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Abstract

To uniformly test and benchmark the secure evaluation of transformer-based models, we designed 

the iDASH24 homomorphic encryption track dataset. The dataset comprises a protein family 

classification model with a transformer architecture and an example dataset that is used to build 

and test the secure evaluation strategies. This dataset was used in the challenge period of iDASH24 

Genomic Privacy Competition, where the teams designed secure evaluation of the classification 

model using a homomorphic encryption scheme. Combined with the benchmarking results and 

companion methods, iDASH24 dataset is a unique resource that can be used to benchmark secure 

evaluation of neural network models.
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BACKGROUND

Protecting individual privacy has always been a major challenge in health data science, 

especially when handling sensitive personal information such as genome sequences [1]. The 

proliferation of large transformer-based architectures has further complicated this issue due 

to dependency on large individual-level training sets, leading to complex ethical challenges 

[2], [3]. Due to the large resources needed to evaluate these models, querying is exclusively 

outsourced to online servers, where the users submit their queries (e.g., ChatGPT questions) 

via online APIs to servers [4], [5], [6]. When the queries carry sensitive information such as 

health and medical data, they can cause extensive risk to the users. Furthermore, the queries 

may be used to tune the models by manual selection and postprocessing, which may further 

exacerbate the privacy risks to users.
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SOURCE CODE AND SCRIPTS
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10.5281/zenodo.13922565).

HHS Public Access
Author manuscript
IEEE Data Descr. Author manuscript; available in PMC 2024 December 20.

Published in final edited form as:
IEEE Data Descr. 2024 ; 1: 109–112. doi:10.1109/ieeedata.2024.3482283.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The protection of the queries can be implemented via homomorphic encryption (HE) [7], 

[8]. In a HE-enabled setup, the queries are first encoded and encrypted via an appropriate 

HE scheme (e.g., CKKS [9]). Next, the user submits the encrypted query to the server, 

which securely evaluates the model, obtains encrypted results, and sends the results back 

to the user (Fig. 1). Results are decrypted to obtain the plaintext results. While HE was 

deemed impractical after its inception, there is renewed interest in HE-based techniques, 

thanks to the recent theoretical and practical breakthroughs. These have brought forth orders 

of magnitude improvement in runtime performance [10], which has led to, for example, 

generic HE-compilers that can generate HE-enabled code [11], [12]. There is strong industry 

and academic interest in HE for developing practical applications in machine learning [13], 

[14], [15]. While there are limitations to the practical usage of HE-enabled systems such 

as embedded systems, and for processing very large datasets, most HE-schemes are highly 

parallelizable and can make use of single instruction-multiple data operations optimizations.

There are currently limited benchmarking resources to evaluate secure neural network 

inference methods effectively. Most benchmark studies focus on comparing the performance 

of different schemes and libraries [16]. Secure evaluation of the transformer-based models 

is especially valuable since majority of the outsourced tasks rely on these architectures and 

they represent the current pinnacle of state-of-the-art in generative tasks [17] with immediate 

impact on individual privacy.

To address this gap, we present the iDASH24 dataset, to benchmark HE-based evaluation 

of a transformer model for protein classification for the homomorphic encryption track of 

iDASH24 genomic privacy challenge [18]. This dataset contains a neural network model 

for protein sequence classification, and an example dataset that can be used to test and 

explore the model. The benchmarking metrics and results are included in the dataset, making 

iDASH24 a unique community contributed resource. In this data descriptor article, we hope 

to facilitate advancements in privacy-preserving machine learning techniques and promote 

their adoption in sensitive application domains.

COLLECTION METHODS AND DESIGN

In iDASH24 dataset, we present a 25-class protein sequence dataset that is obtained from 

PFAM [19] database and a neural network model that is trained using the database (Fig. 2).

iDASH24 1.2 m Protein Sequence Dataset

We downloaded 52786549 FASTA formatted protein sequences from the PFAM database 

[19], which was accessed on 17 March 2024 (Table I). Each sequence contains an identifier, 

followed by the aminoacid sequence for the protein. The aminoacids are denoted as single 

letters out of a 25-letter alphabet. We selected the families that had at least 40000 and 

at most 60000 examples in the PFAM database. We next sorted the protein classes by 

decreasing frequency and selected the sequences in the most abundant 25 classes of proteins. 

For each selected sequence, we extracted a random 50 aminoacid long fragment and saved 

it with the corresponding family label in [0,24]. Any sequence that is shorter than 50 

aminoacids is excluded from the final outputs for the corresponding class. The selected 

sequences were saved in a text file with 50 aminoacid sequences and the class label 
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separated by a semicolon. Overall, the dataset contains 1197515 sequences for the 25 protein 

classes. We denote this dataset as the 1.2 m protein sequence dataset.

iDASH24 Protein Classification Model

The protein classification model uses a transformer architecture comprising a tokenizer, an 

encoder, a transformer block with a four-head self-attention layer, and a final dense layer 

that performs classification. The model contains 138905 parameters in total. Model was 

trained using 1.2 m protein sequence dataset for ten epochs, with categorical cross-entropy 

loss, and Adam optimizer. Twenty percent of the training dataset (239503 sequences) was 

used as the validation set to track model fitting. The remaining 958012 sequences were used 

for training the model. The final model file was saved as a keras file. We also extracted 

all model parameters as text files that can be loaded and explored in other languages and 

computing platforms.

iDASH24 Challenge and Evaluation Datasets

One thousand sequences were randomly selected and were distributed to the teams as 

example sequences. We also extracted 100 class-balanced protein sequences (four sequences 

per class) that were used for benchmarking the submitted solutions for accuracy and 

resource requirements.

iDASH24 Benchmarking and Evaluation Results

The participating teams were asked to develop HE-based solutions to evaluate the 

classification model on encrypted protein sequences. The teams were allowed to tokenize the 

input sequences and apply one linear scaling to the input data before they were encrypted 

and used as input to the encoder layer. All layers after encoders were required to process 

encrypted data. The teams were free to select the encryption library/scheme (e.g., SEAL 

[20], Lattigo [21], and OpenFHE [22]) with the constraint that the encryption parameters 

satisfy 128-bit security under HE-standard [23].

Out of 15 registered teams, we received six solutions from five teams. The 100-sequences 

evaluation dataset was used for benchmarks, which were done on Intel Xeon Platinum 

8168 processor. Each submission was run in a Docker container limited to four cores or 

processor, 2.5 GB of disk storage space, and 128 GB memory (Docker Engine Version 

26.1.3). The end-to-end runtime and the microaveraged area under curve (microAUC, using 

roc_auc_score function in scikit-learn library [24]) was calculated for each solution (Table 

II). Overall, we observed that the solutions finished in less than 40 min except for one 

solution, which ran for 12.6 h. One method finished in 7 min and 25 s.

VALIDATION AND QUALITY

We chose not to filter sequences based on their amino acid content so as to include rare 

protein classes with distinct properties, promoting diversity within the dataset. While most 

classes were well represented, we observed that three classes had fewer sequences due to 

the sequence length filtering criterion (minimum of 50 amino acids). To address potential 

class imbalance and maintain inclusivity, we decided to include these smaller classes in the 
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iDASH24 dataset. For model validation, we evaluated the transformer-based classification 

model on the validation set, achieving an accuracy of 86.95%, which closely matched the 

training accuracy of 86.84%. This parity suggests that the model generalizes well and does 

not overfit the training data.

As a separate test, we tested the quality of the dataset and the neural network model 

using protein classification accuracy from the transformer model. For this, we extracted a 

separate 1000 random sequences from the 1.2 m protein sequence dataset and evaluated 

the network model. Overall, we found that the classification accuracy was 89%, which 

indicates that the model provides high classification accuracy among the 25-protein classes. 

We further ensured that the released text-based model parameters matched the total number 

of parameters reported by the model (138905 parameters), confirming the consistency and 

integrity of the model files. The model was also extensively tested the teams participating in 

the iDASH24 Challenge. Their independent evaluations help to further validate the model’s 

reliability and performance.

RECORDS AND STORAGE

We describe the detailed files shared in iDASH24 dataset in Table III.

In addition to the classification model and the protein sequence data, iDASH24 contains 

documentation files including a CHALLENGE.README file and Python model summaries 

(text and png formatted) that describe the model architecture. We will also release the 

benchmarking scripts (as Python scripts) and final benchmarking results for all the teams 

that have completed the challenge. Given the extensive participation from the cryptography 

research teams in this year’s competition, we foresee that the dataset combined with the 

benchmarking results will serve as a unique resource for the future development of HE-

based neural network evaluation methods.

INSIGHTS AND NOTES

In this work, we have presented the iDASH24 dataset, a comprehensive resource designed 

to facilitate the benchmarking and development of secure neural network evaluation methods 

using HE. By providing a large-scale protein sequence dataset and a transformer-based 

classification model, we aim to bridge the gap between advanced cryptographic techniques 

and practical machine learning applications. We invite researchers and practitioners to 

utilize this dataset to advance the field of privacy-preserving machine learning, ultimately 

contributing to the secure and ethical handling of sensitive biological data.

Previous benchmarking datasets about protein sequence analysis focus onbroad number of 

tasks for smaller models and may occasionally not satisfy the size requirements for large 

model training [25], [26], [27]. In comparison, our objective was to train and benchmark 

a large model on more simple task. Therefore, iDASH24 is specifically selected to be 

uniformly filtered and processed to include a randomly selected 50-mer fragment from each 

protein sequence. We also aimed to have a large dataset to ensure the large model can be 

trained on the sequences.

HARMANCI et al. Page 4

IEEE Data Descr. Author manuscript; available in PMC 2024 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We strongly recommend any users of iDASH24 data refer to other papers published with 

this dataset. The users can refer to these publications and announcements to perform future 

benchmarks. Additionally, the users of iDASH24 dataset can make use of the 1.2 m dataset 

to generate new benchmarking datasets with similar characteristics and do more extensive 

tests. This is possible because the classification model was trained on a large portion of this 

dataset and should classify this dataset well.
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FIG. 1. 
Illustration of the secure model inference service. User encrypts and submits the protein 

sequence. The encrypted data are sent to model inference service, which securely evaluates 

the classification model and sends the encrypted results back to the user, who decrypts and 

obtains the results.
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FIG. 2. 
Processing steps for generating iDASH24 datasets.
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TABLE I.

Data Source and Filtering Criteria

Main Data Source PFAM Database [19]

Source Size 52786549 (17 March 2024)

Format FASTA

Selection Criteria 25 Most Abundant, Frequency between 40000–60000 sequences

Exclusion Criteria Shorter than 50 amino acids

Final Dataset 1197515 sequences with class labels in [0,24]
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TABLE II.

Performance Scores and Execution Times for Different Solutions

Solution Score (MicroAUC) End-to-End Time

Solution-1 0.963 26m 50.541s

Solution-2 0.941 7m 25.820s

Solution-3 0.984 35m 37.218s

Solution-4 0.983 25m 13.271s

Solution-5 0.525 12.57 h
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TABLE III.

Description of Formats and Contents of the iDASH24 Dataset Files

File Name Format Description

Example Sequences (example_AA_sequences.txt) Space delimited file. Class Protein sequences for evaluation and challenge

Dashformer.keras Keras model file Protein classification model

Dashformer_model_parameters Text-formatted Parameters Directory contains the parameters of classification model

DASHformer_Challenge.py Python code for the model The Python code for exploring and evaluating model

dashformer_tokenizer.json Json file Tokenizer file for processing input sequences

PFAM_training_sequences.txt Space delimited text file 1.2m protein sequence database

DASHformer.requirements Python requirements list The list of requirements to run the classification model
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