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Abstract

Graph Neural Networks (GNNs) have achieved great success in learning with graph-structured 

data. Privacy concerns have also been raised for the trained models which could expose the 

sensitive information of graphs including both node features and the structure information. In 

this paper, we aim to achieve node-level differential privacy (DP) for training GNNs so that a 

node and its edges are protected. Node DP is inherently difficult for GNNs because all direct 

and multi-hop neighbors participate in the calculation of gradients for each node via layer-wise 

message passing and there is no bound on how many direct and multi-hop neighbors a node can 

have, so existing DP methods will result in high privacy cost or poor utility due to high node 

sensitivity. We propose a Decoupled GNN with Differentially Private Approximate Personalized 

PageRank (DPAR) for training GNNs with an enhanced privacy-utility tradeoff. The key idea 

is to decouple the feature projection and message passing via a DP PageRank algorithm which 

learns the structure information and uses the top-K neighbors determined by the PageRank for 

feature aggregation. By capturing the most important neighbors for each node and avoiding the 

layer-wise message passing, it bounds the node sensitivity and achieves improved privacy-utility 

tradeoff compared to layer-wise perturbation based methods. We theoretically analyze the node 
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DP guarantee for the two processes combined together and empirically demonstrate better utilities 

of DPAR with the same level of node DP compared with state-of-the-art methods.
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Differential Privacy; Graph Neural Networks; PageRank

1 INTRODUCTION

Graph Neural Networks (GNNs) have shown superior performance in mining graph-

structured data and learning graph representations for downstream tasks like node 

classification, link prediction, and graph classification [7, 19, 30, 41]. Like neural network 

models trained on private datasets that could expose sensitive training data, GNN models 

trained on graph data embedded with node features and topology are also vulnerable to 

various privacy attacks [40, 49, 50].

Differential privacy (DP) has become the standard for neural network training with rigorous 

protection for training data [1, 13]. A key method is DP stochastic gradient descent (DP-

SGD) [1, 47], which introduces calibrated noise into gradients during SGD training. DP 

ensures a bounded risk for an adversary to deduce from a model whether a record was 

used in its training. For graph data, where both node features (e.g., personal attributes) and 

edges (e.g., social relationships) can be sensitive, our objective is to achieve node-level DP, 

limiting the risk of inferring whether a node and its edges were included in the training.

Challenges.

Achieving node DP for GNNs is inherently challenging. Unlike grid-based data such as 

images, graph data contains both feature vectors for each node and the edges that connect 

the nodes. During the training of GNN models, all direct and multi-hop neighbors participate 

in the calculation of gradients for each node via recursive layer-wise message passing [19, 

41]. At each layer, each node aggregates the features (or the latent representations) from its 

neighbors when generating its own representation. There is no bound on how many direct 

and multi-hop neighbors a node can have. This means the sensitivity of the gradient due 

to the presence or absence of a node can be extremely high due to the node itself and 

its neighbors (or correlations between the nodes), which makes standard DP-SGD based 

methods [1, 46] infeasible, resulting in either high privacy cost or poor utility due to the 

large required DP noise.

Few recent works tackled node DP for training GNNs and they mainly attempted to bound 

the correlations during training to help bound the sensitivity or privacy cost. Daigavane 

et al. [9] sample subgraphs to ensure that each node has a bounded number of neighbors 

within each subgraph, and limit the occurrences of each node in other subgraphs such 

that it can apply the privacy-by-amplification technique [4, 23] to GNN. Their method is 

limited to GNNs with only one or two layers. The GAP algorithm [38] assumes a maximum 

degree for each node in order to bound the sensitivity of individual nodes. Meanwhile, 

their message-passing scheme requires DP noise at each step, therefore, it further bounds 
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the sensitivity by bounding the number of hops. This affects the model utility as it may 

restrict each node from acquiring useful information from higher hop neighbors. In sum, 

these approaches make it feasible to train GNNs with node DP but still sacrifice the model 

accuracy due to the restrictions on the number of hops during training.

Contributions.

We propose a Decoupled GNN with Differentially Private Approximate Personalized 

PageRank (DPAR, pronounced “dapper”) for training GNNs with node DP and enhanced 

privacy-utility tradeoff. The key idea is to decouple the feature aggregation and message 

passing into two processes: 1) use a DP Approximate Personalized PageRank (APPR) 

algorithm to learn the structure information, and 2) use the top-K neighbors determined 

by the APPR for feature aggregation and model learning with DP. In other words, the 

APPR learns the influence score of all direct and multi-hop neighbors, and the layer-wise 

message-passing is replaced by neighborhood aggregation based on the APPR.

Our framework is based on the decoupled GNN training frameworks [7, 25] which are 

originally designed to scale up the training for large graphs. Our main insight is that 

this decoupled strategy can be exploited to improve the design of DP algorithms. By 

capturing the most important neighbors for each node (bounding the node sensitivity) and 

avoiding the expensive privacy cost accumulation from the layer-wise message passing, our 

framework achieves enhanced privacy-utility tradeoff compared to layer-wise perturbation 

based methods.

Adding DP to this decoupled framework is nontrivial and presents several challenges. 

First, there are no existing works for computing sparsified APPR with formal node DP. 

While there exist DP top-K selection algorithms [12], directly applying it can result in 

poor accuracy due to high sensitivity since each node (and its edges) can affect all the 

elements in the APPR matrix. Second, while DP-SGD can be used for feature aggregation, 

the neighborhood sampling returns a correlated batch of nodes based on the APPR, making 

the privacy analysis more complex, particularly for quantifying the privacy amplification 

ratio. To address these challenges, we develop DP-APPR algorithms to compute the top-K 
sparsified APPR with DP. We then utilize DP-SGD [1] for feature aggregation and model 

training to protect node features. We analyze the privacy loss caused by the neighborhood 

sampling and calibrate tighter Gaussian noise for the clipped gradients to provide a rigorous 

overall privacy guarantee. We summarize our contributions as follows.

• We propose DPAR, a novel de-coupled DP framework with sparsification for 

training GNNs with rigorous node DP. DPAR decouples message passing from 

feature aggregation via DP APPR and uses the top-K neighbors determined by 

APPR for feature aggregation, which captures the most important neighbors 

for each node and avoids the layer-wise message passing and achieves better 

privacy-utility tradeoff than existing layer-wise perturbation based methods.

• We develop two DP APPR algorithms based on the exponential mechanism 

and Gaussian mechanism for selecting top-K elements in the APPR vector with 

formal node DP. We employ sampling and clipping to address the high sensitivity 

challenge. We utilize the exponential mechanism [12, 13] to select the indices of 
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the top-K elements first, and then compute the corresponding noisy values with 

additional privacy costs. Alternatively, the Gaussian mechanism directly adds 

noise to the APPR vector and then selects the top-K from the noisy vectors. We 

formally analyze the privacy guarantee for both methods.

• We use DP-SGD for feature aggregation and model learning based on the DP 

APPR. By using the top-K sparsified DP APPR vectors, we limit the maximum 

number of nodes one node can affect during gradient computation, which is 

the maximum column-wise ℓ0 norm of the DP APPR matrix. We incorporate 

additional clipping to ensure a maximum ℓ1 norm per column which determines 

the sensitivity of each node. We calibrate the Gaussian noise by theoretically 

analyzing the privacy loss and privacy amplification caused by the neighborhood 

sampling determined by the DP APPR and provide a rigorous privacy guarantee 

for DPAR.

• We conduct extensive experiments on five real-world graph datasets to evaluate 

the effectiveness of the proposed algorithms. Results show that they achieve 

better accuracy at the same level of node DP compared to the state-of-the-art 

algorithms. We also illustrate the privacy protection of the trained models.

2 BACKGROUND

2.1 GNNs with Personalized PageRank

Given a graph G = V, E, X , where V and E denote the set of vertices and edges, respectively, 

and X ∈ ℝ V × d represents the feature matrix where each row corresponds to the associated 

feature vector Xv ∈ ℝd v = 1, …, V  of node v. Each node is associated with a class (or 

label) vector Y v ∈ ℝc, such as the one-hot encoding vector, with the number of classes c. 

Considering the node classification task as an instance, a GNN model learns a representation 

function f that generates the node embedding hv for each node v ∈ V based on the features 

of the node itself as well as all its neighbors [41], and the generated node embeddings will 

further be used to label the class of unlabeled nodes using the softmax classifier with the 

cross-entropy loss.

GNN models use the recursive message-passing procedure to spread information through 

a graph, which couples the neighborhood aggregation and feature transformation for node 

representation learning. This coupling pattern can cause some potential issues in model 

training, including neighbor explosion and over-smoothing [7, 30]. Recent works propose 

to decouple the neighborhood aggregation process from feature transformation and achieve 

superior performance [7, 11]. Bojchevski et al. [7] show that neighborhood aggregation/

propagation based on personalized PageRank [18] can maintain the influence score of all 

“neighboring” (relevant) nodes that are reachable to the source node in the graph, without 

the explicit message-passing procedure. They pre-compute a pagerank matrix Π and truncate 

it by keeping only the top k largest entries of each row and setting others to zero to get a 

sparse matrix Πppr, which is then used to aggregate node representations, generated using a 
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neural network, of “neighbors” (most relevant nodes) to get final predictions, expressed as 

follows:

zv = softmax u ∈ Nk(v) π′(v)uHu, : ,

(1)

where Nk v  enumerates indices of the k non-zero entries in π′ v  which is the v-th row of 

Πppr corresponding to the node v’s sparse APPR vector. Hu, : is the node representation 

generated by a neural network fθ using the node feature vector Xu of each node u
independently.

2.2 Differential Privacy (DP)

DP [13, 34] has demonstrated itself as a strong and rigorous privacy framework for 

aggregate data analysis in many applications. DP ensures the output distributions of an 

algorithm are indistinguishable with a certain probability when the input datasets differ in 

only one record.

DEFINITION 1. ((ϵ, δ -Differential Privacy) [13]. Let D and D′ be two neighboring datasets that 
differ in at most one entry. A randomized algorithm A satisfies (ϵ, δ)-differential privacy if 
for all S ⊆ Range(A :

Pr[A(D) ∈ S] ≤ eϵPr A D′ ∈ S + δ,

where A D  represents the output of A with the input D, ϵ and δ are the privacy parameters 
(or privacy budget) and a lower ϵ and δ indicate stronger privacy and lower privacy loss.

In this paper, we aim to achieve node-level DP for graph data to protect both the features and 

edges of a node.

DEFINITION 2. ((ϵ, δ)-Node-level Differential Privacy) Let G and G′ be two neighboring graphs 
that differ in at most one node including its feature vector and all its connected edges. A 
randomized algorithm A satisfies ϵ, δ -node-level DP if for all S ⊆ Range A :

Pr[A(G) ∈ S] ≤ eϵPr A G′ ∈ S + δ,

where A G  represents the output of A with the input graph G.

2.3 DP-SGD and Challenges

A widely used technique for achieving DP for deep learning models is DP stochastic 

gradient descent (DP-SGD) algorithm [1, 26]. It first computes the gradient g xi  for each 

example xi in the randomly sampled batch with size B, and then clips the ℓ2 norm of each 

gradient with a clipping threshold C to bound the sensitivity of g xi  to C. The clipped 

gradient g xi  of each example will be summed together and added with the Gaussian noise 
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N 0, σ2C2I  to protect privacy. Finally, the average of the noisy accumulated gradient g will 

be used to update the model parameters for this step. We express g as:

g 1
B i = 1

B
g xi + N 0, σ2C2I .

(2)

In DP-SGD, each example individually calculates its gradient, e.g., only the features of xi

will be used to compute the gradient g xi  for xi. However, when training GNNs, nodes are 

no longer independent, and one node’s feature will affect the gradients of other nodes. In a 

GNN model with K layers, one node has the chance to utilize additional features from all its 

neighbors up to K-hop when calculating its gradient. Rethinking Equation 2, the bound of 

the sensitivity of ∑i = 1
B g xi  becomes B*C since changing one node could potentially change 

the gradients of all nodes in the batch ∑i = 1
B g xi . Substituting B*C for C in Equation 2 and 

we get the following equation:

g′ 1
B i = 1

B
g xi + N 0, σ2B2C2I .

(3)

Comparing Equation 3 to 2, to achieve the same level of privacy at each step during 

DP-SGD, the standard deviation of the Gaussian noise added to the gradients is scaled up 

by a factor of the batch size B, resulting in poor utility. Existing works [9, 38] mitigate the 

high sensitivity by bounding the number of hops and node degrees but also sacrifice the 

information that can be learned from higher hop neighbors, resulting in limited success in 

improving accuracy.

3 DPAR

We present our DPAR framework for training DP GNN models via DP approximate 

personalized PageRank (APPR). The key idea is to exploit the decoupled framework 

(Section 2.1) and decouple message passing from feature aggregation into two steps: 1) 

use a DP APPR algorithm to learn the structure information (Section 3.1), and 2) use the 

top-K neighbors determined by the APPR for feature aggregation and model learning with 

DP-SGD (Section 3.2). By capturing the most important neighbors for each node from 

the APPR and avoiding explicit message passing, it bounds the node sensitivity without 

sacrificing model accuracy, achieving an improved privacy-utility tradeoff. The overall 

privacy budget will be split between the two steps, and we theoretically analyze the node DP 

guarantee for the entire framework in Section 3.2.

3.1 Differentially Private APPR

We develop our DP APPR algorithms based on the ISTA algorithm [15] for computing 

APPR. Andersen et al. [3] proposed the first approximate personalized PageRank (APPR) 

algorithm which is adopted in [7, 25] to replace the explicit message-passing procedure 

for GNNs. Most recently, Fountoulakis et al. [15] demonstrated that the APPR algorithm 
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can be characterized as an ℓ1-regularized optimization problem, and proposed an iterative 

shrinkage-thresholding algorithm (ISTA) (Algorithm 3 in [15]) to solve it with a running 

time independent of the size of the graph. The input of ISTA contains the adjacency matrix 

of a graph and the one-hot vector corresponding to the index of one node in the graph, 

and the output is the APPR vector of that node. We develop our DP APPR algorithm 

based on ISTA due to its status as one of the state-of-the-art APPR algorithms. ISTA 

provides an excellent balance between scalability and approximation guarantees. Moreover, 

the resulting sparse APPR matrix can be easily accommodated into the memory, facilitating 

the subsequent neural network training.

Recall the purpose of calculating APPR vectors is to utilize them to aggregate 

representations from relevant nodes for the source node during model training. The index of 

each entry in an APPR vector indicates the index of a node in the graph, and the value of 

each entry reflects the importance or relevance of this node to the source node. By reserving 

the top K largest entries for each APPR vector, the feature aggregation step computes a 

weighted average of the representations of the K most relevant nodes to the source node 

(recall Equation 1). The graph structure information is encoded in both the indexes and 

values of non-zero entries in each sparse APPR vector. Thus, to provide DP protection for 

the graph structure, we propose two DP APPR algorithms to obtain the top-K indexes and 

values for each APPR vector.

Exponential Mechanism (DP-APPR-EM).—We present the DP APPR algorithm using 

the exponential mechanism. While we can employ a DP top-K selection algorithm based 

on the exponential mechanism [12], there are several challenges that need to be addressed. 

First, each node (and its edges) can change an arbitrary number of elements in the APPR 

vector and lead to significant changes in each element. Second, each node can change an 
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arbitrary number of APPR vectors in the APPR matrix. Both of these mean extremely 

high sensitivity, making a direct application of the top-K selection algorithm ineffective. To 

address them, we employ two techniques: 1) clipping each element to bound the sensitivity, 

2) sampling and only computing APPR for a subset of M nodes in the graph to reduce 

sensitivity. We then employ the exponential mechanism to select the top-K values.

As shown in Algorithm 1, for each of the M sampled nodes, we first compute the APPR 

vector using the ISTA algorithm (line 4). Then we employ clipping to bound the sensitivity 

of each element by C2 (line 6). We use the clipped value as its utility score for the 

exponential mechanism since the magnitude of each entry indicates its importance (utility) 

and is used as the weight when aggregating the representation of the nodes. We simulate 

the exponential mechanism by injecting a one-shot Gumbel noise to the clipped vector p̂ v

(line 8) and then select the indexes of top K largest noisy entries [12] (line 10). We can 

then either: option I) set the values of all top K entries to be 1/K (line 12), which means 

we consider the top K entries equally important to the source node, or option II) spend 

additional privacy budget ϵ2 to obtain the noisy values of the top K entries with DP (line 

13). Given the same privacy budget, the option I has a better chance to output indexes of the 

actual top K entries while losing the importance scores. In contrast, option II sacrifices some 

accuracy in selecting the indexes of top K entries but has additional importance scores.

Privacy Analysis of DP-APPR-EM.—We formally analyze the DP guarantee of 

Algorithm 1 utilizing the following corollary for the exponential mechanism based top-K
selection.

COROLLARY 1. [12] ℳGumbel
k u  adds the one-shot Gumbel Δ u /ϵ  noise to each utility score 

u x, r  and outputs the k indices with the largest noisy values. For any δ ≥ 0, ℳGumbel
k u  is 

ε′, δ − DP  where

ϵ′ = 2 · min kϵ, kϵ e2ϵ − 1
e2ϵ + 1

+ ϵ 2k ln(1/δ)

The privacy analysis conducted in [12] assumes independent users and the sensitivity Δ u
is 1. In our case, each node (and its edges) can modify an arbitrary number of elements 

in the APPR vector and each element can change at most by C2 due to clipping (line 6). 

Consequently, the sensitivity Δ u  used in Corollary 1 is set to C2 and the noise is calibrated 

accordingly in our algorithm (line 8). Additionally, since each node can change up to M
vectors in the APPR matrix, we use sequential composition to bound the privacy loss for M
APPR vectors. With the calibrated noise and composition, we establish the DP guarantee in 

Theorem 1.

THEOREM 1. For any ϵ > 0, ϵ2 > 0 and δ ∈ 0,1 , let ϵ1 = 2 · min Kϵ, Kϵ e2ϵ − 1
e2ϵ + 1

+ ϵ 2K ln 1/δ , 

Algorithm 1 is ϵg1, 2Mδ -differentially private for option I, and (ϵg2, 2Mδ)-
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differentially private for option II, where ϵ1 = ϵg1/ 2 M ln e + ϵg1/2Mδ  and 

ϵ1 + ϵ2 = ϵg2/ 2 M ln e + ϵg2/2Mδ .

PROOF. See Appendix A for the proof.

Gaussian Mechanism.—We explore another DP-APPR algorithm (DP-APPR-GM) 

based on Gaussian mechanism [13] and output perturbation. The idea behind DP-APPR-GM 

is to use the clipping strategy to bound the global sensitivity of each output PageRank vector 

and add Gaussian noise to each bounded PageRank vector to achieve DP. See Appendix B 

for more details about DP-APPR-GM.

3.2 Differentially Private GNNs

We show our overall approach for training a DP GNN model in Algorithm 2. The main idea 

is to use DP APPR for neighborhood sampling and then use DP-SGD to achieve DP for the 

node features. We employ additional sampling and clipping to reduce the privacy cost.

Given a graph dataset G‾ , we first use a sampling rate q′ to randomly sample nodes from G‾  to 

form a subgraph G = V , E, X  containing only the sampled nodes and their connected edges, 

which is used for training in Algorithm 3. This sampling step brings a privacy amplification 

effect in our privacy guarantee by a factor of [5, 23]. Note that this is different from the 

batch sampling during each iteration of the training process. We further sample M nodes 

to compute the DP APPR using DP-APPR-EM or DP-APPR-GM and use it as input for 

Algorithm 2.

Utilizing the sparsified DP APPR vectors (each row has only top-K non-zero elements) 

limits the impact of a node on the gradient computation of up to B′ nodes, where B′ is the 
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maximum column-wise ℓ0 norm of the DP APPR matrix (number of non-zero elements in 

each column). The exact impact or sensitivity is determined by the maximum column-wise 

ℓ1 norm of the DP APPR matrix (see privacy analysis for more details). Hence, we employ 

additional clipping on the DP APPR matrix to bound the sensitivity. Given Π computed 

using DP-APPR algorithms, each column of Π is clipped to have a maximum ℓ1 norm of τ to 

limit privacy loss (line 3).

During each training step, we sample a batch of B nodes and their top-K neighbors (both 

direct and indirect) using APPR vectors, loading features of up to B × K nodes for gradient 

computation (line 6). The loss function ℒ θ, vi  is the cross-entropy between node vi’s true 

label and its prediction from Equation 1. Following DP-SGD, we compute each node’s 

gradient, clip it to a maximum ℓ2 norm of C, and introduce Gaussian noise with sensitivity C
(line 7 − 12). The model is updated with the averaged noisy gradient (line 14).

Privacy Analysis.—Theorem 2 presents the DP analysis of Algorithm 2. An essential 

distinction between our algorithm and the original DP-SGD is that our neighborhood 

sampling returns a correlated batch of nodes for gradient computation (i.e., the computation 

of gt vi  requires the features of the neighboring nodes of node vi, and node vi accesses 

the fixed K nodes based on the DP-APPR vector), while the original DP-SGD uses the 

much simpler Poisson sampling. As a result, the privacy analysis of our algorithm is more 

involved, especially in terms of quantifying the privacy amplification ratio under such 

a neighbor-correlated sampling setting. We prove that the privacy amplification ratio is 

proportional to the maximum of the column-wise ℓ1 norm of the DP-APPR matrix.

For the composition of DP-APPR and DP-SGD, we use the standard composition theorem. 

Recall that for the privacy composition of multiple DP-APPR vectors for the DP-APPR 

matrix (Theorem 1 and 2), we used a strong composition theorem. We note that our privacy 

analysis can always benefit from a more advanced composition theorem to achieve tighter 

overall privacy, which can be a future work direction.

THEOREM 2. There exist constants c1 and c2 so that given probability q = B/N and the number 

of steps T , for any ϵsgd < c1q2T , Algorithm 2 is q′ ϵsgd + ϵpr, δsgd + δpr -differentially private 

corresponding to G‾ , for any δsgd > 0 if we choose σ ≥ c2
qτ T log 1/δsgd

ϵsgd
.

PROOF. See Appendix C for the proof.

4 EXPERIMENTAL RESULTS

We evaluate our method on five graph datasets with varying sizes and edge density: Cora-

ML [6], Microsoft Academic graph [39], CS [39], Physics [39], and Reddit [19]. Appendix 

D provides the details of each dataset.

Setup.

To simulate the real-world situations where training nodes are assumed to be private and not 

publicly available, we split the nodes into a training set (80%) and a test set (20%), and select 
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inductive graph learning setting by removing edges between the two sets. The training nodes 

are inaccessible during inference. We use the same 2-layer feed-forward neural network with 

a hidden layer size of 32 as in [7] for all datasets. The training epochs are fixed at 200, the 

learning rate at 0.005, and the batch size at 60. The hyperparameters for ISTA are chosen 

through grid search as α = 0.25, ρ = 10−4, and γ = 10−4. In our comparison with baseline 

methods, we set K to 2 for computing top-K sparsified DP APPR. We also present results 

on the effect of K with different K values. The graph sampling rate is set to q′ = 9% for 

all datasets, and M = 70 nodes are chosen randomly and uniformly to generate DP-APPR 

vectors. Experiments are conducted on a server with an Nvidia K80 GPU, a 6-core Intel 

CPU, and 56 GiB RAM. Results are based on the mean of 10 independent trials. The source 

code is available1.

Our Approach and Baselines.

Our proposed algorithms using the DP-APPR with exponential mechanism (options I and 

II in Algorithm 1) are referred to as DPAR-EM0 and DPAR-EM1, respectively, and our 

algorithm using the DP-APPR with Gaussian mechanism is referred to as DPAR-GM.

We compare our proposed algorithms with two state-of-the-art methods achieving node DP 

for GNN and one baseline method: 1) SAGE [9] samples subgraphs of 1-hop neighbors 

of each node to train 1-layer GNNs with the GraphSAGE [19] model. 2) GAP [38] 

uses aggregation perturbation and MLP-based encoder and classifier with DP-SGD and a 

bounded node degree and number of hops. 3) Features is a baseline method that only 

uses node feature as an independent input to train the GNN model and does not consider 

the structural information of the graph. Features utilizes the original DP-SGD to achieve 

node DP. Note that it is equal to the case where we use a one-hot vector as each node’s 

APPR vector in Algorithm 2 (i.e., no correlation with other nodes is used). We included this 

baseline to help characterize the datasets and calibrate the results, i.e., a good performance 

of the method may suggest that the topological structure of the particular dataset has limited 

benefit in training GNN. The models DPARNoDP and GAPNoDP indicate the respective 

methods (DPAR, GAP) with no DP protection.

Inference Phase.

As suggested in [7], instead of computing the APPR vectors for all testing nodes and 

generating predictions based on their APPR vectors, we use power iteration during 

inference:

Q(0) = H, Q(p) = (1 − α)D−1AQ(p − 1) + αH, p ∈ [1, …, P ] .

(4)

where H is the representation matrix of testing nodes generated by the trained private model, 

with the input being the feature matrix of the testing nodes; D and A are the degree matrix 

and adjacency matrix of the graph containing only testing nodes, respectively. The final 

1The source code is available at: https://github.com/Emory-AIMS/DPAR.
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output of power iteration Q P  will be input into a softmax layer to generate the predictions 

for testing nodes. We set P = 2 and the teleportation constant α = 0.25 as suggested in [7] in 

our experiments.

4.1 Privacy vs. Accuracy Trade-off

We use the value of privacy budget ϵ (with fixed δ chosen to be roughly equal to the inverse 

of each dataset’s number of training nodes) to represent the level of privacy protection 

and use the test accuracy for node classification to indicate the model’s utility. Table 1 

shows the results of our proposed methods and the baselines in all datasets, where the total 

privacy budget is evenly divided between DP-APPR and DP-SGD. In comparison to GAP 
and SAGE, our methods show superior test accuracy under the same privacy budget on all 

datasets. For instance, when ϵ = 1, our methods (DPAR-GM, DPAR-EM0, or DPAR-EM1) 

achieve the highest test accuracy of 0.3421/0.8569/0.8927/0.934/0.8948 on Cora-ML/MS 

Academic/CS/Reddit/Physics datasets respectively. The best accuracy achieved by the 

baselines (GAP or SAGE) is 0.34/0.6563/0.66/0.7047/0.8192 on the corresponding datasets, 

indicating a test accuracy improvement by 0.62%/30.6%/35.3%/32.5%/9.23% respectively. 

The performance improvement demonstrates our method’s superior ability to balance the 

privacy-utility trade-off on training graph datasets with privacy considerations.

Existing research in the graph neural network community suggests that features alone, 

especially for heterophilic graphs, can sometimes result in better-trained node classification 

models with MLP as the backend architecture compared to state-of-the-art GNN models 

[35]. For the Cora-ML dataset, which has a low edge density, the Features approach 

outperforms our methods when ϵ is small (e.g., 1). This is because our methods allocate part 

of the privacy budget to protect graph structure information, which may not be as critical, 

while Features uses its entire privacy budget to protect node features without considering 

graph structure information. However, as ϵ increases (e.g., 8), our methods outperform 

Features.

Our proposed methods protect the graph structure and node features independently via 

the decoupled framework. Different graphs possess unique characteristics, and the relative 

significance of structure information and node features can differ among them. Accordingly, 

our methods are able to allocate the total privacy budget differently to protect node features 

and structures, which leads to more precise and tunable privacy protection for graph data 

that includes both feature and structural information.

Ablation Study of Different DP-APPR Methods.—To further study the impact of DP-

APPR on the model accuracy, in Figure 1, we fix ϵsgd (privacy budget for DP-SGD) and use 

varying ϵpr (privacy budget for DP-APPR) as the x-axis. For DPAR-GM and DPAR-EM1, 

the higher the ϵpr, the less noise is added when calculating the APPR vector for each training 

node. This allows a better chance for each node to aggregate representations from more 

important nodes using more precise importance scores. Hence these models have higher test 

accuracy compared to DPAR-EM0. In contrast, for DPAR-EM0, noise in DP-APPR will 

only affect the output of the indexes of the top-K most relevant nodes corresponding to 

the source node, but not their importance scores. DPAR-EM0 achieves better performance 

Zhang et al. Page 12

Proc Int World Wide Web Conf. Author manuscript; available in PMC 2024 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



than DPAR-GM and DPAR-EM1 when the privacy budget ϵpr is small, this is because 

DPAR-EM0 uses 1/K as the importance score for all nodes (considering nodes equally 

important), which diminishes the negative effect of less important or irrelevant nodes having 

high importance scores due to the noise in DPAR-GM and DPAR-EM1. Both DPAR-EM0 
and DPAR-EM1 are based on the exponential mechanism designed for identifying the 

index of the top-K accurately. Therefore, when the privacy budget is small, they outperform 

DPAR-GM. However, when the privacy budget is large, they all have a good chance to find 

the indexes of the actual top-K, and DPAR-GM becomes gradually better than DPAR-EM0 

and DPAR-EM1, as the Gaussian noise has better privacy loss composition property.

4.2 Privacy Protection Effectiveness

Privacy Budget Allocation between DP-APPR and DP-SGD.—The total privacy 

budget is divided between DP-APPR and DP-SGD. We compare the impact of the budget 

allocation by changing the ratio of the total privacy budget used by each of them. Figure 

2, 3, 4, 5, and 6 report the model test accuracy with varying ratios of the total privacy 

budget used for DP-APPR for the five datasets respectively, and they share the same legend 

as in Figure 2. A lower ratio means a smaller privacy budget is allocated for DP-APPR 

while more is allocated for DP-SGD. The impact of the ratio on the privacy-utility trade-

off is closely aligned with the characteristics of each dataset. From Figure 2, the model 

achieves better accuracy when the ratio is lower, regardless of the total privacy budget. 

This is because of the characteristics of the Cora-ML dataset, as its node features are more 

important than its structure. Interestingly, when the privacy budget is small, Figure 3, 4, 

5, and 6 show that information from node features is crucial for all datasets. Allocating 

more privacy budget to DP-SGD can learn more useful information from the node features 

and improve model accuracy. When the privacy budget is large, e.g., ϵ = 8, we find that in 

MS Adacemic and CS datasets, the model can achieve the best results when the budget is 

equally divided, suggesting the importance of learning from both the structure information 

and features.

4.3 Effects of Privacy Parameters

We use the Cora-ML dataset as an example to demonstrate the effects of the parameters 

specific to privacy, including the clipping bound in DP-APPR, the number of nodes M in 

DP-APPR, the number of selected top-K entries in DP-APPR, the batch size in DP-SGD, 

and the clipping bound in DP-SGD. By default, we set the batch size to 60, the clipping 

bound C1 in DP-APPR-GM (Algorithm 3 in Appendix) to 0.01, the clipping bound C2 in 

DP-APPR-EM (Algorithm 1) to 0.001, the gradient norm clipping bound C for DP-SGD to 

1, and M to 70. We analyze them individually while keeping the rest constant as the default 

values.

Clipping Bound in DP-APPR (C1 and C2).—Figure 7 shows the effect of clipping 

bound in DP-APPR on the model’s test accuracy. Given a constant total privacy budget, the 

standard deviation of the noise added to the APPR vectors is proportional to the clipping 

bound (C1 in DP-APPR-GM and C2 in DP-APPR-EM). Hence, choosing a smaller clipping 

bound in general can avoid adding too much noise and result in better accuracy. However, 
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too small of a clipping bound may degrade the accuracy due to the clipping error. In 

experiments, we set C1 to be 0.01 and C2 to be 0.001 for all datasets.

Number of Top-K in DP-APPR (K).—Figure 8 shows the accuracy with respect to 

varying K 2, 4, 8, 16, 32  for the top-K selection in DP-APPR. The Gaussian mechanism’s 

sensitivity depends on the ℓ2 norm of the APPR vector. We use a clip bound C1 to restrict 

the ℓ2 norm of the APPR vector, therefore the privacy guarantees are linked to C1, not K . K
impacts the number of non-zero entries in each DP-APPR vector, influencing node feature 

embeddings. A small K may not capture enough neighbors while a higher K may include 

more irrelevant nodes as “neighbors”, adversely affecting aggregated information. For the 

Exponential mechanism, we clip each APPR vector value by C2 to control sensitivity. The 

privacy guarantee is dependent on both C2 and K. A larger K means more noise for each 

entry, affecting accuracy. From Figure 8, we can observe that DPAR-EM1 results highlight 

this effect, while DPAR-EM0 mitigates it by assigning a value of 1/K without additional 

noise. In our experiments compared against baselines, we use a fixed K = 2 for all datasets.

We also investigate the impact of batch size in DP-SGD B , the clipping bound in DP-SGD 

(C), and the number of nodes in DP-APPR (M). We have included the results in Appendix F.

5 RELATED WORK

Differentially Private Graph Publishing.

Works on privacy-preserving graph data publishing aim to release the entire graph [17, 21, 

36, 42], or the statistics or properties of the original graph [2, 8, 10, 24, 32, 44], with the DP 

guarantee. Different from those works, our work focuses on training GNN models on private 

graph datasets and publishing the model that satisfies node-level DP.

Differentially Private Graph Neural Networks.

Yang et al. [43] propose using DP-SGD to train a graph generation model with edge-DP, 

protecting link privacy. Sajadmanesh et al. [37] develop a GNN training algorithm based 

on local DP (LDP) to protect node features’ privacy, excluding edge privacy. Zhang et al. 

[48] apply LDP and the functional mechanism [45] to secure user’s sensitive features in 

graph embedding models for recommendations. Lin et al. [29] suggest a privacy-preserving 

framework for decentralized graphs, ensuring LDP on edge DP for each user. Epasto et 

al. [14] introduce a DP Personalized PageRank algorithm with edge-level DP for graph 

embedding. These efforts do not provide strict node-level DP for features and edges in GNN 

model training. Few recent works [9, 38] achieve node-level DP for GNNs, yet compromise 

model accuracy due to training restrictions on hops or layers. Our results show DPAR 

outperforms these methods.

6 CONCLUSION

We addressed private learning for GNN models with a two-stage framework: DP 

approximate personalized PageRank (DP-APPR) and DP-SGD, safeguarding graph structure 

and node features respectively. We developed two DP-APPR algorithms using Gaussian and 
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exponential mechanisms to learn PageRank for each node’s most relevant neighborhood. 

DP-APPR protects nodes’ edge information and limits sensitivity during DP-SGD training, 

enhancing nodes’ feature information protection. Experiments on real-world graph datasets 

show our methods outperform existing ones in privacy-utility tradeoff. Future work includes 

developing tighter privacy DP-APPR algorithms and adaptive privacy budget strategies (e.g., 

between DP-APPR and DP-SGD based on dataset characteristics), as well as generalizing 

our approach to various types of graphs.
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Appendix

Appendix

A PROOF FOR THEOREM 1

PROOF. We first consider the privacy loss of outputting the noisy APPR vector p vi
′  for node 

vi in Algorithm 1. For each element in the APPR vector, we use its value as its utility score. 

Since each element is nonnegative and clipped by the constant C2, the ℓ1 sensitivity Δ u
of each element is equal to C2. By adding the one-shot Gumbel noise Gumbel βI  where 

β = C2/ϵ to the clipped APPR vector p vi , option I selects K indices with the largest noisy 

values and satisfies ϵ1, δ -DP where ϵ1 = 2 · min Kϵ, Kϵ e2ϵ − 1
e2ϵ + 1

+ ϵ 2K ln 1/δ  according to 

Corollary 1. Option II uses the Laplace mechanism [13] to report K selected noisy values. 

By adding Laplace noise Laplace KC2/ϵ2  to each clipped element, option II costs an 

additional ϵ2 privacy budget [13] since the ℓ1 sensitivity of each element is C2, and satisfies 

ϵ1 + ϵ2, δ -DP.

Now we consider the privacy loss of Algorithm 1 which outputs M noisy APPR 

vectors. We use the optimal composition theorem in [22] which argues that for k sub-

mechanisms, each with an ϵ, δ -DP guarantee, the overall privacy guarantee is ϵg, δg , 

where ϵ = ϵg/ 2 k ln e + ϵg/δg  and δ = δg/2k. By substituting M for k and ϵ1/ϵ1 + ϵ2 (option 

I/option II) for ϵ, the privacy loss of Algorithm 1 with option I is (ϵg1, 2Mδ), where 

ϵ1 = ϵg1/ 2 M ln e + ϵg1/2Mδ , and the privacy loss of Algorithm 1 with option II is ϵg2, 2Mδ , 

where ϵ1 + ϵ2 = ϵg2/ 2 M ln e + ϵg2/2Mδ .

B GAUSSIAN MECHANISM (DP-APPR-GM)

We propose another DP APPR algorithm (DP-APPR-GM) based on the Gaussian 

mechanism [13] and output perturbation. DP-APPRGM utilizes a similar sampling and 

clipping strategy to limit the sensitivity of the APPR vector and directly adds Gaussian noise 

to each element to achieve DP. As shown in Algorithm 3, for each node v, we clip the ℓ2
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norm of its APPR vector p v  (line 6) and add the calibrated Gaussian noise to each element 

in the clipped p v  (line 8). We then select the top-K largest entries in p v  to get a sparse vector 

p v
′  (line 10).

Privacy Analysis of DP-APPR-GM.

Using the properties of the Gaussian mechanism and the optimal composition theorem [22], 

we establish the overall privacy guarantee for the DP-APPR-GM algorithm. Note that the 

DP guarantee is independent of K, in contrast with DP-APPR-EM.

THEOREM 3. Let ϵ > 0 and δ ∈ 0,1 , Algorithm 3 is ϵg, 2Mδ -differentially private where 

ϵ = ϵg/ 2 M ln e + ϵg/2Mδ .

PROOF. We utilize the optimal composition theorem in [22] which argues that for k sub-

mechanisms, each with an ϵ, δ -DP guarantee, the overall privacy guarantee is ϵg, δg -DP, 

where ϵ = ϵg/ 2 k ln e + ϵg/δg  and δ = δg/2k. In Algorithm 3, the noisy APPR vector for 

each node satisfies (ϵ, δ)-DP by the Gaussian mechanism independently. Since the returned 

APPR matrix contains the noisy APPR vectors of M nodes, the number of components for 

composition is M. We substitute M for k and 2Mδ for δg, which can conclude the proof.

C PROOF FOR THEOREM 2

PROOF. Denote μ0 the Gaussian distribution with mean 0 and variance 1. Assume D′ is the 

neighboring feature dataset of D, which differs at i† such that xi†
′ ≠ xi†. Without loss of 

generality, we assume ∇f xi = 0, for any xi ∈ D, while ∇f xi†
′ = e1. Recall that the DP-APPR 

matrix is Π, where Πi: is the i-th row and the DP-APPR vector for node i, while Π: j is the j-th 

column of Π. In addition, we can assume that Π: j 1 ≤ τ due to the clipping in line 3, for all 

j = 1, …, N, and denote μτ the Gaussian distribution with mean τ and variance 1. Then, we 

have E G D  and E G D′  below,

E[G(D)] = ℬ
N

j ≠ i†, j ∉ N i+
Gj + ℬ

N
j ≠ i†, j ∈ N i†

Gj + ℬ
N Gi

= ℬ
N

j ≠ i†, j ∉ N i† k ∈ N(j)
Πjk ∇f xk

+ ℬ
N

j ≠ i†, j ∈ N i† k ∈ N(j) ∖ i†
Πjk ∇f xk + Πji† ∇f xi†

+ ℬ
N

k ∈ N i† ∖ i†
Πi†k ∇f xk + Πi†i† ∇f xi† ,

(5)

which indicates G D ∼ μ0.
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E G D′ = ℬ
N

j ≠ i†, j ∉ N i†
Gj + ℬ

N
j ≠ i†, j ∈ N i†

Gj
′ + ℬ

N Gi
′

= ℬ
N

j ≠ i†, j ∉ N i† k ∈ N(j)
Πjk ∇f xk

+ ℬ
N

j ≠ i†, j ∈ N i† k ∈ N(j) ∖ i†
Πjk ∇f xk + Πji ∇f xi†

′

+ ℬ
N

k ∈ N i† ∖ i†
Πi†k ∇f xk + Πi†i† ∇f xi†

′

= E[G(D)] + ℬ
N j = 1

N
Πji† f xi†

′ − f xi†

= E[G(D)] + ℬ
N Π: i† 1 ≤ E[G(D)] + ℬ

N τ,

(6)

which indicates G D′ ∼ μ0 + ℬ
N μτ.

In the following, we quantify the divergence between G and G′ by following the moments 

accountant [1], where we show that E μ z
μ0 z

λ
≤ α, and E μ0 z

μ z
λ

≤ α, for some explicit α. 

To do so, the following is to be bounded for v0 and v1.

Ez ∼ v0
v0(z)
v1(z)

λ
= Ez ∼ v1

v1(z)
v0(z)

λ + 1

(7)

Following [1], the above can be expanded with binomial expansion, which gives

Ez ∼ v1
v1(z)
v0(z)

λ + 1
=

t = 0

λ + 1

(λ + 1)Ez ∼ v1
v0 − v1(z)

v1(z)
t

= 1 + 0 + T3 + T4 + …

(8)

Next, we bound T3 by substituting the pairs of v0 = μ0, v1 = μ and v0 = μ, v1 = μ0 in, and upper 

bound them, respectively.

For T3, with v0 = μ0, v1 = μ, we have
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T3 = (λ + 1)λ
2 Ez ∼ μ

μ0(z) − μ(z)
μ(z)

2
= (λ + 1)λ

2 Ez ∼ μ
qμτ(z)
μ(z)

2

= q2(λ + 1)λ
2

−∞

+∞
μτ(z) 2

μ0(z) + qμτ(z)dz ≤ q2(λ + 1)λ
2

−∞

+∞
μτ(z) 2
μ0(z) dz

= q2(λ + 1)λ
2 Ez ∼ μ0

μτ(z)
μ0(z)

2
= q2(λ + 1)λ

2 exp τ2
σ2

≤ q2(λ + 1)λ
2

τ2
σ2 + 1 ≤ q2τ2(λ + 1)λ

σ2 ,

(9)

where in the last inequality, we assume τ2
σ2 + 1 ≤ 2 τ2

σ2 , i.e., τ2
σ2 ≥ 1. Thus, it requires σ ≤ τ.

As a result,

αG(λ) ≤ q2τ2(λ + 1)λ
σ2 + O q3λ3/σ3 .

(10)

To satisfy T q2τ2λ2

σ2 ≤ λϵsgd
2 , and exp − λϵsgd

2 ≤ δsgd, we set

ϵsgd = c1q2τ2T ,

(11)

σ = c2
qτ T log 1/δsgd

ϵsgd
.

(12)

Given that the input DP-APPR matrix costs additional ϵpr, δpr  privacy budget, by using the 

standard composition theorem of DP, the total privacy budget for the sampled graph G is 

ϵsgd + ϵpr, δsgd + δpr). Since G is randomly sampled from the graph dataset G‾ , we can conclude 

the proof with the privacy amplification theorem of DP [5, 23].
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D DATASETS

We evaluate our method on five graph datasets: Cora-ML [6] which consists of academic 

research papers from various machine learning conferences and their citation relationships, 

Microsoft Academic graph [39] which contains scholarly data from various sources and the 

relationships between them, CS and Physics [39] which are co-authorship graphs, Reddit 

[19] which is constructed from Reddit posts, where edges represent connections between 

posts when the same user commented on both. Table 2 shows the statistics of the five 

datasets.

Table 2:

Dataset statistics

Dataset Cora-ML MS Academic CS Reddit Physics

Classes 7 15 15 8 8

Features 2,879 6,805 6,805 602 8,415

Nodes 2,995 18,333 18,333 116,713 34,493

Edges 8,416 81,894 327,576 46,233,380 495,924

E ILLUSTRATION OF PRIVACY PROTECTION

To provide an intuitive illustration of the privacy protection provided by the DP trained 

models using our methods, we visualize the t-SNE clustering of training nodes’ embeddings 

generated by the private models with varying ϵ values in Figure 9 for the Cora-ML 

dataset. We omit the results for other datasets as they display a similar pattern leading 

to the same conclusion. The color of each node corresponds to the label of the node. 

We can observe that when the privacy budget is small ϵ = 1 , the model achieves strong 

privacy protection, thus it becomes hard to distinguish the training nodes belonging to 

different classes from each other. Meanwhile, when the privacy guarantee becomes weak 
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( ϵ  becomes larger), embeddings of nodes with the same class label are less obfuscated, 

hence gradually forming a cluster. This observation demonstrates that the privacy budget 

used in our proposed methods is correlated with the model’s ability to generate private node 

embeddings, and therefore also associated with the privacy protection effectiveness against 

adversaries utilizing the generated embeddings to carry out privacy attacks [16, 27].

F MORE RESULTS ON EFFECTS OF PRIVACY PARAMETERS

Batch Size in DP-SGD (B).

Figure 10 shows batch size impact on model test accuracy. According to Theorem 2, with 

fixed privacy budget and epochs, Gaussian noise’s standard deviation scales with the batch 

size’s square root, increasing gradient noise for larger batches. However, larger batches may 

provide more accurate updates by encompassing more nodes and correlations. Thus, the 

curve remains relatively flat for batch sizes not too small.

Clipping Bound in DP-SGD (C).

Figure 11 shows the effect of gradient norm clipping bound C in DP-SGD on the model’s 

test accuracy. The clipping bound affects the noise scale added to the gradients (linearly) as 

well as the optimization direction of model parameters. A large clipping bound may involve 

too much noise to the gradients, while a small clipping bound may undermine gradients’ 

ability for unbiased estimation. The result verifies this phenomenon. We use C = 1 for all 

datasets in our experiments.

Number of Nodes in DP-APPR (M).

During the DP-APPR algorithm, a subset of M nodes is randomly sampled from the input 

training graph. Figure 12 illustrates the relationship between M and test accuracy under 

different total privacy budgets (ϵ = 1 and ϵ = 8, with δ = 2 × 10−3). As M increases, the 

privacy budget allocated for calculating each DP-APPR vector decreases. This leads to more 

noise in each DP-APPR vector, which can adversely affect its utility and result in lower 

accuracy as observed. However, too small of an M will degrade the performance since it will 

not contain enough information about the graph structure. In our experiments, we set M = 70
for all datas.

Figure 9: 
Cora-ML. Clustering of training nodes’ embeddings generated by private models with 

different privacy guarantees ϵ (fixed = 2 × 10−3) and training methods.
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Figure 10: 

Cora-ML. Batch size vs. model test accuracy. Fix total privacy budget ϵ, δ = 8,2 × 10−3 . 

K=4 (left), K=16 (right)

G GENERALIZATION TO VARIOUS TYPES OF GRAPHS

DPAR proposed in this paper focuses on homogeneous graphs, including both homophilous 

and non-homophilous graphs, and can be applied in various domains such as social 

networks, recommendation systems, knowledge graphs, drug discovery, and traffic network 

analysis. Additionally, DPAR holds the potential for generalization to diverse graph types, 

including dynamic graphs, heterogeneous graphs, and those with high-dimensional features. 

For instance, in dynamic graphs, DPAR’s decoupling strategy is well-regarded for its 

efficiency in addressing the high computational complexity often encountered in dynamic 

graph learning [20, 28]. Consequently, we can adapt the existing framework of DPAR by 

integrating established temporal differential privacy mechanisms [31, 33], which effectively 

manage specific challenges like temporal correlations among identical nodes across varying 

graph snapshots. In the context of heterogeneous graphs, prior research [33] demonstrates 

that homogeneous GNNs, like GCN and GAT, can process heterogeneous graphs by 

simply disregarding node and edge types. This finding suggests that extending DPAR to 

accommodate heterogeneous graphs, while concurrently implementing additional privacy 

safeguards for type information during type embedding learning, could yield favorable 

outcomes.

H COMPLEXITY OF DPAR

DPAR has linear computational complexity corresponding to the number of nodes and the 

node feature dimension. We elaborate as follows. In DP-APPR (Algorithm 1 and Algorithm 

3), we calculate the APPR vector using ISTA [15]. Based on Theorem 3 in [15], the 

time complexity of ISTA for calculating the APPR vector depends only on the number of 

non-zeros of the calculated APPR vector, unlike calculations based on the entire graph. For 
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each APPR vector, the steps of clipping the norm, adding noise, and reporting noisy indexes 

have the worst-case time complexity that is linear to the number of nodes in the input 

graph. Since we calculate M DP-APPR vectors, the overall time complexity for DP-APPR 

algorithms is O MN = O N N ≫ M N is the number of nodes), which indicates linear 

time complexity. In Algorithm 2, where we train the DP-GNN models using the node feature 

vectors and DP-APPR matrix, the model is a 2-layer MLP with each layer’s size equal to 

32. Therefore, the time complexity for each iteration is mainly bounded by the node feature 

dimension D D ≫ 32 . In conclusion, the overall time complexity for DPAR is O N + D , 

linearly related to the number of nodes and the node feature dimension.

Figure 11: 
Cora-ML. Relationship between clipping bound of DP-SGD and model test accuracy. Fix 

total privacy budget ϵ, δ = 8,2 × 10−3 .

Zhang et al. Page 22

Proc Int World Wide Web Conf. Author manuscript; available in PMC 2024 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 12: 
Cora-ML: Relationship between the number of nodes M in DP-APPR vector calculation and 

model test accuracy. K = 2.
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CCS CONCEPTS

• Security and privacy → Privacy protections; • Computing methodologies → Neural 

networks.
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Figure 1: 

Relationship between privacy budget ϵ fixedδ = 2 × 10−3) and test accuracy on Cora-ML 

dataset.
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Figure 2: 
Cora-ML. The privacy budget ϵ ratio for DP-ARRP
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Figure 3: 
CS. The privacy budget ϵ ratio for DP-ARRP
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Figure 4: 
MS Academic. The privacy budget ϵ ratio for DP-ARRP
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Figure 5: 
Reddit. The privacy budget ϵ ratio for DP-ARRP
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Figure 6: 
Physics. The privacy budget ϵ ratio for DP-ARRP
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Figure 7: 
Cora-ML. Relationship between clipping bound of DP-APPR and model test accuracy. Total 

privacy ϵ, δ = 8, 2 × 10−3 .
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Figure 8: 
Cora-ML: Relationship between the number of top-K entries in DP-APPR vector and model 

test accuracy.
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	AppendixA PROOF FOR THEOREM 1PROOF. We first consider the privacy loss of outputting the noisy APPR vector  for node  in Algorithm 1. For each element in the APPR vector, we use its value as its utility score. Since each element is nonnegative and clipped by the constant , the  sensitivity  of each element is equal to . By adding the one-shot Gumbel noise  where  to the clipped APPR vector , option I selects  indices with the largest noisy values and satisfies -DP where  according to Corollary 1. Option II uses the Laplace mechanism [13] to report  selected noisy values. By adding Laplace noise Laplace  to each clipped element, option II costs an additional  privacy budget [13] since the  sensitivity of each element is , and satisfies -DP.Now we consider the privacy loss of Algorithm 1 which outputs  noisy APPR vectors. We use the optimal composition theorem in [22] which argues that for  sub-mechanisms, each with an -DP guarantee, the overall privacy guarantee is , where  and . By substituting  for  and  (option I/option II) for , the privacy loss of Algorithm 1 with option I is (), where , and the privacy loss of Algorithm 1 with option II is , where .B GAUSSIAN MECHANISM (DP-APPR-GM)We propose another DP APPR algorithm (DP-APPR-GM) based on the Gaussian mechanism [13] and output perturbation. DP-APPRGM utilizes a similar sampling and clipping strategy to limit the sensitivity of the APPR vector and directly adds Gaussian noise to each element to achieve DP. As shown in Algorithm 3, for each node , we clip the  norm of its APPR vector  (line 6) and add the calibrated Gaussian noise to each element in the clipped  (line 8). We then select the top- largest entries in  to get a sparse vector  (line 10).Privacy Analysis of DP-APPR-GM.Using the properties of the Gaussian mechanism and the optimal composition theorem [22], we establish the overall privacy guarantee for the DP-APPR-GM algorithm. Note that the DP guarantee is independent of , in contrast with DP-APPR-EM.Theorem 3. Let

and
, Algorithm 3
is
-differentially private where
.Proof. We utilize the optimal composition theorem in [22] which argues that for  sub-mechanisms, each with an -DP guarantee, the overall privacy guarantee is -DP, where  and . In Algorithm 3, the noisy APPR vector for each node satisfies ()-DP by the Gaussian mechanism independently. Since the returned APPR matrix contains the noisy APPR vectors of  nodes, the number of components for composition is . We substitute  for k and  for , which can conclude the proof.C PROOF FOR THEOREM 2Proof. Denote  the Gaussian distribution with mean 0 and variance 1. Assume  is the neighboring feature dataset of , which differs at  such that . Without loss of generality, we assume , for any , while . Recall that the DP-APPR matrix is , where : is the -th row and the DP-APPR vector for node , while  is the -th column of . In addition, we can assume that  due to the clipping in line 3, for all , and denote  the Gaussian distribution with mean  and variance 1. Then, we have  and  below,


(5)
which indicates .


(6)
which indicates .In the following, we quantify the divergence between  and  by following the moments accountant [1], where we show that , and , for some explicit . To do so, the following is to be bounded for  and .


(7)Following [1], the above can be expanded with binomial expansion, which gives


(8)Next, we bound  by substituting the pairs of  and  in, and upper bound them, respectively.For , with , we have


(9)
where in the last inequality, we assume , i.e., . Thus, it requires .As a result,


(10)To satisfy , and , we set


(11)


(12)Given that the input DP-APPR matrix costs additional  privacy budget, by using the standard composition theorem of DP, the total privacy budget for the sampled graph  is ). Since  is randomly sampled from the graph dataset , we can conclude the proof with the privacy amplification theorem of DP [5, 23].

D DATASETSWe evaluate our method on five graph datasets: Cora-ML [6] which consists of academic research papers from various machine learning conferences and their citation relationships, Microsoft Academic graph [39] which contains scholarly data from various sources and the relationships between them, CS and Physics [39] which are co-authorship graphs, Reddit [19] which is constructed from Reddit posts, where edges represent connections between posts when the same user commented on both. Table 2 shows the statistics of the five datasets.Table 2:Dataset statisticsDatasetCora-MLMS AcademicCSRedditPhysicsClasses7151588Features2,8796,8056,8056028,415Nodes2,99518,33318,333116,71334,493Edges8,41681,894327,57646,233,380495,924E ILLUSTRATION OF PRIVACY PROTECTIONTo provide an intuitive illustration of the privacy protection provided by the DP trained models using our methods, we visualize the t-SNE clustering of training nodes’ embeddings generated by the private models with varying  values in Figure 9 for the Cora-ML dataset. We omit the results for other datasets as they display a similar pattern leading to the same conclusion. The color of each node corresponds to the label of the node. We can observe that when the privacy budget is small , the model achieves strong privacy protection, thus it becomes hard to distinguish the training nodes belonging to different classes from each other. Meanwhile, when the privacy guarantee becomes weak ( becomes larger), embeddings of nodes with the same class label are less obfuscated, hence gradually forming a cluster. This observation demonstrates that the privacy budget used in our proposed methods is correlated with the model’s ability to generate private node embeddings, and therefore also associated with the privacy protection effectiveness against adversaries utilizing the generated embeddings to carry out privacy attacks [16, 27].F MORE RESULTS ON EFFECTS OF PRIVACY PARAMETERSBatch Size in DP-SGD (B).Figure 10 shows batch size impact on model test accuracy. According to Theorem 2, with fixed privacy budget and epochs, Gaussian noise’s standard deviation scales with the batch size’s square root, increasing gradient noise for larger batches. However, larger batches may provide more accurate updates by encompassing more nodes and correlations. Thus, the curve remains relatively flat for batch sizes not too small.Clipping Bound in DP-SGD (C).Figure 11 shows the effect of gradient norm clipping bound  in DP-SGD on the model’s test accuracy. The clipping bound affects the noise scale added to the gradients (linearly) as well as the optimization direction of model parameters. A large clipping bound may involve too much noise to the gradients, while a small clipping bound may undermine gradients’ ability for unbiased estimation. The result verifies this phenomenon. We use  for all datasets in our experiments.Number of Nodes in DP-APPR ().During the DP-APPR algorithm, a subset of  nodes is randomly sampled from the input training graph. Figure 12 illustrates the relationship between  and test accuracy under different total privacy budgets ( and , with ). As  increases, the privacy budget allocated for calculating each DP-APPR vector decreases. This leads to more noise in each DP-APPR vector, which can adversely affect its utility and result in lower accuracy as observed. However, too small of an  will degrade the performance since it will not contain enough information about the graph structure. In our experiments, we set  for all datas.Figure 9: Cora-ML. Clustering of training nodes’ embeddings generated by private models with different privacy guarantees  (fixed ) and training methods.Figure 10: Cora-ML. Batch size vs. model test accuracy. Fix total privacy budget . K=4 (left), K=16 (right)G GENERALIZATION TO VARIOUS TYPES OF GRAPHSDPAR proposed in this paper focuses on homogeneous graphs, including both homophilous and non-homophilous graphs, and can be applied in various domains such as social networks, recommendation systems, knowledge graphs, drug discovery, and traffic network analysis. Additionally, DPAR holds the potential for generalization to diverse graph types, including dynamic graphs, heterogeneous graphs, and those with high-dimensional features. For instance, in dynamic graphs, DPAR’s decoupling strategy is well-regarded for its efficiency in addressing the high computational complexity often encountered in dynamic graph learning [20, 28]. Consequently, we can adapt the existing framework of DPAR by integrating established temporal differential privacy mechanisms [31, 33], which effectively manage specific challenges like temporal correlations among identical nodes across varying graph snapshots. In the context of heterogeneous graphs, prior research [33] demonstrates that homogeneous GNNs, like GCN and GAT, can process heterogeneous graphs by simply disregarding node and edge types. This finding suggests that extending DPAR to accommodate heterogeneous graphs, while concurrently implementing additional privacy safeguards for type information during type embedding learning, could yield favorable outcomes.H COMPLEXITY OF DPARDPAR has linear computational complexity corresponding to the number of nodes and the node feature dimension. We elaborate as follows. In DP-APPR (Algorithm 1 and Algorithm 3), we calculate the APPR vector using ISTA [15]. Based on Theorem 3 in [15], the time complexity of ISTA for calculating the APPR vector depends only on the number of non-zeros of the calculated APPR vector, unlike calculations based on the entire graph. For each APPR vector, the steps of clipping the norm, adding noise, and reporting noisy indexes have the worst-case time complexity that is linear to the number of nodes in the input graph. Since we calculate  DP-APPR vectors, the overall time complexity for DP-APPR algorithms is  is the number of nodes), which indicates linear time complexity. In Algorithm 2, where we train the DP-GNN models using the node feature vectors and DP-APPR matrix, the model is a 2-layer MLP with each layer’s size equal to 32. Therefore, the time complexity for each iteration is mainly bounded by the node feature dimension . In conclusion, the overall time complexity for DPAR is , linearly related to the number of nodes and the node feature dimension.Figure 11: Cora-ML. Relationship between clipping bound of DP-SGD and model test accuracy. Fix total privacy budget .Figure 12: Cora-ML: Relationship between the number of nodes M in DP-APPR vector calculation and model test accuracy. K = 2.
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