Abstract
Male and female mice were compared at two ages, 15 and 50 days, with respect to the activities of three galactosidases in kidney. No sex difference in enzyme activity was seen in the young mice, but appreciable differences were found in the older animals. The male kidneys had about one-third higher specific activities of cerebroside β-galactosidase and nitrophenyl β-galactosidase, but there was no difference with nitrophenyl α-galactosidase. A listing and discussion of other galactose-metabolizing enzymes influenced by sex differences is presented.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bowen D. M., Radin N. S. Cerebroside galactosidase: a method for determination and a comparison with other lysosomal enzymes in developing rat brain. J Neurochem. 1969 Apr;16(4):501–511. doi: 10.1111/j.1471-4159.1969.tb06849.x. [DOI] [PubMed] [Google Scholar]
- Braun P. E., Morell P., Radin N. S. Synthesis of C18- and C20-dihydrosphingosines, ketodihydrosphingosines, and ceramides by microsomal preparations from mouse brain. J Biol Chem. 1970 Jan 25;245(2):335–341. [PubMed] [Google Scholar]
- Brenkert A., Radin N. S. Synthesis of galactosyl ceramide and glucosyl ceramide by rat brain: assay procedures and changes with age. Brain Res. 1972 Jan 14;36(1):183–193. doi: 10.1016/0006-8993(72)90774-3. [DOI] [PubMed] [Google Scholar]
- Coles L., Gray G. M. The biosynthesis of digalactosylceramide in the kidney of the C57-BL mouse. Biochem Biophys Res Commun. 1970 Feb 6;38(3):520–526. doi: 10.1016/0006-291x(70)90745-x. [DOI] [PubMed] [Google Scholar]
- Gray G. M. The effect of testosterone on the biosynthesis of the neutral glycosphingolipids in the C57-BL mouse kidney. Biochim Biophys Acta. 1971 Sep 1;239(3):494–500. doi: 10.1016/0005-2760(71)90041-5. [DOI] [PubMed] [Google Scholar]
- Hajra A. K., Bowen D. M., Kishimoto Y., Radin N. S. Cerebroside galactosidase of brain. J Lipid Res. 1966 May;7(3):379–386. [PubMed] [Google Scholar]
- Hay J. B., Gray G. M. Glycosphingolipid biosynthesis in kidneys of normal C3H-He mice and of those with BP8 ascites tumours. Biochem Biophys Res Commun. 1970 Feb 6;38(3):527–532. doi: 10.1016/0006-291x(70)90746-1. [DOI] [PubMed] [Google Scholar]
- Herzfeld A., Greengard O. Endocrine modification of the developmental formation of ornithine aminotransferase in rat tissues. J Biol Chem. 1969 Sep 25;244(18):4894–4898. [PubMed] [Google Scholar]
- Kampine J. P., Kanfer J. N., Gal A. E., Bradley R. M., Brady R. O. Response of sphingolipid hydrolases in spleen and liver to increased erythrocytorhexis. Biochim Biophys Acta. 1967 Feb 14;137(1):135–139. doi: 10.1016/0005-2760(67)90016-1. [DOI] [PubMed] [Google Scholar]
- Mapes C. A., Sweeley C. C. Preparation and properties of an affinity column adsorbent for differentiation of multiple forms of -galactosidase activity. J Biol Chem. 1973 Apr 10;248(7):2461–2470. [PubMed] [Google Scholar]
- PESCH L. A., SEGAL S., TOPPER Y. J. Progesterone effects on galactose metabolism in prepubertal patients with congenital galactosemia and in rats maintained on high galactose diets. J Clin Invest. 1960 Jan;39:178–184. doi: 10.1172/JCI104017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PESCH L. A., TOPPER Y. J. Effects of steroids upon galactose oxidation in vitro. Biochim Biophys Acta. 1958 Oct;30(1):206–207. doi: 10.1016/0006-3002(58)90271-3. [DOI] [PubMed] [Google Scholar]
- Parkhurst G. W., Mayes J. S. Galactose toxicity and activities of the galactose-metabolizing enzymes during development of the chick. Arch Biochem Biophys. 1972 Jun;150(2):742–745. doi: 10.1016/0003-9861(72)90093-8. [DOI] [PubMed] [Google Scholar]
- Philippart M., Sarlieve L., Meurant C., Mechler L. Human urinary sulfatides in patients with sulfatidosis (metachromatic leukodystrophy). J Lipid Res. 1971 Jul;12(4):434–441. [PubMed] [Google Scholar]
- Radin N. S., Arora R. C. A simplified assay method for galactosyl ceramide beta-galactosidase. J Lipid Res. 1971 Mar;12(2):256–257. [PubMed] [Google Scholar]