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Abstract 

Pancreatic diseases pose considerable health challenges due to their complex etiology and limited therapeutic 
options. Mitochondrial uncoupling protein 2 (UCP2), highly expressed in pancreatic tissue, participates in numer-
ous physiological processes and signaling pathways, indicating its potential relevance in these diseases. Despite this, 
UCP2’s role in acute pancreatitis (AP) remains underexplored, and its functions in chronic pancreatitis (CP) and pancre-
atic steatosis are largely unknown. Additionally, the mechanisms connecting various pancreatic diseases are intricate 
and not yet fully elucidated. Given UCP2’s diverse functionality, broad expression in pancreatic tissue, and the distinct 
pathophysiological features of pancreatic diseases, this review offers a comprehensive analysis of current findings 
on UCP2’s involvement in these conditions. We discuss recent insights into UCP2’s complex regulatory mechanisms, 
propose that UCP2 may serve as a central regulatory factor in pancreatic disease progression, and hypothesize 
that UCP2 dysfunction could significantly contribute to disease pathogenesis. Understanding UCP2’s role and mecha-
nisms in pancreatic diseases may pave the way for innovative therapeutic and diagnostic approaches.
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Introduction
Mitochondria were traditionally regarded as the pri-
mary energy centers of eukaryotic cells (Zheng et  al. 
2023). However, a deeper understanding of mitochon-
dria has revealed increasing evidence that they func-
tion as multifunctional, dynamic organelles engaged in 
genetic information processing, energy conversion, bio-
synthesis, and signal transduction. These organelles are 
essential components of the mitochondrial information 
processing system (MIPS) and play a crucial role in bio-
logical regulation through three primary steps: sensing, 
integration, and signal transduction (Picard and Shiri-
hai 2022). Uncoupling proteins (UCPs), a class of mito-
chondrial carriers, primarily regulate reactive oxygen 
species (ROS) production during mitochondrial oxida-
tive phosphorylation and also participate in mitochon-
dria-related signal transduction (Cadenas 2018).

UCP2 is the most widely distributed uncoupling pro-
tein in the human body, with broad expression across the 
brain, liver, pancreas, muscle, and immune cells, where it 
plays a pivotal role in energy homeostasis and the regu-
lation of ROS (Luby and Alves-Guerra 2022). Its critical 
functions in oxidative stress management and metabolic 
regulation, particularly its impact on insulin secretion 
and glucose and lipid metabolism, have drawn significant 
research interest (Diano and Horvath 2012). Importantly, 
UCP2 exhibits over 95% homology between humans and 
mice, a much higher similarity compared to other UCPs 
(Caggiano and Taniguchi 2024). Further underscoring its 
research relevance.

The pancreas, a digestive gland with both endocrine 
and exocrine functions, plays a vital role in regulating 
various metabolic processes. Pancreatic dysfunction can 
result in conditions such as pancreatitis, diabetes, and 
pancreatic cancer (Guillaumond et  al. 2014; Schlünder 
et  al. 2024). Rising incidence and prevalence of pancre-
atic diseases contribute to a substantial healthcare bur-
den (Ouyang et  al. 2020; Chen et  al. 2020). UCP2 has 
attracted significant research interest due to its exten-
sive expression in pancreatic tissue and its crucial roles 
in oxidative stress regulation and metabolic processes 
(Zhang et  al. 2001; Galetti et  al. 2009). Studies suggest 
that UCP2 influences the proliferation of pancreatic islet 
α and β cells, as well as the secretion of insulin and gluca-
gon, thereby affecting glucose and lipid metabolism (Luo 
et al. 2022). Additionally, UCP2 may be involved in pan-
creatic development via the ROS-AKT signaling pathway 
(Broche et al. 2018). In models of acute pancreatitis (AP), 
UCP2 knockdown inhibits the proliferation of pancreatic 
stellate cells (Muller et  al. 2016), and modulates mac-
rophage redox responses, impacting the progression of 
KRAS-associated pancreatic cancer (Raho et al. 2020).

The role of UCP2 in acinar cell injury and macrophage 
regulation during AP remains unclear, and studies on 
UCP2 in chronic pancreatitis (CP) are limited. It is also 
unknown whether UCP2 influences pancreatic fat infil-
tration or fatty pancreas development, and by what 
mechanisms this may occur (Petrov 2023). Additionally, 
the mechanisms underlying recurrent AP, fibrosis in CP, 
and progression to pancreatic cancer are poorly under-
stood, with few effective clinical targets available. The 

Graphical Abstracts



Page 3 of 20Wang et al. Molecular Medicine          (2024) 30:259  

impact of pancreatitis episodes on glucose regulation 
and the development of diabetes also requires further 
investigation. Given UCP2’s diverse functions, wide-
spread expression in pancreatic tissue, and the inter-
connected pathophysiology of pancreatic diseases, this 
review examines current findings on UCP2’s regulatory 
role, proposing that UCP2 dysfunction may play a central 
role in pancreatic disease pathogenesis. Understanding 
UCP2’s mechanisms could offer novel therapeutic and 
diagnostic insights.

Regulation of UCP2 in pancreatic diseases
The regulation of UCP2 in pancreatic diseases encom-
passes several mechanisms, including gene mutations, 
transcription factors influencing UCP2 expression in 
pancreatic diseases, and UCP2-related epigenetic modi-
fications. Investigating UCP2 regulation is essential for 
understanding its role in pancreatic diseases and under-
scores its potential as a central therapeutic target.

Mutations of UCP2 in pancreatic diseases
Genetic polymorphism, defined as the presence of two 
or more allelic variants of a gene at the same locus with 
a variation frequency generally exceeding 1%, can affect 
gene expression and function, leading to biological differ-
ences between individuals (Krauss et  al. 2005). Genetic 
polymorphism is a crucial source of biodiversity and 
serves as the basis for evolution and natural selection. 
Major types of genetic polymorphisms include single 
nucleotide polymorphisms (SNPs), insertion/deletion 
polymorphisms (Indels), repetitive sequence polymor-
phisms (RSPs), and structural variants (SV) (Hayashi 
et al. 2021).

The SNPs of UCP2 primarily include the 866G/A pol-
ymorphism in the promoter region and the Ala55Val 
polymorphism in the exon region. The Indels mainly 
involve the insertion of a 45  bp sequence in exon 8 of 
the 3′ untranslated region of the UCP2 gene (Jia et  al. 
2009; Donadelli et  al. 2014). The relative mean muta-
tion frequencies of 866G/A and Ala55Val were similar, 
at approximately 37% and 39.6%, respectively (Dalgaard 
2011). Additionally, the 866G/A and Ala55Val polymor-
phisms may have a combinatorial effect; for example, 
individuals carrying both the 866G/A and Val55 alleles 
may exhibit higher UCP2 activity and stronger antioxi-
dant capacity (Nicoletti et al. 2017).

The distribution and frequency of these UCP2 gene 
polymorphisms may vary among different populations 
and can affect susceptibility to pancreas-related diseases, 
such as insulin secretion and type 2 diabetes mellitus, 
differently in various individuals and genders (Andersen 
et  al. 2013; Souza et  al. 2013). By studying these poly-
morphisms and their functional significance, the role 

of UCP2 in pancreatic diseases can be better under-
stood. Two studies have comprehensively summarized 
the impact of UCP2 gene polymorphisms on metabolic 
diseases (Jia et al. 2009; Donadelli et al. 2014). We have 
built upon these studies to summarize and update our 
understanding of the role of UCP2 gene polymorphisms 
in pancreatic diseases in recent years (Table 1).

Of the 21 studies we summarized, 11 focused on the 
−866G/A polymorphism of UCP2. Except for one study 
that indicated the −866G/A polymorphism reduces the 
risk of type 2 diabetes in Asian populations (Huang et al. 
2021), the remaining studies showed that the −866G/A 
polymorphism predisposes individuals to an increased 
risk of developing type 2 diabetes. Similarly, 6 out of 
seven studies on the Ala55Val polymorphism associated 
it with an increased risk of type 2 diabetes, with the sin-
gle study showing a negative association also based on an 
Asian population (Vimaleswaran et al. 2011). This may be 
related to selection bias in the studies. Additionally, one 
study showed that UCP2 variants (G174D and A268G) 
promoted insulin secretion (Lee et  al. 2008), while 
another indicated that the UCP2 T/T variant increased 
the risk of type 2 diabetes (Lapik et  al. 2021). Collec-
tively, we conclude that genetic polymorphisms in UCP2 
increase the risk of type 2 diabetes mellitus.

Transcription factor of UCP2 in Pancreatic Diseases
The transcriptional regulation of the UCP2 gene encom-
passes various mechanisms, such as transcription fac-
tors, cis-acting elements, epigenetic modifications, and 
environmental influences. These intricate regulatory 
mechanisms precisely control UCP2 gene expression 
under diverse physiological and pathological conditions, 
thereby fully elucidating the role of UCP2 in pancreatic 
diseases. The mouse and human UCP2 genes are located 
on chromosomes 7 and 11, respectively. Both genes com-
prise eight exons (six coding and two non-coding) and 
seven introns (Donadelli et  al. 2014). The human UCP2 
gene transcription and mutations are detailed sche-
matically in Fig. 1. Transcription factors that bind to the 
UCP2 promoter include forkhead box protein O1(Foxa1), 
silent mating type information regulation 2 homolog-1, 
(SIRT1), sterol regulatory element binding protein iso-
forms (SREBP), thyroid hormone response elements 
(TRE), and helix-loop-helix protein binding sites (E-box).

Initial interest in the role of Foxa1 in pancreatic disease 
arose from observations of hypoglycemia and abnormal 
changes in glucose metabolism in Foxa1 knockout mice 
(Shih et al. 1999). Subsequent studies in β-cells revealed 
reduced ATP synthesis following Foxa1 knockdown, 
accompanied by increased expression of UCP2. Chro-
matin immunoprecipitation assays further confirmed 
UCP2 as a direct transcriptional target of Foxa1 in vivo 
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(Vatamaniuk et  al. 2006). More importantly, Foxa1 has 
been shown to repress UCP2 gene transcription by bind-
ing to the −  919 to −  913 elements (Song et  al. 2014). 
Controversially, Foxa1 is suggested to bind to the Ucp2 
promoter at a preferred site located between − 1760 and 
−  1749  bp relative to the gene’s transcription start site, 

yet conclusive direct evidence is lacking (Donadelli et al. 
2014). Additionally, a recent study demonstrated that 
silencing Foxa1 promotes UCP2 expression (Bao et  al. 
2022).

It was reported that peroxisome proliferator-acti-
vated receptor-γ coactivator-1 α (PGC-1α) promotes 

Table 1 Summary and update of the role of UCP2 gene polymorphisms in pancreatic diseases in recent years

Years Race UCP2 Genetic polymorphism Biological effect Refs.

2006 Caucasians 866G/A Type 2 diabetes susceptibility Gable et al. (2006)

2002 Austrian Caucasians 866G/A Inhibits insulin secretion Krempler et al. (2002)

2004 Japanese 866G/A Inhibits insulin secretion Sasahara et al. (2004)

2004 Italian Caucasian 866G/A Increased risk of type 2 diabetes D’Adamo et al. (2004)

2005 Americans Ala55Val Increased risk of type 2 diabetes Yu et al. (2005)

2010 Northern Indians 866G/A Increased risk of Hyperinsulinemia Srivastava et al. (2010)

2013 Danes 866G/A Increased risk of type 2 diabetes Andersen et al. (2013)

2011 Asian descent Ala55Val Increased risk of type 2 diabetes Xu et al. (2011)

2009 European American women Ala55Val Increased risk of type 2 diabetes Willig et al. (2009)

2011 Asian Indians Ala55Val and −55C/T Decreased risk of type 2 diabetes Vimaleswaran et al. (2011)

2008 Koreans UCP2 −5331G > A and UCP3 
−2078C > T

Increased risk of type 2 diabetes Lee et al. (2008)

2008 patients form Necker-Enfants Mal-
ades Hospital

Ucp2 variants (G174D and A268G) Promotes insulin secretion González-Barroso et al. (2008)

2023 Kashmiri population of Northern 
India

866G/A Increased risk of type 2 diabetes Din et al. (2023)

2021 Asians 866G/A Decreased risk of type 2 diabetes Huang et al. (2021)

2021 Asians Ala55Val Increased risk of type 2 diabetes Huang et al. (2021)

2021 Russians Ucp2 T/T variant Increased risk of type 2 diabetes Lapik et al. (2021)

2021 North-west of Iran 45 bp I/D polymorphism in 3’UTR 
of UCP2

Increased risk of type 2 diabetes Rezapour et al. (2021)

2021 Asians 866G/A Increased risk of type 2 diabetes Xu et al. (2021a)

2020 Northern Chinese population 866G/A Increased risk of type 2 diabetes Hou et al. (2020)

2019 South Indian population 866G/A Increased risk of type 2 diabetes Gomathi et al. (2019)

2013 Asians UCP2 Ala55Val and UCP3 −55C/T Increased risk of type 2 diabetes Souza et al. (2013)

Fig. 1 The human UCP2 gene transcription and mutations
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thyroid hormone-mediated transcriptional activation 
of the UCP2 gene in INS-1E cells (Oberkofler et  al. 
2009). Hannes Oberkofler et al. (Oberkofler et al. 2006) 
identified two TREs at positions −  322/−  317 (TRE1) 
and − 170/− 165 (TRE2). Mutations in TRE1 or TRE2 
attenuated the stimulatory effects of thyroid hormone 
treatment. Additionally, two E-box motifs at positions 
− 911/− 906 (E1) and − 743/− 738 (E2) regulate UCP2 
gene expression through SREBP-1a, SREBP-1c, and 
SREBP-2. Mutational analyses indicate that the pres-
ence of E1 or E2 alone is sufficient for the nuclear active 
SREBP-mediated activation of UCP2 gene transcription 
(Oberkofler et al. 2006). Moreover, miR-23a induces the 
expression of PGC-1α and also enhances the expression 
levels of UCP2 (Wang et al. 2015).

Elevated levels of long-chain fatty acids stimulate 
UCP2 expression, primarily mediated via peroxisome 
proliferator-activated receptors (PPARs) and SREBPs 
(Zhou et  al. 2016; Chen et  al. 2014). The PPAR family 
includes three principal genes: PPAR-α, PPAR-β, and 
PPAR-γ, while SREBP exists in three main isoforms: 
SREBP-1a, SREBP-1c, and SREBP-2 (Shimano 2009). 
Several studies have confirmed the potentially critical 
role of PPARs in pancreatic diseases, including pro-
tecting pancreatic islet β-cells from metabolic stress, 
enhancing insulin secretion, and mitigating lipotox-
icity (Chen et  al. 2015; Hogh et  al. 2014; Jiang et  al. 
2010). Unlike Foxa1, SREBP, TRE, and E-box, which 
possess binding sites on the UCP2 promoter, no bind-
ing sites for PPAR have been identified within or near 
the Ucp2 gene. Therefore, the regulation of UCP2 by 
PPARs appears to be indirect (Donadelli et  al. 2014). 
However, it has been documented that PPARs bind the 
direct repeat sequence 5′-AGG TCA -3′ as a specialized 
heterodimer with the retinoid X-like receptor (RXR) 
(IJpenberg et  al. 1997; Gearing et  al. 1993). Addition-
ally, PPARs require a double E-box motif in their proxi-
mal promoter for their biological functions. Further 
investigation is necessary to confirm the regulatory role 
of PPARs in UCP2 gene transcription in future studies 
(Medvedev et al. 2001).

In β-cells, SIRT1 inhibits UCP2 transcription by 
directly binding to its promoter, thereby affecting insu-
lin secretion (Bordone et al. 2006; Moynihan et al. 2005). 
SIRT1 also interacts with various transcription factors 
of UCP2. For example, it suppresses PPARγ, thereby 
regulating white adipose tissue function (Zu et al. 2020). 
The SIRT1-Ppargc1a-Ucp2 pathway is associated with 
insulin resistance and obesity (Kettunen et  al. 2024). 
Additionally, SIRT1 modulates Foxa1, influencing cel-
lular metabolic levels possibly due to its proximity to 
the Foxa1 binding site on the UCP2 promoter (Bordone 
et al. 2006). Moreover, SIRT1 synergizes with peroxisome 

proliferator-activated receptor coactivator PGC-1α (Xu 
et al. 2021b).

TGFβ signaling negatively regulates UCP2, as demon-
strated in tumor cells where low malignancy levels sup-
press gene transcription by recruiting TGFβ-induced 
SMAD4 to six repressive SMAD-binding elements 
(RSBEs, − 100 to − 354) on the UCP2 promoter (Sayeed 
et al. 2010). Conversely, highly malignant tumor cells pro-
mote UCP2 expression. Additionally, glutamine induces 
UCP2 protein translation in a concentration-dependent 
manner. Insufficient glutamine inhibits UCP2 protein 
translation due to a short upstream open reading frame 
(uORF) consisting of 36 amino acids in the 5’ untrans-
lated region. In the presence of glutamine, the inhibitory 
effect of uORF on translation is alleviated (Hurtaud et al. 
2007).

Epigenetic mechanisms of UCP2 in pancreatic diseases
The epigenetic regulation of UCP2 involves DNA meth-
ylation, histone modifications, non-coding RNAs (ncR-
NAs), and chromatin remodeling. These mechanisms are 
not independent; rather, they frequently interact syner-
gistically, with transcription factors also contributing to 
their regulation. Consequently, the epigenetic regulation 
of UCP2 must be understood holistically.

AMPK has been shown to enhance histone acetyla-
tion by phosphorylating DNMT1, RBBP7, and HAT1, 
which in turn reduces DNA methylation and chromatin 
remodeling at the UCP2 promoter (Marin et  al. 2017). 
UCP2 also regulates acetyl-CoA levels, histone acetyla-
tion, and chromatin remodeling within the metabolic 
microenvironment (Rigaud et  al. 2022). ncRNAs play 
a crucial role in the epigenetic regulation of UCP2 and 
have potential as biomarkers for diagnosing and prognos-
ing pancreatic diseases (Liu et al. 2019). Specific micro-
RNAs (miRNAs) and long non-coding RNAs (lncRNAs) 
can serve as non-invasive biomarkers for the early detec-
tion and monitoring of CP, diabetes, and other pancre-
atic disorders. Furthermore, ncRNAs are vital regulators 
of pancreatic diseases, influencing inflammation, fibrosis, 
insulin secretion, and cell survival (Xiong et al. 2019).In 
this section, we summarize the ncRNAs involved in the 
epigenetic regulation of UCP2 (Fig. 2).

MiR-133a plays a role in targeting and regulating the 
tissue-specific expression of UCP2 (Chen et  al. 2009). 
However, miRNAs with analogous roles have not been 
identified in pancreatic tissue. miR-15a inhibition of 
endogenous UCP-2 protein levels is a critical regulator of 
β-cell function and insulin biosynthesis (Sun et al. 2011). 
Conversely, miR-15a, miR-424, miR-497, and miR-185 
directly target the 3’UTR of UCP2 mRNA to suppress its 
expression, forming a regulatory network that influences 
β-cell function (Lang et al. 2018). Some researchers have 
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explored the potential association between hypothalamic 
miRNA expression profiles and insulin responsiveness, 
identifying 34 up-regulated miRNAs and 4 down-
regulated miRNAs. They specifically investigated the 
expression of miR-10a, miR-200a, miR-409-5p, and miR-
125a-3p (Benoit et  al. 2013). Another study highlighted 
the involvement of miR-2909 in regulating UCP2 expres-
sion, particularly in hyperglycemic conditions (Kaul et al. 
2015). miR-29a impacts glucose and lipid metabolism, 
presenting as a potential target for managing insulin 
resistance and type 2 diabetes (Wu et al. 2018). Addition-
ally, miR-214 and lncRNA TUG1 regulate UCP2 expres-
sion levels and play pivotal roles in insulin resistance and 
type 2 diabetes (Wei et al. 2022; Yang et al. 2019).

MiR-133a-1 inhibits the activation of NLRP3 inflam-
masomes by suppressing UCP2 (Bandyopadhyay et  al. 
2013). Interestingly, miR-133a-3p exhibits a positive 
correlation with UCP2 expression and a negative cor-
relation with IL-18 (Bandyopadhyay et  al. 2013). Addi-
tionally, the miR-133a/UCP2 signaling axis regulates 
downstream inflammation, oxidative stress, and energy 
metabolism (Jin et al. 2017). These findings suggest that 
miR-133a may hold potential value in the pathogenesis 
of AP, although no studies have yet been reported in this 
area. Notably, the miR-30e/UCP2 axis demonstrates sig-
nificant relevance in renal fibrosis, implying potential 
applicability in fibrosis-characterized CP (Jiang et  al. 
2013). Furthermore, lncRNA HOTTIP regulates UCP2 to 
promote PDAC progression (Wong et al. 2020). However, 
there are no reports of circRNA regulating UCP2, with 
circRNA UCP2 involvement only documented in lung 
cancer (Du et al. 2023).

Pathological implications of UCP2 in pancreatic 
diseases
Typically, the primary function of UCP2 is to regulate 
cellular energy transduction and mitochondrial ROS 
generation. This makes it an attractive therapeutic target 
for addressing metabolic imbalance in pancreatic can-
cer and oxidative damage in pancreatitis (Caggiano and 
Taniguchi 2024; Jin et  al. 2023). As research on UCP2 
progresses, a clue to this discrepancy may differ in other 
organs, the unique role of UCP2 in the pancreas was 
demonstrated increasingly, with its impact on pancre-
atic biological functions gradually being uncovered. Sig-
nificant changes in insulin and blood glucose levels have 
been observed in UCP2 knockout mice (González-Bar-
roso et al. 2008; Zhou et al. 2009). Detailed studies have 
elucidated the biological mechanisms by which UCP2 
regulates the functions of pancreatic alpha and beta cells 
as well as blood glucose control (Gomathi et  al. 2019; 
Allister et  al. 2013; Mizusawa et  al. 2022). Additionally, 
the function of UCP2 in the development, transplanta-
tion, and autoimmune regulation of the pancreas, par-
ticularly the islets, has been confirmed (Zhang et al. 2011; 
Pi et al. 2009; Emre et al. 2007). Given the significant role 
of UCP2 in the pancreas and pancreatic diseases, this 
review focuses on the recent research progress regard-
ing the involvement of UCP2 in pancreatic development, 
pancreatitis, pancreatic endocrine diseases, and pancre-
atic cancer.

Pancreatic development
This section examines the physiological functions of 
UCP2 in pancreatic development, islet transplantation, 

Fig. 2 The relationship between ncRNAs and UCP2
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and the two major islet cell types (alpha and beta cells), 
along with its role in regulating somatostatin, pancre-
atic polypeptides, and ghrelin. Figure 3 summarizes the 
potential roles of UCP2.

Over the past decade, the effect of mitochondrial 
dysfunction on pancreatic islet development has been 
extensively investigated. Mutations in the human 
UCP2 gene are related to congenital hyperinsulinism 
(González-Barroso et al. 2008). The deletion of UCP2 in 
mice is associated with increased insulin secretion and 
elevated proliferation of endocrine cells (Zhang et  al. 
2001) a phenomenon that is more pronounced in mice 
on a high-fat diet (Joseph et  al. 2002; Lee et  al. 2009). 
To clarify the impact of UCP2 on pancreatic develop-
ment, Benjamin Broche et al. (Broche et al. 2018) gen-
erated UCP2 whole-body knockout mice at various 
stages (from embryonic day 9.5 to 19.5) to observe the 
effects of UCP2 deficiency on pancreatic growth and 
development. Their results indicated that UCP2 is pri-
marily expressed in pancreatic endocrine cells rather 
than stromal, epithelial, or other cell types. The absence 
of UCP2 resulted in significantly larger pancreatic vol-
umes in late-stage embryos compared to controls, and 
the expression levels of insulin, glucagon, and amylase 
were significantly increased in fetal and neonatal mice 
compared to the control group. This phenotype may 
be related to the proliferation of pancreatic progenitor 
cells and the activation of the ROS-AKT signaling path-
way (Broche et al. 2018).

Islet transplantation is an effective method for treating 
uncontrollable diabetes, such as recurrent hypoglycemia 
and insulin desensitization. However, the challenge of 
restoring pancreatic β-cell function after transplantation 
limits the clinical application of this technique (Rickels 
and Robertson 2019). Studies indicate that downregulat-
ing UCP2 may mitigate brain death post-islet transplan-
tation and enhance the recovery of pancreatic β-cell 
function. This may be related to the high expression of 
UCP2 mediating systemic inflammation and pancreatic 
β-cell apoptosis (Brondani et al. 2017). The exact biologi-
cal role of UCP2 in pancreatic islet cells remains contro-
versial due to the mutual influence between α-cells and 
β-cells, making it difficult to distinguish causal from con-
comitant effects (Diao et  al. 2008). The successful con-
struction of islet α- and β-cell-specific UCP2 knockout 
mouse models has, fortunately, provided a clearer under-
standing of the physiological functions of UCP2 in pan-
creatic islet cells (Allister et al. 2013; Hardy et al. 2011).

Similarly, in a β-cell-specific UCP2 overexpression 
mouse model, increased levels of UCP2 are associated 
with glucose intolerance, inadequate insulin secretion, 
and pancreatic β-cell failure in mice (Inoue et al. 2022). 
Unlike pancreatic β-cells, the function of UCP2 in pan-
creatic α-cells is likely more comprehensive. This may 
be due to the significantly higher expression of UCP2 in 
pancreatic islet α-cells compared to β-cells (Diao et  al. 
2008).In islet β-cells, UCP2 knockdown primarily regu-
lates blood glucose levels by increasing ROS production 

Fig. 3 The potential roles of UCP2 in pancreatic development
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and promoting insulin secretion, with minimal effects on 
mitochondrial membrane potential and ATP production 
(Lee et  al. 2009). In pancreatic islet α-cells, UCP2 not 
only functions similarly to β-cells in endocrine regulation 
at low glucose concentrations but also plays an electro-
active regulatory role. UCP2 regulates glucagon secre-
tion to maintain blood glucose levels by modulating ATP 
generation, plasma membrane potential, and ROS levels 
(Allister et al. 2013; Robson-Doucette et al. 2011).

While no studies have reported that UCP2 directly 
affects δ-cells, PP-cells, and ε-cells, UCP2 may be 
involved in regulating the hormones secreted by these 
pancreatic islet cells (somatostatin, pancreatic polypep-
tide, and ghrelin, respectively). The modulation of these 
hormone levels is primarily influenced by blood glucose 
levels, with the balance of insulin and glucagon acting as 
the key regulatory mechanism (Lewandowski et al. 2024; 
Hoffman et  al. 2023; Arafat et  al. 2013). The direct role 
of the UCP2 gene in regulating somatostatin, pancre-
atic polypeptide, and ghrelin remains unclear. However, 
it is hypothesized that UCP2 may influence the secre-
tion of these hormones by modulating the metabolic 
state and ROS levels within δ-cells, PP-cells, and ε-cells 
of the pancreatic islets (Coskun et al. 2013). Somatosta-
tin plays a crucial role in inhibiting the release of other 
hormones such as insulin and glucagon (Henquin et  al. 
2017). The primary function of pancreatic polypeptide 
is to regulate pancreatic secretion and intestinal activity, 
while ghrelin primarily promotes appetite. Additionally, 
UCP2 can influence the release and regulation of pan-
creatic hormone levels by modulating gut hormone gas-
tric inhibitory polypeptide (GIP) and pituitary adenylate 
cyclase-activating polypeptide (PACAP) (Zhou et  al. 
2005; Nakata et  al. 2010). These hormones interact to 
form a complex regulatory network that sustains various 
biological functions in the body (Brink 2003; Röder et al. 
2016; Müller et al. 2017). Collectively, UCP2 is a crucial 
target for pancreatic growth, development, and the main-
tenance of normal physiological function.

Acute pancreatitis
AP arises primarily from the abnormal activation of pan-
creatic enzymes within acinar cells, initiating an inflam-
matory response and amplifying oxidative stress in a 
cascade effect. This process induces cell death, aggravates 
tissue damage, and can progress to systemic inflamma-
tory response syndrome (SIRS), making it a life-threat-
ening acute abdominal condition (He et al. 2024). UCP2 
has been implicated in the pathophysiology of AP and its 
more severe form, SAP (Müller et al. 2014). This involve-
ment occurs through various mechanisms, primarily 
due to the function of UCP2 in regulating mitochon-
drial function and modulating oxidative stress (Geng 

et  al. 2024). In AP, mitochondrial dysfunction and oxi-
dative stress are key factors in cellular injury. By regulat-
ing mitochondrial membrane potential and ROS levels, 
UCP2 may help maintain mitochondrial integrity and 
function, thereby reducing the severity of mitochondrial 
injury during AP (Hu et al. 2023).

Significantly higher transcript levels of UCP2 were 
observed in two classic animal models of pancreatitis—
the continuous cerulein-injected mouse model and the 
taurocholic acid-injected rat model—compared to the 
control group (Segersvärd et al. 2005). The high expres-
sion of UCP2 suggested increased pancreatic follicular 
cell damage and a higher degree of pancreatitis. Inter-
estingly, a greater degree of pancreatitis due to UCP2 
knockout was observed only in aged UCP2-deficient 
mice (12  months old) and was more pronounced in 
the late stages of pancreatitis induction by sequential 
cerulein injections (24  h and 7  days after AP) (Segers-
värd et al. 2005). In contrast, the degree of AP inflamma-
tion induced by UCP2 knockout in young mice did not 
differ from that in wild-type mice. Moreover, pancreatic 
enzymes were not significantly activated in UCP2 knock-
out pancreatitis mice, suggesting that the onset of pan-
creatitis in aged UCP2 knockout mice is not significantly 
related to pancreatic acinar cell activation (Müller et  al. 
2014).

Based on this, primary pancreatic stellate cells (PSCs) 
were extracted from aged UCP2 knockout mice and wild-
type (WT) mice for further study. The results showed 
that the proliferation rate of PSCs from UCP2 knockout 
mice was lower than that of WT mice. However, there 
were no significant differences in aging rate, ROS levels, 
fat droplet loss, or fibrosis degree compared to the cor-
responding WT cells (Muller et al. 2016). These findings 
suggest that UCP2 knockout delays pancreatic repair by 
affecting PSCs proliferation. Persistent activation of PSCs 
is the main cause of CP (Wang et al. 2023), indicating that 
targeting UCP2 may have significant translational poten-
tial for its diagnosis and treatment (Yang et  al. 2022a). 
Currently, there are no studies on the role of UCP2 in CP. 
However, our team has conducted in-depth research in 
this area and discovered some interesting findings, which 
we will report in due course.

Additionally, studies have confirmed that UCP2 
knockout counteracts the inhibitory effects of marine 
on SAP-induced lung injury and ferroptosis, highlight-
ing the important role of UCP2 in SAP progression (Jin 
et al. 2023). Low SIRT1 expression decreases intracellu-
lar  NAD+ levels and inhibits the deacetylation of critical 
downstream molecules, promoting the development and 
progression of AP (Shen et  al. 2017). Targeting SIRT1 
has shown promise as an effective strategy to suppress 
AP progression. (Wang et al. 2021a; Bansod and Godugu 
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2021; Abdelzaher et  al. 2021) Additionally, obesity—an 
escalating global health challenge—is linked to a rising 
incidence of obesity-related AP. PGC-1α plays a pivotal 
role in obesity-related AP; in obese states, pancreatic 
PGC-1α levels are suppressed, which prevents its bind-
ing to the NF-κB subunit p65, thereby promoting oxida-
tive damage and amplifying IL-6-mediated inflammation, 
worsening AP severity (Pérez et  al. 2019). Importantly, 
SIRT1, PPARγ, PGC-1α, and UCP2 constitute an inter-
connected regulatory network that jointly governs cel-
lular energy metabolism, oxidative stress response, and 
inflammation (Oberkofler et  al. 2009) SIRT1 modulates 
the activities of PGC-1α and PPARγ, both of which sub-
sequently influence UCP2 expression levels, helping cells 
maintain stability and an anti-inflammatory state dur-
ing metabolic stress or disease conditions. This regula-
tory interplay among these factors plays a crucial role in 
the pathogenesis of AP. In conclusion, UCP2 may be an 
important therapeutic target for pancreatitis and a key 
focus for future research.

Pancreatic endocrine diseases
Endocrine diseases of the pancreas involve disorders 
of the hormone-producing cells in the pancreas. These 
primarily include Diabetes Mellitus, Insulinoma, Gas-
trinoma, Glucagonoma, Multiple Endocrine Neoplasia 
Type 1 (MEN1), Somatostatinoma, VIPoma, and Con-
genital Hyperinsulinism (CHI).

Diabetes Mellitus, the most common endocrine disease 
of the pancreas, is categorized into Type 1 and Type 2. 
Type 1 diabetes results from the autoimmune destruc-
tion of pancreatic beta-cells, leading to insufficient insu-
lin secretion. In contrast, Type 2 diabetes is characterized 
by insulin resistance and inadequate insulin secretion. 
Table  2 summarizes studies related to UCP2 in pancre-
atic endocrine diseases, particularly diabetes mellitus, 
highlighting its role in glucose metabolism, insulin secre-
tion, and oxidative stress. These studies collectively sug-
gest that UCP2 plays a significant role in the pathogenesis 
of pancreatic endocrine diseases (González-Barroso et al. 
2008; Gomathi et  al. 2019; Mizusawa et  al. 2022; Inoue 
et  al. 2022; Giri et  al. 2022; Yang et  al. 2022b; Liu et  al. 
2022, 2014; Grubelnik et  al. 2022; Buckels et  al. 2021; 
Li et al. 2021; Odei-Addo et al. 2021; Naderi et al. 2020; 
Tavoosi et  al. 2020; Sankaranarayanan and Kalaivani 
2020; Yoo et  al. 2020; Wade et  al. 2019; Plecitá-Hlavatá 
et  al. 2019; Wang et  al. 2019; Maiztegui et  al. 2018; 
Demirbilek and Hussain 2017; Matsunaga et  al. 2014; 
Hals et al. 2012; Han et al. 2004).

Although the exact role of high and low UCP2 expres-
sion levels in these diseases is controversial, most stud-
ies indicate that increased UCP2 expression is generally 
associated with impaired insulin secretion and reduced 

β-cell function, contributing to hyperglycemia. Glucose-
stimulated insulin secretion (GSIS) is essential for the 
endocrine regulation of the pancreas (Seshadri et  al. 
2017). Impaired GSIS is a significant contributor to insu-
lin resistance and β-cell failure in type 2 diabetes melli-
tus. Furthermore, the upregulation of UCP2 is believed 
to be a contributing factor to impaired GSIS (Affourtit 
et al. 2011; Brand et al. 2010). Additionally, UCP2 influ-
ences mitochondrial function and reactive oxygen spe-
cies production, further impacting cellular metabolism 
and insulin resistance. The main evidence supporting this 
view includes: (1) increased insulin secretion in UCP2 
knockout mice (Zhang et al. 2001; Patanè et al. 2002), (2) 
elevated UCP2 expression levels strongly associated with 
high blood glucose levels (Brown et al. 2002), and (3) the 
therapeutic effect observed upon UCP2 knockout in mice 
modeling Type 2 diabetes (Zhang et al. 2001). However, 
contrary results were observed in another in  vivo study 
(Pi et  al. 2009), where UCP2 overexpression showed 
conflicting findings, with inhibitory, promotional, or 
no effects on β-cell function (Hong et al. 2001; Produit-
Zengaffinen et al. 2007; Wang et al. 1999).

To verify this paradoxical phenomenon, Ingrid K. et al. 
(Hals et  al. 2012). elevated UCP2 expression levels in 
β-cells in vitro to assess effects on parameters related to 
mitochondrial metabolism, including cell viability, apop-
tosis, insulin secretion, glucose oxidation, glutamine 
metabolism, mitochondrial membrane potential, mito-
chondrial mass, mitochondrial uncoupling, and ROS 
levels. Their results indicated that effects on β-cell meta-
bolic levels were observed only when UCP2 levels were 
elevated more than four-fold. This study suggests that the 
role of UCP2 in blood glucose regulation and diabetes 
may not be concentration-dependent. Instead, a complex 
regulatory network centered on UCP2 likely exists, where 
high UCP2 levels may exert a protective effect in the 
pre-diabetic phase, but inhibit β-cell function under pro-
longed hyperglycemia. Since this study was conducted 
only in  vitro and did not evaluate the effect of UCP2 
expression levels on pancreatic islets, it may not fully elu-
cidate the exact role of UCP2, but it is worthwhile to pur-
sue further investigation.

Pancreatic cancer
Pancreatic cancer encompasses a group of malignant 
tumors primarily arising from the pancreatic ductal 
epithelium and follicular cells. It is characterized by an 
insidious onset, challenging early diagnosis, rapid pro-
gression, short survival time, and poor prognosis (He 
et al. 2020). Pancreatic ductal adenocarcinoma (PDAC), 
the most prevalent pathological type, accounts for over 
90% of cases (Wang et  al. 2021b). The metabolic pro-
file of PDAC is unique and complex, reflecting a high 
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Table 2 The studies related to UCP2 in pancreatic endocrine diseases

Years Type UCP2 level Main findings Refs.

2021 Congenital Hyperinsulinism Down-regulation UCP2, as one of the 16 key genes, 
is involved in regulating insulin 
secretion by pancreatic β-cells

Giri et al. (2022)

2022 Type 2 diabetes Up-regulation All-trans retinoic acid modulates 
the RXR/SREBP-1c/UCP2 signaling 
axis, thereby inhibiting insulin secre-
tion and promoting the progression 
of diabetes

Yang et al. (2022b)

2022 pancreatic islet after severe burns Up-regulation Nicotinamide mononucleotide could 
maintain mitochondrial function 
through the SIRT1-UCP2 axis

Liu et al. (2022)

2022 Prss53 knockdown murine MIN6 
β-cells

Up-regulation The inhibition of UCP2 by mitochon-
drial Prss53 plays an auxiliary role 
in maintaining beta cell health

Mizusawa et al. (2022)

2022 Type 2 diabetes Up-regulation UCP2 upregulation is associated 
with β-cell failure, and the UCP2/
AldB axis is a potential target 
for restoring β-cell function

Inoue et al. (2022)

2022 Pre- type 2diabetic hyperlipidemia Up-regulation Chronic high levels of free fatty acids 
upregulate UCP2, leading to β-cell 
dysfunction. This dysfunction 
is characterized by β-cells remaining 
highly active during hypoglycemia 
but becoming functionally quiescent 
during hyperglycemia

Grubelnik et al. (2022)

2021 Fetal growth restriction Up-regulation UCP2 may mediate IGF-I in a sex-
specific manner to alter pancreatic 
endocrine function in adult children 
with fetal growth restriction

Buckels et al. (2021)

2021 Chronic adrenergic-stimulated beta 
cells

Down-regulation Persistently low levels of UCP2 medi-
ate the long-term adaptation of beta 
cells to adrenergic signaling

Li et al. (2021)

2021 Type 2 diabetes Adipose tissue upregulated, 
liver tissue downregulated

High expression of UCP2 in adipose 
tissue may mediate the inhibitory 
effects of Leonurus extract and mar-
rubium on type 2 diabetes

Odei-Addo et al. (2021)

2021 STZ-induced type 1 diabetic rats Up-regulation The effects of Tropisetron in type 1 
diabetes are associated with modu-
lation of the UCP2/ZnT8 signaling 
pathway and amelioration of oxida-
tive stress

Naderi et al. (2020)

2020 Type 1 diabetes cell model Down-regulation Protective effects of cerium 
and yttrium oxide nitrogen oxides 
on CRI-D2 β cell lines exposed 
to  H2O2 are associated with the regu-
lation of UCP2

Tavoosi et al. (2020)

2020 HFD/STZ-induced type 2 diabetic rats Up-regulation Down-regulation of UCP2 expression 
by isoproterenol attenuates oxidative 
and ER stress responses in high-fat 
combined with STZ-induced diabetic 
rats

Sankaranarayanan and Kalaivani 
(2020)

2020 Type 2diabetes cell model Up-regulation Chebulic acid downregulates UCP2 
to prevent MG-induced develop-
ment of insulin sensitivity and oxida-
tive stress-induced β-cell dysfunction

Yoo et al. (2020)

2019 Diabetes Up-regulation RNF20 and RNF40 regulate β-cell 
gene expression and insulin secre-
tion associated with the regulation 
of UCP2

Wade et al. (2019)
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degree of metabolic flexibility to meet its growth and 
survival needs. The metabolic reprogramming features 
of PDAC include the Warburg effect, glutamine depend-
ence, alterations in cholesterol and fatty acid metabolism, 
and resistance to oxidative stress (Santis et al. 2024). The 
significant reliance of pancreatic cancer on mitochon-
drial metabolism can lead to oxidative phosphorylation 
to produce ATP, driving malignant phenotypes such as 
metastasis and treatment resistance. Therefore, target-
ing mitochondrial metabolism is a promising therapeu-
tic approach for pancreatic cancer. However, specifically 

targeting mitochondria without off-target effects in 
normal tissues remains a significant challenge (Yin et al. 
2022).

Although precise targeting of mitochondrial function 
is still a distant goal, oxidative phosphorylation regu-
lated by these organelles is indispensable in the metabolic 
reprogramming of PDAC. Specifically, the metabolic 
homeostasis of glutamine and aspartate is critical in this 
process (Caggiano and Taniguchi 2024). However, the 
key molecules involved in these energy metabolic path-
ways in PDAC tumorigenesis and progression cannot 

Table 2 (continued)

Years Type UCP2 level Main findings Refs.

2019 Type 2diabetes cell model / UCP2 promotes an antioxidant 
mechanism based on  SkQ1+ fatty 
acid anion pairing

Plecitá-Hlavatá et al. (2019)

2019 Type 2diabetes Polymorphism UCP2 polymorphism affects insulin 
secretion leading to type 2 diabetes 
mellitus

Gomathi et al. (2019)

2019 Type 2diabetes cell model Up-regulation RP3-SeNPs down-regulate UCP2 
to exert anti-oxidative stress effects

Wang et al. (2019)

2018 Type 2diabetes Up-regulation Upregulation of UCP2 affects pancre-
atic β-cell function

Maiztegui et al. (2018)

2017 Hyperinsulinaemic hypoglycaemia / UCP2 mutations affect the regula-
tion of insulin secretion in pancreatic 
β-cells as a potential molecular 
mechanism leading to Hyperinsuli-
naemic hypoglycemia

Demirbilek and Hussain (2017)

2014 Type 2diabetes Down-regulation Up-regulation of UCP2 expres-
sion after berberine treatment 
is an important mechanism of its 
antidiabetic action

Liu et al. (2014)

2014 Chronic high glucose Down-regulation Glucotoxicity leading to beta-cell 
hypoxia is associated with down-
regulation of UCP2

Matsunaga et al. (2014)

2013 Alpha cell-specific UCP2 knockout 
mice

Down-regulation UCP2 is an essential gene for glucose 
sensing and maintenance of normal 
function in normal alpha cells

Allister et al. (2013)

2012 Type 2diabetes Up-regulation Effects on mitochondrial metabolism 
were possible only after a fourfold 
increase in UCP2 expression levels

Hals et al. (2012)

2011 βcell-specific UCP2 knockout mice Up-regulation UCP2 regulates ROS levels more 
significantly in β-cells

Robson-Doucette et al. (2011)

2009 Type 2diabetes Down-regulation UCP2 inhibition leads to enhanced 
insulin secretion and impaired α-cell 
function

Lee et al. (2009)

2008 Congenital Hyperinsulinism Down-regulation UCP2 knockout affects mitochon-
drial function and insulin secretion 
leading to hyperinsulinemic hypogly-
cemia

González-Barroso et al. (2008)

2007 Autoimmune diabetes Down-regulation Ucp2-KO mouse model of autoim-
mune diabetes has more severe 
symptoms

Emre et al. (2007)

2004 Type 2diabetes Up-regulation Inhibition of glucose sensitiv-
ity by taurine in UCP2 overex-
pressing β-cells was associated 
with an increased ATP/ADP ratio

Han et al. (2004)
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traverse the mitochondria alone; they require carriers to 
transport them to the inner mitochondrial membrane. 
Thus, UCP2, a member of the SLC25 family acting as a 
transmembrane anion carrier, may play a role in PDAC 
progression (Li et  al. 2013). Numerous studies have 
detailed how UCP2 regulates glutamine and aspartate 
metabolism, particularly its role in mitochondrial energy 
regulation via the tricarboxylic acid (TCA) cycle and 
ROS management (Caggiano and Taniguchi 2024; Lauria 
et al. 2023). KRAS mutations, the most prevalent muta-
tions in PDAC, impact not only cancer cells but also the 
tumor microenvironment. These mutations promote 
the tumor mesenchymal response and angiogenesis by 
secreting various cytokines and growth factors, thus cre-
ating a more favorable growth environment for tumor 
cells (Buscail et  al. 2020). Notably, recent research indi-
cates that UCP2-mediated aspartate transport is a crucial 
step in KRAS-regulated glutamine metabolism (Raho 
et al. 2020).

It is widely recognized that UCP2 expression is upregu-
lated in PDAC (Caggiano and Taniguchi 2024). Table  3 
summarizes studies related to UCP2 in Pancreatic cancer. 
UCP2 is downregulated before the tumor is fully formed 
to promote ROS accumulation and genomic instabil-
ity (Lauria et al. 2023). In the later stages of tumorigen-
esis, UCP2 expression levels are upregulated to meet the 
metabolic needs of the tumor tissue, such as maintaining 
high ATP production, providing ROS protection, pro-
moting therapeutic resistance, and facilitating immune 
evasion (Donadelli et al. 2015). Collectively, these results 
demonstrate the specificity and significance of UCP2 in 
PDAC progression, suggesting that UCP2 could serve as 
a potential therapeutic target for PDAC.

UCP2‑regulated macrophage phenotypic transformation 
in the pathogenesis of pancreatic diseases
Macrophages, a type of immune cell within the pancre-
atic microenvironment, play a pivotal role in the pro-
gression and pathogenesis of AP, CP, and pancreatic 
cancer (Wu et  al. 2020). Their phenotypic transforma-
tion primarily involves macrophage polarization and 
macrophage-to-myofibroblast transition (MMT). Tra-
ditionally, M1 macrophage polarization is considered 
a key driver in the progression of AP and SAP (Peng 
et  al. 2023), while M2 macrophage polarization, which 
exerts anti-inflammatory and pro-fibrotic effects, con-
tributes to fibrosis in CP (Xue et  al. 2015). In pancre-
atic cancer, M2 macrophages primarily mediate tissue 
repair and immune suppression, thereby promoting a 
microenvironment conducive to tumor progression (He 
et  al. 2022). UCP2 is notably involved in the regulation 
of macrophage function, particularly in macrophage 
polarization. Studies indicate that UCP2 modulates the 

polarization of human primary macrophages (Lang et al. 
2023). In AP, especially in obesity-associated AP, FABP4 
upregulates UCP2, which in turn reduces oxidative stress 
to modulate macrophage signaling and inflammatory 
responses (Dierendonck et  al. 2020; Steen et  al. 2017). 
UCP2-regulated mitochondrial respiration acts as a cru-
cial regulatory mechanism for IL-33-induced M2 mac-
rophage polarization, facilitating the progression of CP 
(Faas et al. 2021). Additionally, macrophages are essential 
mediators in tissue repair following AP and contribute 
to the progression of pancreatic cancer (Wu et al. 2020). 
Furthermore, UCP2 regulation of macrophage-mediated 
NO/ROS damage is implicated in the progression of type 
1 diabetes (Emre et al. 2007).

More recently, it has been discovered that certain mac-
rophages can directly differentiate into myofibroblasts 
through a process known as MMT (Vierhout et al. 2021). 
While no studies to date have reported MMT in pancrea-
titis or pancreatic cancer, MMT is known to contribute 
to the progression of fibrotic diseases, such as kidney 
fibrosis, and cancers, including lung cancer (Wang et al. 
2017; Tang et  al. 2024). Indirect evidence suggests that 
STAT6-PPARα interactions regulate MMT, mediating 
kidney fibrosis progression (Yuan et  al. 2023). This evi-
dence supports the reasonable hypothesis that MMT 
may also play a role in pancreatic diseases, particularly 
in CP and pancreatic cancer, with UCP2 likely influenc-
ing this process to some extent. Overall, UCP2-regulated 
macrophage phenotypic transformation appears to sig-
nificantly impact the progression of pancreatic diseases, 
lending further support to the hypothesis that UCP2 is a 
central regulatory factor in these conditions.

Signaling pathways related to UCP2 regulation
Given the significant role of the UCP2 gene in regulating 
energy homeostasis, ROS, insulin secretion, and overall 
metabolism, as well as its critical regulatory role in pan-
creatic diseases.ROS generated by metabolic stress in the 
mitochondria of β-cells activates several ROS-related 
signaling pathways, such as the AMP-activated protein 
kinase (AMPK), Wnt, and nuclear factor kappa B (NF-
κB) (Beall et  al. 2013; Wang et  al. 2014; Yu et  al. 2020). 
These pathways, on the one hand, activate UCP2, causing 
proton leakage across the inner mitochondrial membrane 
and reducing ATP synthesis. On the other hand, they dis-
rupt membrane integrity by oxidizing polyunsaturated 
fatty acids in the mitochondrial membrane, leading to the 
release of cytochrome c into the cytoplasm and inducing 
cellular apoptosis and autophagy (Ma et al. 2012; Dando 
et  al. 2013). The regulatory relationship between UCP2 
and ROS-related pathways not only influences pancre-
atic endocrine diseases by affecting the insulin secretory 
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function of β-cells but also contributes to the progression 
of AP and PDAC.

The AMPK signaling pathway significantly affects 
UCP2 expression. During cellular energy stress, AMPK 
is activated to restore energy homeostasis and upregulate 
UCP2 expression by enhancing catabolism and inhibit-
ing anabolism (Luo et al. 2022). Activated AMPK directly 
affects transcription factors like PPAR and SIRT1 to pro-
mote UCP2 transcription and enhances mitochondrial 
biogenesis by regulating coactivators like PGC-1α, fur-
ther upregulating UCP2 (Xu et  al. 2021b). AMPK acti-
vation also promotes fatty acid oxidation, regulates ROS 
levels, reduces oxidative stress and mitochondrial mem-
brane potential, prevents oxidative damage, and main-
tains cellular function (Tripathi et  al. 2023; Zhao et  al. 
2022). Additionally, AMPK influences glucose metabo-
lism and insulin sensitivity (Entezari et al. 2022).

No studies have reported NF-κB binding to the κB site 
in the UCP2 gene promoter region. Like AMPK, NF-κB 
can regulate UCP2 expression in concert with coactiva-
tors (Wei et  al. 2021). Inflammatory cytokines activate 
NF-κB, increasing UCP2 expression as part of the cellu-
lar response to inflammation and oxidative stress. UCP2 
helps attenuate mitochondrial damage and maintain 
cellular homeostasis (Pan et  al. 2021). NF-κB activa-
tion is often accompanied by elevated ROS levels. UCP2 
reduces oxidative stress by lowering mitochondrial mem-
brane potential and ROS production, providing feedback 
to control inflammation and oxidative damage (Adelakun 
et  al. 2022). By regulating UCP2, NF-κB affects cellular 
energy metabolism. UCP2 uncouples oxidative phos-
phorylation, decreasing ATP production and increasing 
thermogenesis, impacting energy homeostasis during 
inflammation and stress responses (Zhang et al. 2020).

GSIS and the renin-angiotensin system (RAS) play cru-
cial roles in pancreatic endocrinology. Palmitate-induced 
oxidative stress in β-cell mitochondria serves as a pri-
mary cellular model for GSIS impairment (Shaheen and 
Aljebali 2016), and several studies have shown that while 
UCP2 is not involved in palmitate-induced ROS gen-
eration, its upregulation protects against this damage (Li 
et al. 2017; Barlow et al. 2015; Hirschberg and Affourtit 
2015). Blockade of RAS has been found to inhibit inflam-
mation, oxidative stress in organelles, and apoptosis 
in pancreatic islet cells in a long-term high-fat diet rat 
model (Yuan et  al. 2013). Accumulation of free fatty 
acids (FAs) induces oxidative stress, impairing pancreatic 
β-cell function (Ježek et al. 2015), with more pronounced 
damage from polyunsaturated FAs and their lipid per-
oxidation products compared to saturated FAs and their 
metabolites, possibly due to more extensive regula-
tory pathways mediating proton leakage, ATP synthesis, 
and ROS generation (Beck et  al. 2007; Hu et  al. 2017). 

Sustained ROS stimulation has been shown to directly 
damage β-cells by upregulating the JNK/P38 signaling 
pathway and activating UCP2 (Bo et  al. 2016), with the 
glutathionylated state of UCP2 contributing to the regu-
lation of GSIS levels in pancreatic islet cells (Mailloux 
et al. 2012). Collectively, UCP2 plays a crucial role in reg-
ulating energy homeostasis, ROS, insulin secretion, and 
overall metabolism, influencing the progression of pan-
creatic diseases and β-cell function via pathways includ-
ing AMPK, Wnt, and NF-κB.

Prospects and challenges
Consumption of foods rich in long-chain fatty acids, such 
as black soybeans and raw donkey’s milk, has been shown 
to modestly increase UCP2 expression, potentially miti-
gating oxidative stress-related diseases. (Lionetti et  al. 
2012; Kanamoto et  al. 2011) This offers a potential pre-
ventive strategy against the progression from AP, PDAC, 
and CP to pancreatic cancer. Earlier, we discussed the 
regulation of UCP2 via the AMPK signaling pathway 
(Beall et  al. 2013). Metformin, a classic drug for type 2 
diabetes, exerts hypoglycemic effects by activating the 
AMPK-mediated catabolic pathway, influencing blood 
glucose levels. Recently, its therapeutic potential in pan-
creatic cancer and other inflammatory conditions has 
gained considerable attention (Xu et  al. 2022; Eibl and 
Rozengurt 2021; Gong et al. 2014). Therefore, metformin 
and other AMPK modulators show promise in pancreatic 
diseases and warrant further investigation as potential 
novel therapies. Additionally, traditional Chinese medi-
cine, with its millennia-long foundation, also exhibits 
regulatory effects on UCP2 (Sun et  al. 2024; Yang et  al. 
2011). Combining UCP2 with chemotherapeutic agents 
as an adjuvant strategy shows potential application value, 
enhancing effectiveness in inhibiting pancreatic cancer 
(Dalla et al. 2012; Fiorini et al. 2015). In conclusion, while 
the theoretical foundation supports the potential applica-
tion of UCP2 in pancreatic diseases, clinical validation is 
necessary.

Inevitably, there are challenges for UCP2 as a therapeu-
tic target for pancreatic diseases. Firstly, tissue specific-
ity and selectivity pose significant challenges, as UCP2 
is widely distributed across various tissues, making it 
difficult to design inhibitors or activators that are highly 
specific to pancreatic tissue. Secondly, systemic modu-
lation of UCP2 may cause side effects, given its diverse 
roles in different tissues. For instance, excessive inhibi-
tion of UCP2 could lead to abnormal energy metabo-
lism and dysfunction in other tissues. Additionally, the 
precise mechanisms of UCP2’s action in pancreatic dis-
eases remain inadequately understood. UCP2’s multiple 
roles in energy metabolism, oxidative stress, apoptosis, 
and immune responses complicate targeting strategies, 
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preventing the focus on a single specific role. Finally, 
extensive studies and validations are required to deter-
mine the efficacy and safety of UCP2-targeted therapies, 
transitioning from basic research to clinical applications, 
and design rational clinical trial protocols.

Conclusions
UCP2 is broadly expressed in numerous tissues, includ-
ing the pancreas, and demonstrates the highest homol-
ogy between humans and mice. UCP2 is involved in 
various physiological functions, such as cellular energy 
metabolism, oxidative stress management, insulin secre-
tion, lipid regulation, metabolic reprogramming, and 
immune modulation. UCP2 plays a role in regulating 
both endocrine and exocrine pancreatic functions. Epide-
miological data on pancreatic diseases, such as acute AP, 
CP, pancreatic cancer, and diabetes, indicate concerning 
trends, with evidence suggesting frequent interconver-
sion among these conditions. However, the understand-
ing of these diseases’ pathogenesis and interrelationships 
remains limited, particularly in identifying and validating 
key molecules that may connect or transform these con-
ditions. UCP2 is expected to serve as such a key target. 
This review presents a comprehensive analysis of cur-
rent research on UCP2’s role in pancreatic diseases. We 
discuss recent findings on UCP2’s complex regulatory 
mechanisms, propose UCP2 as a central regulatory fac-
tor in pancreatic disease progression, and hypothesize 
that UCP2 dysfunction could significantly contribute 
to disease pathogenesis and interconversion. Clarifying 
UCP2’s role and mechanisms in pancreatic diseases could 
provide new directions for therapeutic and diagnostic 
innovation.
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