1,1)); Reverse impact (R: N (�0.5,1); F: N
(0,1)) (Lee, 2017). Item parameters for the reference group were initially determined. For TS and
MTS, the discrimination parameter (aR) was drawn from N (1, 0.2), and the difficulty parameter
(bR) was drawn from N (0,1) (Liu & Jane Rogers, 2022). In UMTS, aR was drawn from U (0.9,
2.5), while bR was drawn from U (�1.5, 1.5) (Frick et al., 2015). Based on the DIF proportions,
the number of DIF items was determined. For DIF items, parameters were adjusted as follows:
aR = aR +Δ alpha and bR = bR +Δ beta. For no-DIF items, the item parameters for the focal group
were identical to those for the reference group.

A total of 288 test condition combinations were established, including 18 observable test
condition combinations. For TS, 20 replications were generated for each combination of test
conditions, while 100 replications were generated for MTS and UMTS. Data generation was
performed using the “irtoys” package (Partchev et al., 2022).
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Conducting MDC Procedures

After the generation of simulated data, the MDC process was applied to each dataset. In Step 2, the
calculation of SDM involved assessing DIF using five detection methods: MH, Standardization
Approach, LR, Lord’s Chi-squared Test, and Raju’s Area. A “purification” process was employed,
involving iterative removal of items identified as DIF from the set used for equal means anchoring
(Candell & Drasgow, 1988). This procedure was repeated until either the same items were
identified twice as functioning differently or the maximum number of iterations (set to 10) was
reached.

For Lord’s Chi-squared Test and Raju’s Area, Marginal Maximum Likelihood Estimation
(MMLE) was used. MMLE assumes that respondents are a random sample from a population, and
their abilities follow a standard normal distribution (Rizopoulos, 2007). Parameters were esti-
mated separately for the focal and reference groups, and linked parameter estimates were per-
formed on a common scale using a linear transformation (Cook & Eignor, 1991). Specifically, if
the means of the difficulty parameters for the two groups are bR and bF , and the standard de-
viations are SbR and SbF , A and the intercept B can be determined as SbR=SbF

and bR � A � bF ,
respectively. The transformation formulas bTF ¼ A � bF þ B and aTF ¼ aF=A were applied, where

bTF and aTF represent the transformed item difficulties and discrimination parameters, respectively.
DIF was flagged based on a significance level (p-value) of 0.05. DIF detection was conducted

using the “difR” package (Magis et al., 2010).
Under each observable condition (a total of 18 types), a unique training set was used,

comprising multiple replications generated through simulation. For each training set, four su-
pervised learning methods were employed: LR, NB, SVM, and TAN. The “glm” function was
used for LR, the “e1071” package (Dimitriadou et al., 2008) for SVM, and the “bnlearn” package
(Scutari & Denis, 2021) for NB and TAN. The “pROC” package (Robin et al., 2014) was used to
determine the threshold for each model.

Additionally, two Simple Integration Methods (SIM) were calculated for comparison. The first
method, Voting, considers an item as DIF if three or more out of five SDM results indicate DIF.
The second method, Anyflagged, classifies an item as DIF if any one of the SDM results
indicates DIF.

Outcome Measures Analysis

The subsequent analyses were conducted separately for the two validation sets, MTS and UMTS.
Initially, MDC was applied to each replicate to predict DIF, and these predictions were compared
with the True DIF. Metrics including the AUC, specificity, and sensitivity were calculated.

Subsequently, the overall means for AUC, specificity, and sensitivity were computed and
compared using Cohen’s d. Marginal means for AUC under varying test conditions were also
calculated, and a repeated measures ANOVAwas performed on AUC. This analysis assessed both
the main effects and the interaction effects of the DIF detection method and different test
conditions. The ANOVA analyses were conducted using the “rstatix” package (Blanca et al.,
2023). Finally, the correlations were compared to explore the relationship between SDM
and MDC.
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Results

Overall Comparison of Different Methods’ Performance

Table 1 presents the AUC values for the MTS, where all MDC methods demonstrated superior
performance, with AUCs ranging from 79.8% to 81.4%. Among these, MDC (LR) achieved the
highest AUC. Using MDC (LR) as the baseline, Cohen’s d were computed to compare the AUC
values of other methods, revealing only minor differences among the four MDC methods, with
effect sizes ranging from 0.014 to 0.109. In contrast, the AUC values for SDMs were generally
lower, with Logistic yielding the highest AUC of 79.0%. Compared to MDC (LR), all SDM
methods, except Logistic, exhibited significant effect sizes ranging from 0.377 to 1.136, while
Logistic had a nearly small effect size of 0.180. A similar pattern was observed with the SIM,
where the AUC of MDC (LR) compared to SIM exhibited Cohen’s d values ranging from
0.583 to 1.228.

In the UMTS, all MDCmethods also demonstrated strong AUC values, ranging from 77.6% to
79.8%, with both MDC (LR) and MDC (TAN) achieving the highest AUC. Comparing the four
MDCmethods, effect sizes ranged from�0.004 to 0.145, with MDC (SVM) exhibiting the lowest
AUC. Compared to MDC (LR), all SDM and SIM methods demonstrated notable differences,
with effect sizes ranging from 0.106 to 0.834. Although the advantage of MDC methods over
SDM and SIM methods diminished in the UMTS, MDC methods still outperformed SDM and
SIM methods in terms of AUC.

Regarding sensitivity and specificity in MTS, AnyFlagged emerged as the most aggressive
method, achieving the highest sensitivity (83.9%) but the lowest specificity (44.5%), which
resulted in a comparatively lower overall AUC (64.3%). Conversely, Std exhibited the highest
specificity (97.1%) but the lowest sensitivity (47.5%). In comparison, SVM demonstrated similar
specificity (94.5%) but higher sensitivity (65.0%), resulting in a higher AUC than Std (79.8%).

Moreover, all results indicated specificity greater than 86.0% and sensitivity higher than
65.0%, avoiding particularly low values and extreme risks. This suggests a more favorable balance
between sensitivity and specificity. A similar trend was observed in the UMTS.

The primary focus of this study was to evaluate the effectiveness of different methods in
detecting DIF. Therefore, subsequent analyses focused on the AUC, considering its applicability
in comprehensively assessing sensitivity and specificity.

Comparisons of AUC Under Various Test Conditions on MTS

Table S2 displays the AUC (%) for different methods under various test conditions in the MTS.
The MDC methods (LR, NB, SVM, TAN) consistently outperform the best methods from SDM
and SIM, demonstrating their robustness across test conditions.

Table S3 presents the results of the repeated measures ANOVA analysis for AUC onMTS. The
analysis indicates that the method has a significant and large effect on AUC (η2 = 0.327). Among
the test condition factors, DIFmagnitudes_a (η2 = 0.178), DIFmagnitudes_b (η2 = 0.097),
ProportionsofDIF (η2 = 0.055), and Samplesize (η2 = 0.030) exhibited effect sizes ranging from
small to large.

Regarding interaction effects, the interaction between Method and DIFmagnitudes_a was
significant with a large effect size (η2 = 0.196), while the interactions between Method and
SampleSize (η2 = 0.007) and Method and DIFmagnitudes_b (η2 = 0.007) were close to small
effects. As shown in Table S3, when DIFmagnitudes_a was 0, the best SDM was MH (AUC =
72.8%), while the corresponding MDC (LR) was 73.1%. When DIFmagnitudes_a was 1, the best
SDM is Logistic (AUC = 85.8%), whereas the correspondingMDC (LR) was 89.6%. Similarly, as
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SampleSize increased from 500 to 2000, most methods demonstrated an increase in AUC owing to
improved estimation accuracy, except for Logistic and Standardization, which experienced a
decrease due to Type 1 error inflation. Additionally, as DIFmagnitudes_b increased from 0.4 to
0.8, all AUCs increased, but the rate of increase varied. The Standardization method exhibited a
faster increase. In summary, the performances of different SDM methods and the best SDM vary
with changes in test conditions. However, MDC (LR) consistently performs slightly better than the
best SDM under the current test conditions. (Figure 1)

Comparisons of AUC Under Various Test Conditions on UMTS

To assess generalizability, the model performance was examined on UMTS (Unmatching Test
Set). As shown in Table S4, although SVM underperformed compared to the best SDM under
certain test conditions, MDC (LR) consistently outperformed the best SDM across all conditions.

Table S5 provides the results of the repeated measures ANOVA analysis for AUC on UMTS.
ProportionsofDIF demonstrated a significant and large effect on AUC (η2 = 0.201). Notably, the
ProportionsofDIF for UMTS ranged from 0.1 to 0.4, whereas, for the MTS, it ranged from 0.2 to
0.3. Thus, the proportion of DIF items substantially influences model performance. Consequently,
the η2 values for other effects were relatively smaller. However, the main effects and interaction
patterns were similar to those observed in the MTS.

Figure 1. AUC Under Various Test Conditions on MTS. Note: For simplicity, only MDC (LR) is presented
as a representative of MDC, alongside five SDMs. An AUC of 50% indicates random guessing (equivalent to
a correlation of 0); therefore, the Y-axis starts at 50%.
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Impact of SDMs on MDC

The correlation between the results of five SDMs and two SIMs with those of MDC (LR) was
calculated for both MTS and UMTS, resulting in seven correlation values under each test
condition. Detailed results for each test condition are presented in Tables S6 and S7. Additionally,
AUC and correlation values for each method were ranked separately under different test con-
ditions, and a Spearman correlation analysis of two ranking was performed.

A high Spearman correlation of 0.868 indicates that a higher AUC for an SDM is more likely to
influence the MDC results, as reflected by a higher correlation with MDC (LR). As shown in Table
S6, when the sample size increased from 1000 to 2000, the correlation for MH with MDC (LR)
increased from 0.849 to 0.870, while the AUC for MH improved from 77.9% to 79.8% (see Table
S2). Similarly, the correlation for LR with MDC (LR) decreased slightly from 0.817 to 0.781, with
its AUC decreasing from 80.5% to 79.1%. While MDC was most influenced by the best SDM
under the current test conditions, it was also affected by the performance of other methods.

Real Data Analysis

This study utilized partial data from the Chinese Proficiency Test. The process of simulating
training data involves first estimating Observable Test Conditions based on the empirical data,
including a sample size of 1212 participants and 26 items (Test Length). The sample size ratio was
calculated as follows: the male group (n = 653) was designated as the reference group, while the
female group (n = 559) served as the focal group, resulting in a sample size ratio of 1.19 (653/559).
Secondly, for DIF-Related Test Conditions and Other Unobservable Test Conditions, we referred
to the settings in the simulation study section of this study (see Table S1).MDCmodeling was then
performed using four different supervised learning methods individually. Thresholds were de-
termined by maximizing the sum of sensitivity and specificity. Figure S3 illustrates the AUCs for
the four MDC models and their corresponding threshold settings.

In the test dataset, the established MDC models were used to predict the final DIF-flagged
results based on the determined thresholds, and model performance was validated. As shown in
Table S8, the AUCs for NB (85.5%), LR (85.1%), and TAN (84.2%) in MDC were all higher than
those for the SDM methods, with the exception of SVM (83.7%). For reference, an AUC of 85%
approximately corresponded to Cohen’s d = 1.50 and Point-Biserial Correlation = 0.600 (Rice &
Harris, 2005). Given the similarity in AUCs among NB, LR, and TAN, subsequent analyses
primarily employed the MDC (LR) model for interpreting MDC mechanisms.

In MDC (LR) modeling, the parameters were specified as follows: PðTrueDIFj SDMÞ ¼
1

1þe�ðβ0þβ1SDM1…βnSDMnÞ As shown in Table 2, the results of the SDM methods influenced the MDC

predictions. For example, when MH changed from 0 (no DIF) to 1 (DIF), the odds ratio (OR) for
DIF relative to no DIF increased by a factor of 4.067 (exp (1.403)). The coefficient for Std was
notably large (18.610), which may be attributed to Std’s high specificity of 99.4% (Table S8),
resulting in a lower likelihood of flagging items as DIF. Additionally, the negative coefficient for
Raju may be attributed to its lower accuracy in this context or potential collinearity with Lord.

Table 2. Coefficients of the MDC (Logistic Regression) Model.

Intercept MH Std Logistic Lord Raju

�3.005 1.403 18.610 1.335 2.366 �2.866
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Discussion and Conclusions

Advantages of MDC Compared to SDM and SIM

The MDC approach offers a notable advantage by reducing the risk associated with selecting an
inappropriate single DIF detection method. As demonstrated in Table S2, when the sample size
was 500, the performance of Lord’s test and Raju’s area method was suboptimal (AUC = 58.9%
and 64.1%, respectively). However, combined with other SDMmethods, particularly LR (AUC =
77.3%), the MDC (LR) method achieved an AUC of 78.5%, highlighting the robustness of MDC.

AlthoughMDC is influenced by the performance of the best SDM, it generally outperforms the
best SDM in overall performance. Pre-specifying the optimal SDM involves considerable un-
certainty and requires specialized knowledge, which is not always feasible. As shown in Table S2,
when the sample size increased to 2000, MH performed better (AUC = 79.8%), and when DIF
magnitudes_a = 0, MH also outperformed other methods (AUC = 72.8%). Given that test
conditions are not always observable, pre-specifying a particular SDM poses significant risks.
Furthermore, while identifying the best SDM in the training set is possible through simulation, that
the consistency of the best SDM in new datasets cannot be ensured. This study demonstrated that
MDC exhibits strong generalizability in the UMTS, enhancing its practical applicability.

Comparisons of Supervised Learning Methods in MDC

This study evaluated four supervised learning methods: TAN, LR, NB, and SVM. As indicated in
Table 1, SVM performed relatively poorly in both MTS and UMTS, while TAN, LR, and NB
exhibited similar performance. In this context, MDC (LR) is recommended for its enhanced
interpretability.

Only five conventional DIF detection methods were utilized in this study. “Single detector”
encompasses any method providing useful information for DIF prediction. Beyond binary
outcomes, additional information, such as effect sizes, should be considered. With an increased
number of predictor variables, exploring more complex supervised learning methods may be
warranted.

Practical Applicability of MDC

The MDC method involves several complex steps. Therefore, an R language function will be
developed to enhance user accessibility. Users will only need to input their data, and with default
parameters, they can obtain DIF detection results efficiently.

Although MDC (LR) consistently outperformed all SDMs in the UMTS, demonstrating its
generalizability, its performance was slightly better in the MTS. Hence, MDC is more effective
when the test conditions of the target dataset are well-represented in the training set, highlighting
the importance of a broad and diverse training set. Training from scratch can be time-consuming;
thus, utilizing larger datasets and more complex supervised learning methods as pre-trained
models could be a promising direction for future development.

Conclusions

In this study, the MDC method demonstrated superior performance in DIF detection, consistently
achieving higher accuracy and robustness across various test conditions compared to the best
SDM in terms of AUC. The advantages of MDC were validated even under test conditions that
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differ from the training set, confirming its generalizability. Therefore, MDC can be effectively
utilized to enhance DIF detection accuracy and robustness, contributing to greater test fairness.

MDC is not a static technology but a flexible framework with significant potential for future
development. This study is expected to inspire researchers to integrate more effective DIF de-
tection techniques and advanced machine learning approaches within the MDC framework,
thereby continuously improving DIF analysis accuracy.
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