
Bu et al. Genetics Selection Evolution           (2024) 56:78  
https://doi.org/10.1186/s12711-024-00946-y

RESEARCH ARTICLE Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Genetics Selection Evolution

Haplotype analysis incorporating ancestral 
origins identified novel genetic loci associated 
with chicken body weight using an advanced 
intercross line
Lina Bu1†, Yuzhe Wang1,2†, Lizhi Tan1, Zilong Wen1, Xiaoxiang Hu1,2, Zhiwu Zhang3 and Yiqiang Zhao1,2* 

Abstract 

Background The genome-wide association study (GWAS) is a powerful method for mapping quantitative trait loci 
(QTL). However, standard GWAS can detect only QTL that segregate in the mapping population. Crossing popula-
tions with different characteristics increases genetic variability but F2 or back-crosses lack mapping resolution due 
to the limited number of recombination events. This drawback can be overcome with advanced intercross line (AIL) 
populations, which increase the number recombination events and provide a more accurate mapping resolution. 
Recent studies in humans have revealed ancestry-dependent genetic architecture and shown the effectiveness 
of admixture mapping in admixed populations.

Results Through the incorporation of line-of-origin effects and GWAS on an  F9 AIL population, we identified genes 
that affect body weight at eight weeks of age (BW8) in chickens. The proposed ancestral-haplotype-based GWAS 
(testing only the origin regardless of the alleles) revealed three new QTLs on GGA12, GGA15, and GGA20. By using 
the concepts of ancestral homozygotes (individuals that carry two haplotypes of the same origin) and ancestral hete-
rozygotes (carrying one haplotype of each origin), we identified 632 loci that exhibited high-parent (the heterozygote 
is better than both parents) and mid-parent (the heterozygote is better than the median of the parents) dominance 
across 12 chromosomes. Out of the 199 genes associated with BW8, EYA1, PDE1C, and MYC were identified as the best 
candidate genes for further validation.

Conclusions In addition to the candidate genes reported in this study, our research demonstrates the effectiveness 
of incorporating ancestral information in population genetic analyses, which can be broadly applicable for genetic 
mapping in populations generated by ancestors with distinct phenotypes and genetic backgrounds. Our methods 
can benefit both geneticists and biologists interested in the genetic determinism of complex traits.

Background
Growth is a highly polygenic trait and one of the most 
important economic traits for chickens (Gallus gallus) 
[1]. The chicken quantitative trait loci (QTL) database 
lists over 2200 growth-related QTL across the genome, 
mainly on Gallus gallus (GGA) chromosomes 1, 2, 3, 
4, and Z [2]. While genetic mapping and QTL analy-
sis can be performed in any population, it is harder to 
detect associations signals in populations under selection 
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because of allele fixation [3]. In contrast, an advanced 
intercross line (AIL) population, created by sequential 
random intercrossing of ancestors with distinct pheno-
types and genetic backgrounds, offer better association 
detection thanks to large genetic variability and increased 
recombination density compared to F2 crosses [4]. In our 
recent studies, we identified significant QTL on GGA1 
and GGA27 for body weight based on an AIL population 
built from two divergent populations for weight: a High-
Quality Chicken Line A (HQLA) and a Huiyang Bearded 
Chicken (HB) population [5, 6].

The traditional strategy of genetic mapping for growth-
related traits relies on single nucleotide polymorphism 
(SNP)-based genome-wide association studies (GWAS). 
With advances in sequencing technology and statisti-
cal modeling, accurate haplotype information now is 
easier to obtain [7]. Haplotype-based GWAS is biologi-
cally more meaningful than SNP-based GWAS because 
it has the advantage of combining linked SNPs to con-
trol false positives and capture short-range interactions 
[8–11]. However, the heterogeneous haplotype structure 
in a population often results in reduced statistical power 
because of excessive degrees of freedom in haplotype-
based analyses [12]. To address this issue, parsimonious 
approaches have been employed to group haplotypes into 
few clusters based on sequence similarity, enhancing sta-
tistical power [13, 14].

Population stratification due to genetic ancestry can 
result in spurious associations in GWAS. To counter 
this, strategies such as fitting principal components as 
covariates in statistical models have been used [15, 16]. 
However, the AIL population, which is genetically highly 
mixed due to recombination (ancestral admixture) over 
many generations, is less affected by population stratifi-
cation than natural populations. Considering the con-
tribution of ancestry-specific variations to phenotype, 
many studies have utilized ancestry information to infer 
ancestry-phenotype correlations [17–21], to leverage 
local ancestries for the detection of epistasis [22, 23], and 
to improve breeds [23]. In our previous GWAS using an 
 F9 AIL population, analysis suggested distinct effects of 
haplotypes of different ancestral origins. These efforts 
revealed ancestry-dependent genetic architecture and 
contributions in admixed populations.

The primary objective of this study was to extend our 
previous studies to identify genes significantly associated 
with body weight. To adequately employ the characteris-
tics of the AIL population, we proposed an ancestral-hap-
lotype-based GWAS, incorporating ancestral information 
into haplotype association tests. Additionally, we applied 
the concepts of ancestral homozygotes and ancestral het-
erozygotes to analyze ancestry-based dominance, encom-
passing high-parent and mid-parent dominance. Our 

results shed light on a better utilization of the AIL popu-
lation for genetic mapping.

Methods
The AIL population
The AIL population analyzed in this study was generated 
by crossing a High-Quality Chicken Line A (HQLA) with 
a Huiyang Bearded Chicken (HB). The HQLA population 
was created by crossing the commercial Anak Broiler 
breed with a Chinese chicken line, while the HB popu-
lation is an indigenous Chinese breed. At eight weeks 
of age, the body weight of HQLA is three times greater 
than that of HB. The AIL generations  (F3 to  F9) were pro-
duced by random mating following the  F2 generation. For 
a detailed description of the construction and phenotypic 
data of the AIL population, please refer to previous pub-
lications [5, 24]. The phenotype analyzed in this study 
was body weight at eight weeks of age (BW8) in the  F9 
generation.

Genotyping and haplotyping
Genotyping-by-sequencing (GBS) data of the  F0,  F8, and 
 F9 generations were used in this study. For the  F9 gen-
eration, double-enzyme (EcoRI/MseI) GBS libraries were 
prepared, and sequencing was performed on an Illu-
mina Nextseq500 sequencer. On average, each sample 
sequenced by the GBS method produced 3.44 million 
high-quality barcoded reads [25]. Genome-wide SNPs 
were identified using the TASSEL GBS analysis pipeline 
(version 5.2.31) [26] with GRCg6a (released 2018) as the 
reference genome. SNP quality filtering was carried out 
using VCFtools (version 0.1.16) [27] with the criteria of 
minor allele frequency > 0.01, genotypes with quality > 98, 
sequencing depth > 4, max missing rate < 0.2, and biallelic 
loci only. Finally, 189,401 GBS SNPs (GGA1-GGA28) for 
16 HQLA, 14 HB, 185  F8, and 585  F9 individuals were 
retained.

To perform haplotype phasing and imputation, we 
tried Beagle 5.0 [28] and SHAPEIT 2.0 [29] software, 
both without external reference panel. Since SHAPEIT 
accounts for familial relationships, we first used the 
GTOOL software (https:// www. well. ox. ac. uk/ ~cfree 
man/ softw are/ gwas/ gtool. html) to convert ped/map files 
into gen/sample files (gtool -P --ped file.ped --map file.
map --og file.gen --os file.sample) to add parent–child 
information, based on pedigree information of the  F8 
(parental generation) and  F9 generations. Haplotype 
phasing and imputation were performed using Beagle 5.0 
and SHAPEIT 2.0 with the following parameters: bea-
gle.jar gt=file.vcf out=file phased gp =true impute=true; 
shapeit -G file.gen file.sample -O file.phased --force —
duohmm. Consistency of the two software programs was 
assessed based as the proportion of identically phased 
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genotypes and was found to be around 90% (see Addi-
tional file 1: Table S1). In the end, we used Beagle since it 
is simpler and faster.

Based on our previous study [5], linkage disequilib-
rium based on  r2 decayed rapidly in the  F9 population, 
and average physical distance when  r2 equals 0.1 was 27 
Kb. There were approximately five SNPs for 27 Kb physi-
cal distance in our genotype data. Thus, the genome was 
subsequently divided into blocks of five successive SNPs 
and haplotype alleles for each block were retrieved.

Construction of genetic map
The LEP-MAP3 software [30] was used to construct the 
genetic map based on pedigree information of the  F8 
(parental generation) and  F9 generations. For each chro-
mosome, all markers were sorted by physical location. 
Parental genotypes were first called using the Parent-
Call2 module of the LEP-MAP3 software. The Filter-
ing2 module was used to remove non-informative and 
distorted markers, with parameters set to removeNon-
Informative = 1 and dataTolerance = 0.0000001. The Sep-
arateChromosomes2 module was then used to categorize 
markers into linkage groups (LG), with parameters set to 
lodLimit = 5. Lastly, markers clustered into correspond-
ing linkage groups were ordered using the OrderMark-
ers2 module.

Haplotype diversity and dissimilarity statistics
The H12 statistic [31] is a commonly used haplo-
type diversity measure that is based on the sum of the 
squares of haplotype frequencies, combining the two 
most common haplotypes into a single frequency. We 
also extended the concept of H12 to H123 and H1234, 
which combine the three or four most common hap-
lotypes into a single frequency. H12, H123, and H1234 
were computed as: H12 = (p1 + p2)

2
+

∑
∞

i=3
pi

2
,H123

= (p1 + p2 + p3)
2
+

∑
∞

i=4
pi

2 , H1234 = (p1 + p2 + p3
+p4)

2
+

∑
∞

i=5
pi

2 , where pi is the frequency of haplotype 
i, with 

∑
∞

i=1
pi =1 and p1 ≥ p2 ≥ · · · ≥ pi [31].

Jaccard distance [32] measures dissimilarity between two 
populations (A, B), it is computed by using the formula 
JD = 1− |A∩B|

|A∪B| ; where A and B represent haplotype alleles 
in two populations. Jensen-Shannon divergence [33] meas-
ures dissimilarity between two probability distributions (A, 
B) and is calculated as: JSD =

1
2KL(A||M)+ 1

2KL(B||M) ; 
where M =

1
2 (A+ B) , KL(A||M) =

∑
x A(x)log

A(x)
M(x) and 

KL(B||M) =
∑

x B(x)log
B(x)
M(x) , with the probability distri-

butions being the haplotype allele frequency distributions 
of the two populations. Bray–Curtis dissimilarity [34] 
measures dissimilarity between two populations based on 
counts, using BCD = 1− 2

∑
min(SA,i,SB,i)∑
SA,i+

∑
SB,i

 , where SA,i and 

SB,i are the counts of the haplotype alleles in populations A 
and B, respectively. Custom Perl scripts were used to calcu-
late H12, H123, H1234 and Jaccard distance and the SciPy 
python package (https:// scipy. org) was used to compute the 
Jensen-Shannon divergence and Bray–Curtis dissimilarity 
between HQLA or HB and the F9 population.

Ancestral inference and coding
The RFMix software [35] was used to infer the local 
ancestry for each haplotype of each  F9 individual, utiliz-
ing the genetic map constructed above. RFMix partitions 
each chromosome into windows and infers local ancestry 
within each window by employing a conditional random 
field (CRF) approach parameterized by random forests 
trained on reference panels. The CRF is an undirected 
probabilistic graphical model that is commonly applied 
to sequence labeling and segmenting problems. RFMix 
further uses maximum-a-posteriori (MAP) estimation 
or smoothing to refine ancestry assignments. Here, the 
HB and the HQLA populations were used as the refer-
ence panels to infer the local ancestry for  F9 individuals. 
The CRF spacing was set to five SNPs. According to the 
outputs of RFMix, we took the probability value of 0.5 as 
the threshold to assign the origin from which a haplotype 
was derived. I.e., if the probability of haplotypes originat-
ing from the HQLA population was greater than or equal 
to 0.5, the haplotype was considered to be of HQLA ori-
gin and coded as 1; otherwise, the haplotypes were con-
sidered to be of HB origin and coded as 0.

SNP and haplotype‑based genome‑wide association 
analyses
For the SNP-based GWAS for the  F9 generation, we 
applied the standard mixed linear model analysis 
(MLMA) method implemented in the GCTA software 
[36]. The model can be written as: y = Qα+ xβ+ g + e , 
where y is the vector of BW8 phenotypes of the  F9 indi-
viduals, Q is the design matrix for covariates, including 
sex and batch; α is the vector of effects for the covariates; 
x is the vector of genotype indicator variables, coded as 0, 
1, or 2; β is the SNP effect to be tested for association; g 
is the vector of polygenic effects captured by the genetic 
relationship matrix (GRM), which was calculated using 
all SNPs; and e is the vector of residuals. Associations 
with a false discovery rate (FDR) [37] ≤ 0.05 were consid-
ered significant.

The above mixed model was modified for the ancestral-
haplotype-based GWAS by coding diploid individuals 
in the  F9 population with haplotypes of ancestral ori-
gins HB/HB, HB/HQLA, HQLA/HQLA as 0, 1, and 2, 
respectively, representing the number of copies of HQLA 
ancestry (see above). The GRM was thus calculated using 
all ancestry-coded haplotypes, accounting for global 

https://scipy.org
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ancestry. The ancestral-haplotype-based GWAS was then 
performed using GCTA in the same way as the SNP-
based GWAS.

We conducted the haplotype-based GWAS sepa-
rately using the lme4qtl R package [38]. For each hap-
lotype block, we coded the haplotype combination 
as categorical variables for each individual and tested 
one block at a time. The model can be written as: 
y = Qα+ Xhβ+ gh + e , where Xh is the design matrix 
for haplotype combinations as factors; β is the vector of 
effect size of haplotype combinations; gh is the vector of 
polygenic effects captured by the GRM calculated using 
all haplotypes, computed as described below, and all 
other variables are the same as for the SNP-based GWAS 
model. To assess the overall statistical significance of 
each haplotype block, we fitted a null model that is the 
same as the alternative model, except it does not include 
Xhβ . After that, we used the lme4qtl::update function to 
add the haplotypes as fixed effect into the null model for 
each block. ANOVA was then applied to test the differ-
ence between the alternative model and the null model.

The haplotype-based GRM was calculated referring 
to method 1 described in [39]. In short, the genome 
was divided into n segments using a five-SNPs window. 
Given a population of N individuals, each block con-
tains 2N haplotype alleles for diploid individuals. We 
assigned a score of 1 when two haplotype alleles were 
the same and 0 when they differed. This process gener-
ated a 2N*2N matrix, Γi, for each block i. The final hap-
lotype relationship matrix Ŵ was obtained by summing 
up the segmental matrices and dividing by n, as follows: 
Ŵ =

∑n
i=1 Ŵi/n . The 2N*2N matrix was converted to the 

N*N haplotype-based GRM at the individual level using 
H = KŴK′/2 , where K = I⊗ [11] ( I is an m by m identity 
matrix, where m is the number of individuals, and ⊗ is 
the Kronecker product). In haplotype-based GWAS, the 
haplotype-based GRM was constructed once, while the 
parameters were estimated every time the model was 
executed for each haplotype block.

Block‑wise haplotype analysis for effect size estimation
Both haplotype-based GWAS and ancestral-haplotype-
based GWAS assessed the overall statistical significance 
of each haplotype block. For a given significant haplotype 
block, the effect size of haplotype alleles was estimated 
with a different mixed model, using the hglm R package 
[40]. This model can be written as: y = Qα+ Zdµ+ e, 
where Zd is the dosage matrix containing counts of dif-
ferent haplotype alleles for each individual, with the sum 
of elements in each row equaling 2 (representing diploid 
status); µ is the vector of random effects for each haplo-
type allele, and all other variables are as defined previ-
ously. To estimate the effect size of haplotype alleles in 

haplotype-based GWAS, haplotype alleles in each block 
were directly incorporated in the model. For ancestral-
haplotype-based GWAS, effect was estimated for each 
haplotype allele of each origin. Dosage coding was as 
described in the following.

Consider a population comprising two individuals, 
where a haplotype block consists of two haplotype alleles 
(hap1, hap2). We assume the first individual is homozy-
gous for hap1, the second individual is heterozygous, i.e., 
has one hap1 and one hap2. Then, the haplotype matrix is 
coded as follows:

By incorporating ancestral origins, each haplotype 
allele can have two ancestral labels: hapl_HB, hap1_
HQLA, hap2_HB, and hap2_HQLA. Let us assume that 
the two hap1 alleles of the first individual originated from 
different ancestral origins, while for the second indi-
vidual, hap1 is from the HQLA population and hap2 is 
from the HB population. When coding haplotype alleles 
with ancestral labels, the haplotype matrix Zd will then 
become:

Ancestry‑based dominance analysis
In addition to additive effects, dominance (interaction 
between alleles at the same locus) can also be involved in 
the determination of the phenotype. To detect their influ-
ence, we firstly corrected the phenotypes of  F9 individu-
als to account for the effects of sex and batch, and the 
residuals from that model were used as new phenotypes 
for further analyses.

For each individual in the  F9 population and for each 
block, we defined the ancestral heterozygotes (HB/
HQLA) as consisting of one haplotype from HB and one 
from from HQLA, while ancestral homozygotes were 
defined as having both haplotypes from HB (HB/HB) or 
both from HQLA (HQLA/HQLA). Ancestry-based dom-
inance was estimated in two different settings: high-par-
ent dominance was defined as the ancestral heterozygote 
exhibiting significantly higher body weight than both 
ancestral homozygotes, while mid-parent dominance 
was defined as the ancestral heterozygote exhibiting 
significantly higher body weight than the median of the 
ancestral homozygotes. A non-parametric Kruskal–Wal-
lis test was initially conducted for each block to assess 
the hypothesis that the medians of BW8 between ances-
tral homozygotes and ancestral heterozygotes are equal. 
When this null hypothesis was rejected, Steel–Dwass 

Zd =

[
2 0
1 1

]

.

Zd =

[
1 1 0 0
0 1 1 0

]

.
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post-hoc tests were employed to determine which one 
significantly differed from others within the block. A 
false discovery rate [37] FDR ≤ 0.05 was considered as 
significant.

Gene annotation and candidate gene prioritization
To obtain candidate genes for body weight, genes that 
overlapped with significant GWAS loci were retrieved 
according to coordinates recorded in the chicken 
genomic general transfer format (GTF) files from 
Ensembl. To prioritize candidate genes reported by 
GWAS and by dominance analyses, we assembled a set of 
322 genes associated with human body weight from the 
GWAS Catalog (https:// www. ebi. ac. uk/ gwas/) as train-
ing genes (see Additional file 2 Table S2). Then, the Topp-
Gene [41] web service (https:// toppg ene. cchmc. org/) was 
used to perform gene prioritization based on functional 
similarity to the training genes.

Results
Haplotype structures of the HB and HQLA populations
For phased data, the genome was divided into non-
overlapping blocks of five successive SNPs. Haplotype 
alleles within each block were counted for each popula-
tion across the chromosomes. As shown in Fig.  1a and 
Additional file 3: Fig. S1a, the number of haplotype alleles 
per block was similar between HB and HQLA popula-
tions, with an average of four. In contrast, the average 
number of that in the  F0 generation (HB + HQLA) was 
six for most chromosomes, indicating that 33% of hap-
lotype alleles were shared between the two populations. 
The average number of alleles per haplotype in the  F9 
population was 10 for each chromosome and block. This 
suggests that the population has generated 67% more 
haplotypes due to genetic recombination or/and muta-
tions since hybridization.

To quantify haplotype diversity, H12 statistics were 
calculated for each population. The results were 

Fig. 1 Comparison of haplotype structure between the  F0 and  F9 populations (GGA1-GGA14). a Counting unique haplotypes in different 
populations. b Distribution of H12, H123, and H1234 statistics in different populations. c Distribution of Jaccard distance of  F0 and  F9 populations "*" 
indicates the mean value

https://www.ebi.ac.uk/gwas/
https://toppgene.cchmc.org/
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consistent with the counts of unique haplotypes, with 
the  F9 population exhibited the lowest H12 value, indi-
cating the highest haplotype diversity. Compared to 
the counts of haplotype alleles, the quantitative H12 
approach offered higher resolution and differentiated 
HB from HQLA, having relatively lower diversity (see 
Fig. 1b and Additional file 3: Fig. S1b). We extended the 
H12 statistics to H123 and H1234 by considering more 
haplotypes with a higher frequency, which indicated 
that the  F9 population showed the highest haplotype 
diversity. The H1234 values for the  F9, HB, and HQLA 
populations were 0.914, 0.969 and 0.944, respectively.

On the basis of the haplotype structure of the HB and 
HQLA populations, we further measured the haplotype 
difference between populations using Jaccard distance. 
The Jaccard distance between HB and HQLA popula-
tion was much higher compared to their differences 
from the  F9 population, as well as from random sets 
drawn from the  F9 population (see Fig.  1c, Additional 
file  3: Fig. S1c). To better quantify these distances, we 
recalculated the haplotype difference using Jensen-
Shannon divergence and Bray–Curtis distance, which 
consider haplotype frequencies in addition to hap-
lotype alleles. As shown in Table  1, consistent results 
were obtained and clearly showed the differentiation 
and heterogeneity of haplotypes in the HB and HQLA 
populations. The  F9 population was, however, geneti-
cally well-mixed and homogeneous, consistent with our 
previous study [5].

Given that the haplotypes in  F9 were originally inher-
ited from the HB and HQLA populations and haplo-
type diversity increased through recombination, we 
constructed a genetic map of the hybrid population to 
facilitate further analysis, using pedigree and genetic 
information from the  F8 and  F9 generations (see Addi-
tional file 4: Table S3). Our genetic map for the 28 auto-
somes spanned about 2644 cM (see Additional file  5: 
Table S4), which was shorter than 3016 cM previously 
reported for chicken [24]. Consistent with previous 
findings, the recombination rate of small chromosomes 
was significantly greater than that of large chromo-
somes, and the map of females was longer than that of 
males (see Additional file 5: Table S4).

Novel associations identified by ancestral‑haplotype‑based 
GWAS
Standard SNP-based GWAS for BW8 was first performed 
for the  F9 population using a mixed model implemented 
in the GCTA software (see Additional file 6: Table S5). A 
significant QTL region (169.6–173.6 Mb) was identified 
on GGA1 (Fig. 2a and Additional file 7: Table S6), consist-
ent with the previous report [6]. As haplotypes are more 
genetically informative, we used five successive SNPs to 
form haplotype blocks. Each individual was coded by its 
haplotype combination and haplotype-based GWAS was 
performed (see Methods and Additional file 8: Table S7). 
The significant QTL regions are presented in Additional 
file 9: Table S8. Result from the haplotype-based GWAS 
was generally consistent with those from SNP-based 
GWAS, with only one significant QTL region (169.7–
170.7 Mb) identified, on GGA1 (Fig. 2b).

We subsequently delved into the significant genomic 
region (GGA1: 170,559,701 bp) identified in both the 
SNP-based GWAS and the haplotype-based GWAS. 
This block contained 10 distinct haplotype alleles, with 
frequencies ranging from 0.001 to 0.436. Using a sep-
arate mixed model, the effect size of each haplotype 
allele in this block on BW8 phenotype was estimated to 
range from – 40.4 to 42.8 g. Most haplotype alleles with 
negative effects were uniquely transmitted from the 
HB population (Fig.  2c). The haplotype TTAGG that 
showed the highest positive effect was present in both 
the HB and the HQLA population but its frequency was 
much higher in the HQLA population (0.969) than in 
the HB population (0.036). Given the genetic homoge-
neity of the  F9 population, alongside the differentiated 
haplotype structures of the HB and HQLA populations, 
coupled with their distinct bodyweight phenotypes, it 
is plausible that the haplotype effects observed in the 
 F9 generation were associated, to some extent, with 
their ancestral origins. We, therefore, conducted an 
ancestral-haplotype-based GWAS by grouping haplo-
types according to their ancestral origins. RFMix was 
used to determine the ancestral origin of each haplo-
type in the  F9 population. The estimated ancestries of 
haplotypes from the  F9 population were about 1:1 from 
the HB and HQLA populations, concordant with the 
random mating strategy employed in AIL construc-
tion (see Additional file  10: Fig. S2a). To empirically 
assess the accuracy of the ancestry estimation, we 
checked the estimated ancestries of haplotypes that 
were unique in the HQLA or the HB population and 
found an approximate accuracy of 0.951 (see Additional 
file  10: Fig. S2b). Compared with results from SNP-
based GWAS, the ancestral-haplotype-based GWAS 
identified the same signals on GGA1: H6770–H6906 
(169,110,052–172,421,963 bp) and GGA27: H121-H154 

Table 1 Differences in haplotype frequencies between 
populations

HQLA_HB,  HQLA_F9,  HB_F9, and  F9_F9 represent the differences in haplotype 
frequencies between the pair of populations, respectively

Method/′populations HQLA_HB HQLA_F9 HB_F9 F9_F9

Jensen-Shannon divergence 0.227 0.087 0.093 0.004

Bray–Curtis distance 0.459 0.265 0.266 0.041
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(5,717,631- 6,575,040 bp). Additionally, ancestral-hap-
lotype-based GWAS revealed signals for successive 
blocks on GGA12: H21–H33 (1,121,219–1,422,421 
bp); GGA15: H261–H263 (6,947,970–7,036,413 bp); 
and GGA20: H184-H187 (4,510,669–4,629,756 bp) (see 
Fig. 3a and Additional file 11:  Table S9). Statistics and 
corresponding genes of these newly identified signifi-
cant blocks are listed in Additional file  12: Table  S10. 
For most blocks, haplotypes derived from the HQLA 
population exhibited positive effects on BW8. However, 
for a few blocks on GGA15 and GGA20, the direction 
was opposite, with haplotypes derived from the HB 
population displaying positive effects (Fig.  3b). Sig-
nals on GGA27 were notably prominent compared to 
the corresponding signals in the SNP-based GWAS, 

indicating that ancestral-haplotype-based GWAS suc-
cessfully assesses the collective effects of haplotypes 
within these blocks, by grouping them according to 
their ancestral origins.

One gene, MUSTN1, located on GGA12 
(GGA12:1,237,478–1,240,970 bp) was previously 
reported to play an important role in skeletal-mus-
cle growth in chicken [42]. In the block covering the 
MUSTN1 gene, the estimation of effect sizes for haplo-
type alleles showed that all five haplotypes that originated 
from the HQLA population had positive effects on body 
weight. Among them, four haplotype alleles, namely, 
CGCAA, CGGCG, GGCAA, and GGCAG, were unique 
to the HQLA population. Haplotype alleles CGCAG and 
CGGAG originated from both populations. For these, the 

Fig. 2 Genome-wide association analysis based on SNPs and haplotypes. a Results from SNP-based GWAS (The dashed black horizontal line shows 
the FDR < 5% cutoff ). b Results from haplotype-based GWAS (The dashed black horizontal line shows the FDR < 5% cutoff ). c Estimates of effect 
sizes of haplotypes for the most significant locus (GGA1: 170,559,701) in the  F9 population. The red bar indicates haplotypes exclusive to the HQLA 
population, the blue bar indicates haplotypes exclusive to the HB population, and the orange bar indicates haplotypes absent in both populations. 
“*” indicates that the TTAGG haplotype is present in both HB and HQLA populations, but the haplotype frequency is much higher in the HQLA 
population (0.969) compared to the HB population (0.036)
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HB-origin haplotypes exhibited negative effects, while 
the HQLA-origin haplotypes showed positive effects 
(Fig. 3c).

Another interesting candidate is gene HTR2A, located 
on GGA1 (GGA1: 169,670,496–169,697,156 bp), which 
has been previously shown associated with growth and 
development in chicken [43]. Again, haplotype alleles 
with identical sequences but different ancestral origins 
exhibited clearly opposite effects, affirming the com-
plex genetic background of the growth trait (Fig.  3d). 
One haplotype allele that was unique to the HB popula-
tion, AAGCC, exhibited positive effects on body weight, 
indicating that some beneficial haplotype alleles were 

“hidden” in the low-body-weight HB population (Fig. 3d). 
Detailed ancestral haplotype analysis with effect size esti-
mation and their corresponding genes are listed in Addi-
tional file 13: Table S11.

Ancestral‑based dominance in  F9 population
Although non-additive effects are generally considered 
to be not stably inherited in subsequent generations, 
genetic interactions from different ancestral back-
grounds may still be active even after many generations 
during breed formation. The AIL population provides a 
unique opportunity to test ancestral-based dominance, 

Fig. 3 Results from the ancestral-haplotype-based GWAS and ancestral haplotype analysis. a Results from ancestral-haplotype-based GWAS, 
candidate genes overlapping with the peaks are presented (The dashed black horizontal line shows the FDR < 5% cutoff ). b Estimates of effects 
of haplotypes of different ancestral origins in major QTLs. Red points indicate haplotypes from the HQLA population; blue points indicate 
haplotypes from the HB population. c Ancestral haplotype analysis for blocks that cover the MUSTN1 gene. Six haplotypes were retrieved 
from the HB population (nhap = 2) and the HQLA population (nhap = 6) with haplotype frequencies > 0.05. Red bars (_1) indicates haplotypes 
exclusive to the HQLA population, blue bars (_0) indicates haplotypes exclusive to the HB population, orange bars indicate haplotypes 
absent in both populations. d Ancestral haplotype analysis for blocks covering the HTR2A gene. Four haplotypes were retrieved from the HB 
population (nhap = 3) and the HQLA population (nhap = 2) with haplotype frequencies > 0.05
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as it was constructed by two chicken populations with 
distinct genetic backgrounds.

As the body weight of the founders from HB or 
HQLA was not recorded, we explored high-parent 
dominance in the  F9 population for loci for which the 
ancestral heterozygote exhibited significantly higher 
body weight compared to any of the ancestral homozy-
gotes. Eight blocks on GGA2 passed the Kruskal–Wal-
lis tests (see Additional file 14: Table S12). The average 
Jensen-Shannon divergence of the  F0 population for 
these eight blocks was 0.167 ± 0.099, comparable to the 
genome average. It is worth noting that, based to our 
definition, the ancestral heterozygote can include two 
identical haplotype alleles but with distinct origins. In 
addition, for none of the eight blocks were each haplo-
types completely unique to one population. This con-
trasts with inbreeding in plants, but consistent with 
the heterogeneous haplotype structure [44] that was 
revealed in the preceding section. Four known protein-
coding genes were annotated for the eight blocks. As 
an example, Fig.  4a, b show the exact superior ances-
tral heterozygote, and the haplotype allele frequencies 
in the  F0 population for block HAP2082 on GGA2. 
The candidate gene KBTBD2 (Kelch repeat and BTB 
domain containing 2) in haplotype HAP2082 belongs to 
the Kelch protein family, which has an effect on skele-
tal-muscle development [45].

We used a relaxed criterion to identify loci with mid-
parent dominance and this resulted in identification of 
624 blocks with mid-parent effects across 12 chromo-
somes (see Additional file  15: Table  S13). The average 
Jensen-Shannon divergence of the F0 population for the 
624 blocks was 0.217 ± 0.150. Since the average Jensen-
Shannon divergence for loci that exhibited high-parent 
and mid-parent dominance was not higher than the 
genome average, dominance does not necessarily covary 
with genetic distance. We used one block (HAP3132) 
on GGA4 as an example (Fig. 4c, d), which includes the 
KCNIP4 gene (potassium voltage-gated channel interact-
ing protein 4). KCNIP4 has extensive physiological func-
tions, including neurotransmitter release, smooth muscle 
contraction, heart-rate adjustment, and insulin secretion, 
and it was also associated with growth traits in a different 
chicken population [46].

Prioritization of candidate genes associated with body 
weight
To obtain a reduced set of best candidate genes, we prior-
itized 220 candidate genes reported by GWAS and domi-
nance analyses using the ToppGene web service (https:// 
toppg ene. cchmc. org), using known genes associated with 
human body weight as the training set from the GWAS 
Catalog. We successfully prioritized 185 genes (see Addi-
tional file 16: Table S15), including 12 genes identified by 

Fig. 4 Analysis of dominance in the  F9 population. a Example of high-parent dominance on haplotype GGA2_HAP2082. The red and blue 
sequences in parentheses indicate the haplotypes from HQLA and HB populations, respectively. b Haplotype allele frequency in two ancestral 
populations for block GGA2_HAP2082. c Example of mid-parent dominance on GGA4_HAP3132. The red and blue sequences in parentheses 
indicate the haplotypes from HQLA and HB populations, respectively. d Haplotype allele frequency in the two ancestral populations for block 
GGA4_HAP3132

https://toppgene.cchmc.org
https://toppgene.cchmc.org
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ancestral-haplotype-based GWAS, 4 genes identified by 
high-parent dominance analysis, and 169 genes identified 
by mid-parent dominance analysis. Table 2 listed the top 
10 genes based on prioritized p values.

Among the best candidate genes, the EYA1 gene 
(GGA2: 116,925,618–117,074,063) encodes a protein 
that plays roles in the development of eyes and ears. 
Mutations in this gene were reported to cause stunted 
growth and slowed development in frog [47]. PDE1C 
(GGA2: 48,126,705–48,416,766 bp) encodes an enzyme 
that regulates the proliferation and migration of vascular 
smooth muscle cells, and neointimal hyperplasia. Previ-
ous studies have shown its relationship to Type 2 diabetes 
in humans [48]. MYC (GGA2: 139,734,098–139,738,744 
bp) is a transcription factor that has been described to 
enhance the expression of growth-promoting genes in 
human [49].

Discussion
AIL constitute a valuable resource for mapping quantita-
tive traits with high resolution as a resulted of accumu-
lated genome recombination. They are commonly used in 
animal genetics research [50, 51]. The  F9 AIL used in this 
study is a segregating population created by the random 
intercrossing populations over nine-generations. The 
initial parental population originated from the HB and 
HQLA populations, which have distinct phenotypes and 
genetic backgrounds. The HB chicken is a local Chinese 
breed that has not been subject to strong artificial selec-
tion. The HQLA population is a closed broiler population 
that has been under strong artificial selection for body 
weight for more than 10 generations.

Populations with extreme phenotypes often exhibit sig-
nificant genetic differences due to prolonged geographic 
isolation or different selection strategies. The genetic 
architecture of chicken body weight is complex, involving 
many genes with small effects that collectively contribute 

to the phenotype [52, 53]. However, due to the highly 
heterogeneous genetic architecture, selection struggles 
to drive a particular allele to fixation, which poses chal-
lenges for effective association mapping.

In this study, we developed an analytic strategy to 
assess the collective genetic contributions of haplotypes 
with different ancestral origins to phenotypic variation, 
motivated by the observation that haplotypes of differ-
ent ancestral origins in our AIL population carried dis-
tinct effects in both our recent [6] and current studies. 
The ancestral-haplotype-based GWAS was first used 
for preliminary screening for association signals. Subse-
quently, we carried out haplotype analysis for each sig-
nificant locus to analyze the detailed effects of haplotype 
alleles. Instead of clustering haplotypes by sequence, we 
proposed to cluster haplotypes on the basis of ancestral 
origin. By leveraging ancestral information, our method 
efficiently revealed that haplotypes originating from the 
HB and HQLA population generally had positive or neg-
ative effects respectively. Our ancestral-haplotype-based 
GWAS avoids the problem of reduced power because of 
excessive degrees of freedom in the haplotype analysis. 
The application of ancestral-haplotype-based GWAS can 
extend to other populations, provided the ancestral pop-
ulation is known, and the ancestral origin of the mixed 
individual can be inferred. In our study, RFmix was used 
to trace the origin of haplotypes from the two ancestral 
populations. It is feasible to apply our method to multi-
ple ancestral populations by using RFMix or other local 
ancestry inference tools. Our ancestral-haplotype-based 
GWAS reported signals on GGA1 and GGA27, which 
were also detected by a standard SNP-based GWAS 
approach. However, it also reported several new signals 
on GGA12, GGA15, and GGA20, which were further 
annotated as biologically relevant. Follow-up haplotype 
analysis identified specific haplotype alleles with consid-
erable effect sizes in the  F9 population that can be used 
as starting points to improve breeding efficiency. The 
strength of ancestral-haplotype-based GWAS lies in the 
fact that haplotypes originating from the HB and the 
HQLA population frequently have different directionality 
of their effects. However, it should be noted that if trait-
increasing and trait-decreasing haplotypes are compara-
ble in number within a population, it would result in a 
substantial loss of power.

By incorporating ancestral information, our GWAS 
strategy naturally detected ancestry-based dominance. 
The non-additive analysis we employed here is basically 
of genetic interactions of haplotype alleles from differ-
ent ancestral backgrounds. We identified many candidate 
loci with statistical support. While some candidates have 
been functionally validated in previous studies [45, 46], 
further research is required to understand the genes or 

Table 2 Top prioritized positional candidate genes for body 
weight

Gene Chromosome Position (bp) Rank P value

EYA1 GGA2 116,925,618–117,074,063 1 3.286E−04

PDE1C GGA2 48,126,705–48,416,766 2 1.015E−03

MYC GGA2 139,734,098–139,738,744 3 2.704E−03

NCOA2 GGA2 116,504,849–116,596,399 4 8.694E−03

EDNRA GGA4 31,904,342–31,933,857 5 9.259E−03

CREBBP GGA14 12,891,875–12,969,501 6 9.550E−03

DACH2 GGA4 8,277,517–8,541,470 7 1.283E−02

ANK2 GGA4 56,725,180–57,009,349 8 1.544E−02

MAB21L2 GGA4 33,007,990–33,009,211 9 1.737E−02

KIF26B GGA3 34,279,395–34,717,416 10 2.256E−02
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haplotypes responsible for dominance on chicken growth 
and their underlying mechanisms.

Body weight at eight weeks of age is one of most impor-
tant economic traits in the chicken industry. Despite 
many efforts to fine-map traits in chicken using AIL 
populations [54–56], loci with small effects are left unde-
tected. By employing ancestral-haplotype-based GWAS, 
we reported several new candidate genes for the exist-
ing population. Ubiquitin protein ligase E3B (UBE3B), 
located in GGA15: 7,041,591–7,058,666 bp, controls 
water holding capacity in pigs [57], which affects loss of 
tissue fluid, and in turn weight loss. The beneficial hap-
lotype alleles originated from HB and had a frequency 
of about 92.9% in the HB  F0 population. This suggests 
that, for complex traits, candidate genes might be related 
to overlooked sub-phenotypes, such as water-holding 
capacity and its impact on weight. Those results under-
score the importance of considering sub-phenotypes 
in genetic studies and the value of ancestral-haplotype-
based GWAS in uncovering novel genetic markers for 
complex traits.

Conclusions
In this study, we introduced analytical strategies that 
integrate haplotype analysis with ancestral origins in 
AIL populations. Through this approach, we identified 
novel associations for chicken body weight at eight weeks 
of age on GGA12, GGA15, and GGA20 in the  F9 AIL 
population. By incorporating ancestral information, we 
applied concepts of ancestral homozygotes and ancestral 
heterozygotes at haplotypes. We identified genetic loci 
that exhibited high-parent and mid-parent dominance 
for chicken body weight. Finally, we prioritized candidate 
genes, highlighting EYA1, PDE1C and MYC as the best 
candidates for further validation. Our results contribute 
to a better utilization of the AIL population for genetic 
mapping.
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