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Abstract
Background  Accurate fasting plasma glucose (FPG) trend prediction is important for management and treatment of 
patients with type 2 diabetes mellitus (T2DM), a globally prevalent chronic disease. (Generalised) linear mixed-effects 
(LME) models and machine learning (ML) are commonly used to analyse longitudinal data; however, the former is 
insufficient for dealing with complex, nonlinear data, whereas with the latter, random effects are ignored. The aim of 
this study was to develop LME, back propagation neural network (BPNN), and mixed-effects NN models that combine 
the 2 to predict FPG levels.

Methods  Monitoring data from 779 patients with T2DM from a multicentre, prospective study from the shared 
platform Figshare repository were divided 80/20 into training/test sets. The first 10 important features were modelled 
via random forest (RF) screening. First, an LME model was built to model interindividual differences, analyse the factors 
affecting FPG levels, compare the AIC and BIC values to screen the optimal model, and predict FPG levels. Second, 
multiple BPNN models were constructed via different variable sets to screen the optimal BPNN. Finally, an LME/
BPNN combined model, named LMENN, was constructed via stacking integration. A 10-fold cross-validation cycle 
was performed using the training set to build the model and evaluate its performance, and then the final model was 
evaluated on the test set.

Results  The top 10 variables screened by RF were HOMA-β, HbA1c, HOMA–IR, urinary sugar, insulin, BMI, waist 
circumference, weight, age, and group. The best-fitting random-intercept mixed-effects (lm22) model showed that 
each patient’s baseline glucose levels influenced subsequent glucose measurements, but the trend over time was 
consistent. The LMENN model combines the strengths of LME and BPNN and accounts for random effects. The RMSE 
of the LMENN model ranges were 0.447–0.471 (training set), 0.525–0.552 (validation set), and 0.511–0.565 (test set). It 
improves the prediction performance of the single LME and BPNN models and shows some advantages in predicting 
FPG levels.
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Background
Diabetes mellitus (DM) is a metabolic disorder character-
ised by hyperglycaemia due to insufficient insulin secre-
tion (type 2, T2) or inability to secrete insulin (type 1, T1) 
and/or resistance of peripheral tissues to the action of 
insulin [1]. DM can cause complications and even death 
if not properly controlled. The increase in the prevalence 
of DM is caused mainly by the increase in T2DM, which 
accounts for approximately 90% of the total population of 
individuals with DM [2].

Currently, the treatment of DM is centred on self-man-
agement of the disease, particularly keeping blood glu-
cose levels within recommended ranges, which involves 
active monitoring of blood glucose levels and appropriate 
physical activity, diet and insulin use. During this period, 
the prediction of blood glucose levels is key. Technolo-
gies such as the prediction of blood glucose and the 
modelling of blood glucose dynamics are at the heart of 
technological developments in DM management. How to 
predict patients’ blood glucose levels in a timely manner, 
control fluctuations in blood glucose and prevent com-
plications through a convenient, practical mechanism 
with good predictive performance is a very meaningful 
task. The blood glucose prediction model can be used to 
detect impending symptoms of hyperglycaemia or hypo-
glycaemia so that patients can take measures regarding 
diet, medication or exercise therapy in advance to stabi-
lise blood glucose levels before adverse events occur and 
ultimately control fluctuations in blood glucose within 
the normal range.

Currently, the adoption and implementation of 
advanced analytics in healthcare are lagging relatively 
behind, in part owing to the complexity, heterogene-
ity, and longitudinal nature of most health-related data, 
as well as the often insufficient quality and availability of 
clinical data [3]. ML, which represents the intersection of 
computer science and statistics [4, 5], enables comput-
ers to learn from data through the training of algorithms 
and models and to make predictions or decisions on the 
basis of the learned experience [6]. With the increasing 
popularity of machine learning (ML) and data mining in 
recent years, their application in DM research, especially 
in glycaemic prediction studies, continues to grow.

(Generalised) linear mixed-effects (LME) models is a 
traditional and most commonly used method by practi-
tioners for analysing longitudinal data. In a broad sense, a 
(generalised) linear mixed-effects model is a model in the 
field of machine learning that falls under the umbrella of 

statistical modelling and is equally applicable to machine 
learning application scenarios. Khatirnamani et al. [5] 
studied the longitudinal trend of fasting plasma glucose 
(FPG) and related factors in patients with T2DM via 
linear mixed models and reported a decreasing trend 
in FPG during follow-up. Silvestre et al. [7] used a mul-
tivariable LME regression model (multivariable LME 
regression models and generalised additive mixed effect 
logistic models) to investigate the role of HbA1c and 
glucose-related variables in the prediction of weight loss 
and overweight and hyperglycaemic patients in predict-
ing weight loss and glycaemic changes. Bozzetto et al. [8]
used mixed-effects linear regression modelling to study 
T1DM intraindividual (between meals) and interindi-
vidual (between subjects) variability in the postprandial 
glucose response (PGR) in patients. Ritz et al. [9] used 
linear mixed-effects (LME) models to investigate how 2 
diets affect body weight according to pretreatment FPG 
and fasting insulin (FI) levels to gain insight into the het-
erogeneity of treatment effects, and the resulting mod-
els achieved individually tailored predictions. Through 
simulation and empirical studies, Hu et al. [10] explored 
statistical mixed-effects models for longitudinal data 
analysis, piecewise LME models, and six ML methods 
(decision trees, bagging, random forest (RF), boosting, 
support-vector machine and neural network (NN), and 
they reported that piecewise LME models can adequately 
fit the original data and are even more effective than 
ML methods. The shortcoming is that they are limited 
to building traditional models (generalised LME model 
(GLMM) or LME model) to analyse longitudinal data 
[10]. Although Hu et al. [10] built both mixed-effects and 
ML models and compared their fitting ability, they did 
not further explore and compare the performance differ-
ence with that of the mixed-effects ML model.

LME is an approach based on statistical theory and cer-
tain assumptions, as opposed to some machine learning 
algorithms that do not rely on strict statistical assump-
tions, but instead rely on training algorithms and mod-
els to learn from data and make predictions or decisions 
based on the lessons learnt [6] (e.g., RF and support vec-
tor machine (SVM), etc.). For example, Manzini et al. 
[11] used a kernel-autoencoder algorithm for longitudi-
nal clustering of T2DM trajectories and obtained seven 
longitudinal phenotypic clusters of T2DM patients with 
different clinical evolutions. Faruqui et al. [12] devel-
oped a deep learning model based on a recurrent NN 
with long- and short-term memory for predicting the 

Conclusions  The LMENN model built by integrating LME and BPNN has several potential applications in analysing 
longitudinal FPG monitoring data. This study provides new ideas and methods for further research in the field of 
blood glucose prediction.
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next day’s blood glucose level in individual patients. 
Nagaraj et al. [13] constructed generalised linear models 
on the basis of elastic network regularisation, SVM and 
RF to assess short- and long-term glycated haemoglo-
bin (HbA1c) response after insulin treatment initiation 
in patients with T2DM. Alhassan et al. [14] used multi-
variate logistic regression, RF, support vector machines, 
logistic regression, and multilayer perceptron models 
based on longitudinal and nonlongitudinal data to inves-
tigate their performance in predicting the risk of current 
HbA1c elevation. However, the application of such ML 
methods to longitudinal data is still challenging com-
pared to the application of such ML methods to cross-
sectional studies [15]. The downside, however, is that 
the underlying theory behind most such ML algorithms 
assumes that the data are independent and identically 
distributed, that longitudinal data trajectories can be very 
complex and nonlinear (e.g., with large interindividual 
variance), and that repeated measures of individuals tend 
to correlate with each other; not all ML algorithms are 
suitable for modelling these correlations, which breaks 
the so-called “independent and identically distributed” 
(“i.i.d.“) assumption, which also renders them ineffective 
in longitudinal supervised learning [3, 15].

Recently, the integration of mixed-effects models into 
nonlinear ML models has resulted in a novel ML frame-
work for analysing complex longitudinal data: the mixed-
effects ML (MEML) framework [3, 16, 17]. For example, 
Ngufor et al. [3] built MEML (MErf, MEgbm, MEmob 
and MEctree), GLMM, logistic regression, GBM and RF 
models for predicting longitudinal changes in haemo-
globin A1c (HbA1c), resulting in MEML being compa-
rable to traditional GLMM but performing much better 
than standard ML models that do not consider random 
effects. Mosquera-Lopez et al. [16] modelled the risk 
of hypoglycaemia during and up to 24  h after physical 
activity to help prevent postexercise hypoglycaemia in 
patients with T1D via mixed-effects logistic regression 
(MELR) and mixed-effects RF (MERF) models, and the 
results revealed that random effects play a crucial role 
in the accuracy of the two models. The MERF model 
had a higher predictive accuracy than the MELR model. 
McCoy et al. [18] constructed mixed-effects ML models 
to identify different longitudinal trajectories of HbA1c 
levels among U.S. adults with newly diagnosed DM 
(T1DM and T2DM) over a 3-year follow-up period and 
used polynomial regression to describe the factors asso-
ciated with each trajectory.

Although the mixed-effects ML framework provides a 
novel research basis for longitudinal glucose prediction 
studies, most of the current longitudinal glucose predic-
tion studies have focused on HbA1c trends in patients 
with T1DM [8, 16, 19–21]. Previous studies also did not 
consider NN models incorporating random effects to 

establish a linear mixed-effects NN model to predict the 
longitudinal trend of FPG levels in patients with T2DM. 
Owing to the differences between T1DM and T2DM in 
terms of pathogenesis, disease progression, and risk of 
complications, T2DM may pose a more serious long-
term hazard to patients than T1DM does [22]. Therefore, 
our main contribution in this study is to construct a lin-
ear mixed-effects NN model by using the BPNN model 
to account for random effects. In addition, inspired by 
the MEML framework proposed by Ngufor et al. [3], we 
conducted a further study to model the FPG of type 2 
diabetes patients using linear mixed-effects, BPNN, and 
mixed-effects neural network model (linear mixed effects 
and BPNN models for integration), and also compared 
and analysed the predictive performances of the three 
models separately, aiming to more accurately predict and 
understand the changing patterns of FPG in type 2 diabe-
tes patients.

Materials and methods
Figure   1 shows the overall systematic research frame-
work of this study.

Data sources
Data were obtained from the DM dataset in the studies 
by Sakura et al. [23] and Tomonaga et al. [24, 25], which 
were downloaded from the Figshare repository, a free 
dataset-sharing platform (download URL: ​h​t​t​​p​s​:​/​​/​f​i​​g​s​​h​a​r​​
e​.​c​o​​m​/​a​​r​t​​i​c​l​e​s​/​d​a​t​a​s​e​t​/​J​A​M​P​_​D​A​T​A​0​7​2​2​f​i​g​s​h​a​e​r​_​x​l​s​x​/​4​
9​2​4​0​3​7​/​1​​​​​)​. This dataset [25] was derived from an open-
label, centre-registered, multicentre, prospective obser-
vational study conducted by Tokyo Women’s Medical 
University Hospital and 69 collaborating institutions in 
Japan with a study design [23], as shown in Fig. 2.

Data preprocessing
Data on C-peptide, CPI, 1,5-anhydroglucitol, 
1,4-anhydro(-D)-glucitol, glycoalbumin, proinsulin, pro-
insulin/insulin, and glycoinsulin levels and the urinary 
albumin/creatinine ratio were only included in 3 follow-
up records for each patient; thus, the urinary albumin/
creatinine ratio variable was not included in this study, 
and data on 30 clinical detection variables that were 
provided in 4 follow-up records for each patient were 
included in the analysis. In addition, any history of com-
plications, including hypertension, dyslipidaemia, hyper-
uricaemia, retinopathy, arteriosclerosis obliterans, atrial 
fibrillation, kidney disease, liver disease, myocardial 
infarction, cerebral infarction, angina pectoris, and heart 
failure, was considered to indicate a history of compli-
cations, whereas zero complications was considered to 
indicate a history of no complications. The “history of 
complications” variable in the raw data was not included 
in our analyses because there was already a history of 

https://figshare.com/articles/dataset/JAMP_DATA0722figshaer_xlsx/4924037/1
https://figshare.com/articles/dataset/JAMP_DATA0722figshaer_xlsx/4924037/1
https://figshare.com/articles/dataset/JAMP_DATA0722figshaer_xlsx/4924037/1
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whether the patient had suffered from a specific type of 
complication in the past (e.g., dyslipidaemia). The final 
data used in this study were a dataset of 141 variable 
columns for 779 patients, including 21 unique variables 
(including patient number) and 30 clinical test variables 
(with 4 follow-up records).

The missing data rate of a few clinical test index vari-
ables was greater than 50%, the overall missing data rate 
of 779 instances was 17.94%, and we used the “mice()” 
function for multiple imputation of missing data. In the 

process of constructing the prediction model, feature 
extraction is a crucial step. We used RF to filter out the 
10 important variables that have a large impact on the 
dependent variable FPG for modelling. Sex was recoded 
from ‘1 = male, 2 = female’ to ‘0 = female, 1 = male’.

Statistical analysis and methodology
All analyses were performed with R 4.2.2 software. Quali-
tative information was described via the number of cases 
and the constitutive ratio (%), and comparisons between 

Fig. 1  System framework
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the training and test set groups were made using the chi-
square test or Fisher’s exact test. Measurement informa-
tion was expressed as the median (interquartile spacing), 
and comparisons between the two groups were made 
using non-parametric tests. P < 0.05 was considered to 
indicate statistical significance. We attempted to analyse 
the repeated-measures diabetic blood glucose monitor-
ing index results via the LME model, which is the conven-
tional method used by most practitioners, the NN model, 
which has the advantages of not being restricted to the 
type of a priori distribution of the data and can be used to 
address linear and complex nonlinear relationships, and 
the linear mixed-effects NN model (random effects are 
added to the NN model), which is the integration of the 
two stacks. The root mean square error (RMSE), mean 
absolute error (MAE), mean absolute percentage error 
(MAPE) and R2 metrics were used to evaluate the model 
prediction results. Initially, the data were divided into an 
80% training set and a 20% test set. Then, the 80% train-
ing data set were further divided into a 90% training set 
and 10% validation set via 10-fold cross-validation. The 
model was built and evaluated for its performance via the 
cycle of 10-fold cross-validation. The test set was used for 
the final model evaluation. In the end, we obtained the 
mean of the 10 results of the model tested on the train-
ing and validation sets and the final evaluation results 
tested on the test set. A random slope model, a random 
intercept model, a random slope plus random intercept 
model, etc., were constructed, and the Akaike informa-
tion criterion (AIC) and Bayesian information criterion 

(BIC) were compared to arrive at a mixed-effects model 
that best fit the present data. Second, multiple BPNN 
models were constructed based on different combina-
tions of independent variables to compare their AIC and 
BIC values. The goal is for the AIC and BIC to be as small 
as possible. Finally, the best LME and BPNN were used to 
build a linear mixed-effects NN model on the basis of the 
stacking integration principle, and the prediction perfor-
mances of the three types of models constructed were 
compared.

Model construction
Mixed-effects model construction
The longitudinal FPG data showing the individual distri-
bution in the diabetic patients are presented in Fig. 3. To 
carry out further modelling, we used the “pivot_longer()” 
function to transform the wide data to long data. We 
then plotted histograms and Q-Q plots of the repeated 
measurements of the FPG values to see their normality, 
as shown in Fig.  4, the results were obviously deviated 
from the normal distribution, and logarithmic transfor-
mation [26, 27] significantly improved the degree of devi-
ation, as shown in Fig. 5. Although log(FPG) still deviated 
from the normal distribution, given the sample size 
(n = 779), the LME model can still be used to analyse it 
as the model shows strong robustness to deviations from 
the normality assumption for large samples of data [28, 
29]. This resulted in a nonnormal distribution, whereas 
the logarithmic transformation of the FPG was improved 

Fig. 2  Study design [23]
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and more closely approximated a normal distribution (as 
shown in Fig. 5).

We then plotted histograms and Q-Q plots of the 
repeated measurements of FPG values to assess the nor-
mality of the data. As shown in Fig.  4, the results were 
obviously deviated from the normal distribution, and 
the logarithmic transformation processing significantly 
improved the degree of deviation, as shown in Fig. 5.

The logarithmic value of FPG measured at each fol-
low-up point was used as the dependent variable, and 
the variables of follow-up time, group, age, sex, smoking 
status, DM duration, alcohol consumption status, and 
history of complications were used as the independent 
variables. The continuous variables were log-transformed 

accordingly for ease of interpretation of the results. ID 
and time were used as random variables to construct 
a random slope model (named lm1), a random inter-
cept model (named lm2) and a random intercept plus 
random slope linear mixed model (named lm3), leav-
ing the independent variables with P < 0.05 in the previ-
ously established LME model, named lm11, lm22 and 
lm33, respectively, to construct the model again in turn 
and finally screening out the mixed-effects model that 
fits the present data relatively best according to the AIC 
and BIC values. The LME model was constructed via 
the “lme()” function in the nlme package of R software. 
For the parameter estimation methods of LME models, 
the restricted maximum likelihood (REML) or maxi-
mum likelihood (MLE) methods are usually considered 
[30]. Both methods have advantages and disadvantages 
[30]. The REML method is more unbiased in estimating 
the random-effects variance. Excluding the fixed effects 
from the calculation of the log-likelihood function pro-
vides more reliable estimates of the variance compo-
nents. REML can provide more stable estimates when 
the sample size is small [30]. However, one of the main 
limitations of REML is that it cannot be used to compare 
different fixed-effects models because the log-likelihood 
values in different models are not directly comparable 
[30]. The MLE method includes the estimation of fixed 
and random effects so that the log-likelihood values can 
be used for model comparison, e.g., by AIC, BIC, or like-
lihood ratio tests. The method is useful when comparing 
fixed-effects models, as it enables comparison of log-
likelihood values across models. However, the disadvan-
tage is that the MLE method can be biased in estimating 
variance components, especially with small sample sizes 

Fig. 4  Histogram (A) and Q-Q plot (B) of FPG

 

Fig. 3  Individual profile
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[30]. We used the MLE method for model fitting because 
model comparisons were needed.

NN model construction
On the basis of the above multiple mixed models used 
to explore the optimal model, the statistically significant 
variables in LME were retained to build multiple BPNN 
models separately for exploration. A BPNN all-variable 
model (named BPNN1) was established with FPG lev-
els as the dependent variable and 11 independent vari-
ables: time, HOMA-β, HbA1c, HOMA–IR, urinary 
glucose, insulin, BMI, waist circumference, weight, age, 
and group. Eight independent variables, namely time, 
HOMA-β, HbA1c, HOMA-IR, urinary glucose, insulin, 
BMI, and group, were used to build the BPNN model 
(named BPNN2), and six independent variables, namely, 
time, HOMA-β, HbA1c, HOMA-IR, urinary glucose, 
and insulin, were used to build the BPNN model (named 
BPNN3). The “train()” function in the R software nnet 
package was used to establish the BPNN model, and the 
model parameters (including optimal hidden layer nodes 
and weight decay parameters) were adjusted by setting a 
10-fold cross-validation using “trainControl()”. We used 
the commonly used empirical formula [31] [h = 

√
n + m

+ α , α  ∈ (1,10)] to determine the range of the hidden 
layer nodes, where n is the number of nodes in the input 
layer, m is the number of nodes in the output layer, and 
α  has a minimum of 1 and a maximum of 10. The input 
layer nodes of the BPNN1, BPNN2, and BPNN3 models 
were 20, 17, and 10, respectively, while the output layer 
nodes were all to 1. Therefore, the ranges of the hidden 
layer nodes for the BPNN-1, BPNN-1, and BPNN-3 mod-
els were set to [5, 15], and [4, 14], respectively. The weight 
decay parameter range was set to [0, 0.001, 0.01, 0.1]. The 

model was built and evaluated through a 10-fold cross-
validation process while outputting the optimal param-
eters. The optimal number of hidden nodes and decay for 
the BPNN1 model were 11 and 0.1, respectively, the opti-
mal number of hidden nodes and decay for the BPNN2 
model were 14 and 0.1, and the optimal number of hid-
den layer nodes and decay for the BPNN3 model were 13 
and 0.1, respectively. The optimal parameters were used 
to build the final model, which was fed into the test set 
for further evaluation. Finally, the “plotnet()” and “gar-
son()” functions in the NeuralNetTools package of R lan-
guage were used to draw the network structure diagram 
and feature importance diagram of the NN model, which 
facilitates a better understanding of the model.

Linear mixed-effects NN model construction
The LME model and BPNN were stacking integrated 
to establish the linear mixed-effects NN model, named 
LMENN, and a schematic diagram of the two stack-
ing integrations is shown in Fig. 6. The LME model and 
BPNN were used as the base learner, and then simple 
linear regression was chosen as the meta-learner. First, 
the data were input into the mixed-effects model and 
BPNN model, and the 2 models were trained separately. 
Then, the output values of the 2 models and the original 
dependent variable columns were stacked to form new 
sample data and finally input into the meta-learner for 
fitting. On the basis of the principle of stacking integra-
tion, from the point of view of the goodness of fit of the 
models to the present data, lm22 had a relatively better 
fit among the 6 LMEs (Table  1; Fig. 8). After integrating 
lm22 with the BPNN1, BPNN2 and BPNN3 models, the 
models were named lm22-BPNN1, lm22-BPNN2 and 
lm22-BPNN3 respectively. On the other hand, from the 

Fig. 5  FPG log-transformed histogram (A) and Q-Q plot (B)
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point of view of the model’s prediction performance on 
the data, lm11 had the best performance (Table 2). After 
integrating lm11 with the BPNN1, BPNN2 and BPNN3 
models, the models were named lm11-BPNN1, lm11-
BPNN2 and lm11-BPNN3, respectively. Additionally, on 
the basis of the empirical formula [31], the hidden layer 
nodes of the BPNN in the LMENN model ranged from 
[4, 5, 14, 15], and the range of the decay parameter was 
set to [0, 0.001, 0.01, 0.1]. Ten-fold cross-validation was 
used to adjust the model parameters, which resulted in 
the lm22-BPNN1, lm22-BPNN2, and lm22-BPNN3 mod-
els having optimal numbers of hidden nodes of 6, 5, and 
4, respectively, and the decays were all set at 0.1. The 
lm11-BPNN1, lm11-BPNN2 and lm11-BPNN3 models 
have optimal numbers of hidden layer nodes of 6, 5, and 
4, respectively, and all decays were 0.1. Finally, the opti-
mal parameters were used to build the final model, which 
was input into the test set for final evaluation.

Results
Basic information
As shown in Table 3, there were 779 patients with T2DM, 
with a total of 3,116 records after the wide data were con-
verted to long data, and the dataset was divided to ensure 
that the records of the four follow-up visits for each 
patient were either all in the training set or all in the test 
set. The training set had 2496 records (80%), and the test 
set had 620 records (20%). As shown in Fig.  7, the dis-
tribution of FPG levels in T2DM patients at months 1, 3 
and 12 decreased compared with that at month 0.

LME model results
As shown in Table 1 and visualised in Fig. 8, it was found 
that the lowest AIC value (3729.655) was observed 
with the lm3 model, and the lowest BIC (3812.503) was 
observed with the lm22 model. The combined AIC and 
BIC metrics revealed that the lm22 model had the rela-
tively best fit (Table 1; Fig. 8), with an intragroup corre-
lation coefficient of 0.382. The random intercept model 

Table 1  AIC and BIC values for linear mixed effects models
Formulae when modelling the lme ( ) function AIC BIC
lm1 = lme(FPG_log2 ~ time + HOMA-β + HbA1c + HOMA-IR + Urinary sugar + Insu-
lin + BMI + Waist + weight + Age + Group, random = ~ 0 + time|new_id, data = data, method = “ML”)

Random slope 
model

4004.980 4138.897

lm11 = lme(FPG_log2 ~ time + HOMA-β + HbA1c + HOMA-IR + Urinary sugar + Insulin + BMI + Group, ran-
dom = ~ 0 + time|new_id, data = data, method = “ML”)

Random slope 
model

4000.553 4117.002

lm2 = lme(FPG_log2 ~ time + HOMA-β + HbA1c + HOMA-IR + Urinary sugar + Insu-
lin + BMI + Waist + weight + Age + Group, random = ~ 1|new_id, data = data, method = “ML”)

Random inter-
cept model

3735.778 3869.695

lm22 = lme(FPG_log2 ~ time + HOMA-β + HbA1c + HOMA-IR + Urinary sugar + Insulin, random = ~ 1|new_id, 
data = data, method = “ML”)

Random inter-
cept model

3736.811 3812.503

lm3 = lme(FPG_log2 ~ time + HOMA-β + HbA1c + HOMA-IR + Urinary sugar + Insu-
lin + BMI + Waist + weight + Age + Group, random = ~ 1 + time|new_id, data = data, method = “ML”)

Random inter-
cept + random 
slope model

3729.655 3875.217

lm33 = lme(FPG_log2 ~ time + HOMA-β + HbA1c + HOMA-IR + Urinary sugar + Insulin, ran-
dom = ~ 1 + time|new_id, data = data, method = “ML”)

Random inter-
cept + random 
slope model

3731.114 3818.451

Fig. 6  Mixed effects neural network model
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(lm22) indicated a correlation between baseline blood 
glucose levels and subsequent blood glucose monitoring 
values for each patient, and the trend over time was con-
sistent (no significant random effect for slope).

Table  4 shows the results of the lm22 model, and 
the variables time, HOMA-β, HbA1c, HOMA-IR, 

urinary glucose, and insulin were statistically significant 
(P < 0.05). Time, HOMA-β, and insulin were negatively 
correlated with FPG levels, and HbA1c, HOMA-IR, 
HbA1c, HOMA-IR, and urinary glucose were posi-
tively correlated with FPG levels. This finding indicated 
that there was a tendency for FPG to decrease with 

Table 2  Comparison of predictive performance of linear mixed effects model, BPNN model and linear mixed effects neural network 
model
Models RMSE MAPE MAE R2

Linear mixed-effects model lm1 Training set 0.547 1.364 0.400 0.700
Validation set 0.557 1.389 0.408 0.680
Test set 0.558 1.645 0.412 0.688

lm11 Training set 0.547 1.368 0.400 0.700
Validation set 0.555 1.386 0.407 0.681
Test set 0.557 1.647 0.411 0.689

lm2 Training set 0.548 1.374 0.403 0.699
Validation set 0.584 1.370 0.430 0.647
Test set 0.562 1.678 0.416 0.684

lm22 Training set 0.554 1.388 0.407 0.693
Validation set 0.557 1.397 0.410 0.679
Test set 0.559 1.624 0.411 0.687

lm3 Training set 0.548 1.374 0.403 0.699
Validation set 0.557 1.393 0.409 0.679
Test set 0.562 1.676 0.417 0.684

lm33 Training set 0.554 1.388 0.408 0.693
Validation set 0.557 1.398 0.411 0.679
Test set 0.559 1.622 0.411 0.687

BPNN model BPNN1 Training set 0.505 1.215 0.376 0.745
Validation set 0.588 1.338 0.429 0.644
Test set 0.626 1.658 0.446 0.608

BPNN2 Training set 0.515 1.218 0.381 0.734
Validation set 0.573 1.313 0.421 0.660
Test set 0.600 1.649 0.433 0.639

BPNN3 Training set 0.527 1.240 0.388 0.722
Validation set 0.573 1.291 0.417 0.661
Test set 0.593 1.651 0.422 0.648

Mixed-effects neural network model lm22-BPNN1 Training set 0.447 1.322 0.322 0.800
Validation set 0.552 1.444 0.380 0.682
Test set 0.542 1.565 0.393 0.706

lm22-BPNN2 Training set 0.456 1.306 0.325 0.792
Validation set 0.527 1.390 0.369 0.708
Test set 0.551 1.574 0.401 0.696

lm22-BPNN3 Training set 0.471 1.287 0.331 0.778
Validation set 0.527 1.347 0.361 0.709
Test set 0.565 1.628 0.411 0.680

lm11-BPNN1 Training set 0.447 1.323 0.322 0.800
Validation set 0.552 1.444 0.380 0.682
Test set 0.511 1.412 0.359 0.738

lm11-BPNN2 Training set 0.456 1.306 0.325 0.792
Validation set 0.527 1.389 0.369 0.708
Test set 0.518 1.411 0.361 0.731

lm11-BPNN3 Training set 0.471 1.291 0.330 0.778
Validation set 0.525 1.351 0.359 0.711
Test set 0.526 1.455 0.365 0.723
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Number Variables Total (n = 3116) Training set (n = 2496) Test set (n = 620) P value
1 Group < 0.001*

  0 = Medium-dose glimepiride 244 (7.8) 208 (8.3) 36 (5.8)
  1 = Diet/exercise therapy 876 (28.1) 672 (26.9) 204 (32.9)
  2 = Low-dose glimepiride 340 (10.9) 272 (10.9) 68 (11.0)
  3 = Biguanide 452 (14.5) 364 (14.6) 88 (14.2)
  4 = Thiazolidine 176 (5.6) 140 (5.6) 36 (5.8)
  5 = α-Glucosidase inhibitor 92 (3.0) 60 (2.4) 32 (5.2)
  6 = Combination of two or more 
of the above drugs

936 (30.0) 780 (31.2) 156 (25.2)

2 Age (years) 64.00 (56.00–73.00) 64.00 (56.00–73.00) 63.00 (55.00–73.00) 0.495
3 Sex 0.800

  0 = Female 1032 (33.1) 824 (33.0) 208 (33.5)
  1 = Male 2084 (66.9) 1672 (67.0) 412 (66.5)

4 Height (cm) 164.00 (155.00-170.00) 163.90 (155.00-170.00) 164.00 (155.00-169.00) 0.461
5 Waist (cm) 87.50 (81.50–94.00) 87.50 (81.50–94.00) 87.00 (82.00–95.00) 0.224
6 Smoking 0.583

  0 = No 1596 (51.2) 1280 (51.3) 316 (51.0)
  1 = Yes 720 (23.1) 584 (23.4) 136 (21.9)
  2 = Past 800 (25.7) 632 (25.3) 168 (27.1)

7 Drinking 0.832
  0 = No 1600 (51.3) 1284 (51.4) 316 (51.0)
  1 = Yes 1516 (48.7) 1212 (48.6) 304 (49.0)

8 Duration of T2DM (months) 90.00 (48.00-139.00) 96.00 (47.50–144.00) 72.00 (48.00-120.00) < 0.001*

9 History of hypertension 0.437
  0 = No 1244 (39.9) 988 (39.6) 256 (41.3)
  1 = Yes 1872 (60.1) 1508 (60.4) 364 (58.7)

10 History of dyslipidemia 0.049*

  0 = No 1140 (36.6) 892 (35.7) 248(40.0)
  1 = Yes 1976 (63.4) 1604 (64.3) 372 (60.0)

11 History of hyperuricemia 0.138
  0 = No 2804 (90.0) 2256 (90.4) 548 (88.4)
  1 = Yes 312 (10.0) 240 (9.6) 72 (11.6)

12 History of retinopathy 0.107
  0 = No 2888 (92.7) 2304 (92.3) 584 (94.2)
  1 = Yes 228 (7.3) 192 (7.7) 36 (5.8)

13 History of arteriosclerosis obliterans 0.153
  0 = No 2872 (92.2) 2292 (91.8) 580 (93.5)
  1 = Yes 244 (7.8) 204 (8.2) 40 (6.5)

14 History of atrial fibrillation 0.004*

  0 = No 3044 (97.7) 2448 (98.1) 596 (96.1)
  1 = Yes 72 (2.3) 48 (1.9) 24 (3.9)

15 History of kidney disease 0.238
  0 = No 2880 (92.4) 2300 (92.1) 580 (93.5)
  1 = Yes 236 (7.6) 196 (7.9) 40 (6.5)

16 History of liver disease 0.832
  0 = No 2848 (91.4) 2280 (91.3) 568 (91.6)
  1 = Yes 268 (8.6) 216 (8.7) 52 (8.4)

17 History of myocardial infarction 0.843
  0 = No 3032 (97.3) 2428 (97.3) 604 (97.4)
  1 = Yes 84 (2.7) 68 (2.7) 16 (2.6)

18 History of cerebral infarction 0.584
  0 = No 2912 (93.5) 2328 (93.3) 584 (94.2)
  1 = Hemorrhagic 4 (0.1) 4 (0.2) 0 (0.0)

Table 3  The demographic and clinical characteristics of participants (n = 779)
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Number Variables Total (n = 3116) Training set (n = 2496) Test set (n = 620) P value
  2 = Infarction 200 (6.4) 164 (6.6) 36 (5.8)

19 History of angina pectoris 0.614
  0 = No 2984 (95.8) 2388 (95.7) 596 (96.1)
  1 = Yes 132 (4.2) 108 (4.3) 24 (3.9)

20 History of heart failure 0.003*

  0 = No
  1 = Yes 56 (1.8) 36 (1.4) 20 (3.2)

21 SBP (mmHg) 130.00 (120.00-140.00) 130.00 (120.00-140.00) 130.00 (121.00-140.00) 0.711
22 DBP (mmHg) 76.00 (70.00–82.00) 76.00 (70.00–82.00) 77.00 (70.00–82.00) 0.214
23 Pulse rate (bpm) 76.00 (69.75-85.00) 76.00 (70.00–85.00) 74.50 (69.00–84.00) 0.018*

24 Weight (kg) 65.50 (57.18-75.00) 65.20 (57.50-75.12) 66.00 (56.00–74.00) 0.302
25 BMI (kg/m2) 24.57 (22.46–27.51) 24.56 (22.50-27.62) 24.70 (22.34–27.13) 0.234
26 HbA1c (%) 7.20 (6.70–7.90) 7.20 (6.70–7.90) 7.20 (6.70–7.90) 0.588
27 FPG (mg/dL) 137.00 (119.00-161.00) 137.00 (119.00-161.00) 137.00 (116.00-163.00) 0.714
28 Insulin (µU/mL) 6.30 (4.20–9.40) 6.40 (4.21–9.40) 5.96 (3.98–9.30) 0.079
29 HOMA-IR 2.13 (1.34–3.34) 2.15 (1.34–3.36) 2.10 (1.29–3.29) 0.204
30 HOMA-β (%) 32.10 (19.20–53.30) 32.40 (19.40–52.80) 30.85 (18.30-56.05) 0.753
31 RBC (×104/µL) 455.00 (424.00-488.00) 454.00 (424.75–487.00) 461.00 (423.00-494.00) 0.195
32 WBC (/µL) 6100.00 (5087.50-7322.50) 6165.00 (5100.00-7380.00) 5965.00 (5000.00-7200.00) 0.043*

33 Hemoglobin (g/dL) 14.00 (12.90–15.00) 13.90 (12.90–15.00) 14.10 (13.00-14.90) 0.649
34 Hematocrit (%) 42.60 (39.80–45.30) 42.60 (39.80–45.20) 42.85 (39.90–45.50) 0.495
35 Platele (×104/µL) 21.70 (18.50–25.60) 21.70 (18.40–25.40) 21.95 (18.80–26.60) 0.013*

36 TG (mg/dL) 121.00 (85.00-177.00) 123.00 (86.00-179.00) 111.50 (80.00-170.25) 0.002*

37 HDL-C (mg/dL) 52.00 (44.00–62.00) 52.00 (44.00–61.00) 53.00 (46.00–64.00) 0.006*

38 LDL-C (mg/dL) 109.00 (91.00-130.00) 109.00 (92.00-130.00) 110.00 (89.75–131.00) 0.593
39 AST (U/L) 21.00 (18.00–27.00) 21.00 (18.00–27.00) 21.00 (18.00–28.00) 0.495
40 ALT (U/L) 21.00 (15.00–31.00) 21.00 (15.00–31.00) 20.00 (15.00–30.00) 0.749
41 γ -GTP (U/L) 30.00 (19.00–49.00) 30.00 (19.00–49.00) 29.50 (19.00–51.00) 0.727
42 BUN (mg/dL) 14.90 (12.20–17.90) 14.95 (12.20–18.00) 14.40 (12.10-17.83) 0.337
43 UA (Uric acid-mg/dL) 5.30 (4.40–6.20) 5.40 (4.50–6.30) 5.10 (4.30–6.10) 0.008*

44 Creatinine (mg/dL) 0.74 (0.62–0.88) 0.75 (0.62–0.88) 0.72 (0.61–0.86) 0.015*

45 Na (mEq/L) 140.00 (139.00-142.00) 140.00 (139.00-142.00) 140.00 (138.00-142.00) 0.003*

46 Cl (mEq/L) 103.00 (101.00-105.00) 103.00 (101.00-105.00) 103.00 (101.00-104.00) 0.244
47 K (mEq/L) 4.30 (4.00-4.60) 4.30 (4.00-4.60) 4.40 (4.00-4.70) 0.009*

48 Urinary protein 0.022*

  0=”-” 2196 (70.5) 1766 (70.8) 430 (69.4)
  1="±” 476 (15.3) 392 (15.7) 84 (13.5)
  2="+” 257 (8.2) 188 (7.5) 69 (11.1)
  3="++” 110 (3.5) 92 (3.7) 18 (2.9)
  4="+++” 77 (2.5) 58 (2.3) 19 (3.1)
  5="++++” 2196 (70.5) 1766 (70.8) 430 (69.4)

49 Urinary sugar 0.120
  0=”-” 2098 (67.3) 1704 (68.3) 394 (63.5)
  1="±” 184 (5.9) 151 (6.0) 33 (5.3)
  2="+” 273 (8.8) 207 (8.3) 66 (10.6)
  3="++” 206 (6.6) 162 (6.5) 44 (7.1)
  4="+++” 331 (10.6) 255 (10.2) 76 (12.3)
  5="++++” 24 (0.8) 17 (0.7) 7 (1.1)

50 eGFR (mL/min/1.73 m²) 75.41 (63.80–89.10) 74.77 (63.35–88.10) 77.85 (65.67–92.39) < 0.001*

Note: *P < 0.05. Categorical variables are expressed as frequencies (%), and quantitative variables are expressed as medians (IQR). (height: body height at month 0; 
waist: waist circumstances at month 0; smoking: smoking habit; drinking: drinking habit; SBP: systolic blood pressure; DBP: diastolic blood pressure; weight: body 
weight; BMI: body mass index; HbA1c: haemoglobin A1c; FPG: fasting plasma glucose; HOMA-IR: homeostatic model assessment for insulin resistance; HOMA-β: 
homeostasis model assessment-beta; RBC: red blood cell; WBC: white blood cell; TG: triglyceride; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density 
lipoprotein cholesterol; AST: aspartate transaminase; ALT: alanine aminotransferase; γ-GTP: γ-glutamyl transpeptidase; BUN: blood urea nitrogen; UA: uric acid; 
eGFR: estimated glomerular filtration rate)

Table 3  (continued) 
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prolonged treatment time (β=-0.040, P = 0.005); the 
higher the HOMA-β was, the lower the value of FPG 
(β=-0.204, P < 0.001); the higher the insulin level was, 
the lower the value of FPG (β=-0.663, P < 0.001); and the 
higher the HbA1c level was, the higher the value of FPG 
(β = 0.279, P < 0.001). Those with higher HOMA-IR values 
had higher FPG values (β = 1.024, P < 0.001). Those with 
a urinary glucose result of “±” had higher FPG values 
than those with a urinary glucose result of “-” (β = 0.074, 
P < 0.001); those with a urinary glucose result of “+” had 
higher FPG values than those with a urinary glucose 
result of “-” (β = 0.187, P < 0.001); those with a urinary 
glucose result of “++” had higher FPG values than those 
with a urinary glucose result of “-” (β = 0.254, P < 0.001); 
those with a urinary glucose result of “+++” had higher 
FPG values than those with a urinary glucose result of 
“-” (β = 0.342, P < 0.001); and those with a urinary glucose 
result of “++++” had higher FPG values than those with 

a urinary glucose result of “-” (β = 0.698, P < 0.001). After 
fitting the model, it was also necessary to verify that the 
model satisfied the assumptions of a linear mixed-effects 
model. The visualisation of the hypothesis testing of the 
better fitted lm22 model is shown in Fig.  9. The distri-
bution of the residuals roughly conformed to a normal 
distribution, as shown in Fig.  9 (A) and Fig.  9 (C), and 
the blue lines in Fig.  9 (B) are flat and parallel to each 
other, indicating that the variances of the residuals were 
homogeneous. The lm22 model was consistent with the 
assumptions of a linear mixed-effects model.

Model prediction results
As shown in Table  2, among the six LME models, the 
lm1 model training set had an average RMSE of 0.547, an 
average MAPE of 1.364, an average MAE of 0.400, and 
an average R2 of 0.700, which was better than the results 
of the other models; however, the lm11 model had the 
same RMSE, MAE, and R2 as the lm1 model (all of 0.547, 
0.400, and 0.700), and the average MAPE values were dif-
ferent but not significant. For the validation set, the lm11 
model had the lowest average RMSE and average MAE 
(0.555, 0.407) and the highest average R2 value (0.681) of 
all the LME models, whereas the lm2 model had the low-
est average MAPE value (1.370) of all the LME models. 
In the final test, the lm11 model had the lowest RMSE of 
all LME models (0.557), the lm33 model had the lowest 
MAPE (1.622), the lm11, lm22, and lm33 models had the 
lowest MAE (0.411), and the lm11 model had the highest 
R2 (0.689). The HOMA–IR, urinary glucose, insulin, BMI 
and Group independent variables explained 68.9% of the 
variation in the dependent variable (FPG levels). Taken 

Table 4  Results for the random intercept model lm22
Effects Estimate S.E df t value P value
Fixed effects
Intercept -0.040 0.022 1862 -1.795 0.073
time -0.024 0.008 1862 -2.822 0.005*

HOMA-β -0.204 0.020 1862 -9.988 < 0.001*

HbA1c 0.279 0.015 1862 18.178 < 0.001*

HOMA-IR 1.024 0.037 1862 27.671 < 0.001*

Urinary sugar 1862
  1=“±” 0.074 0.043 1862 1.704 0.089
  2="+” 0.187 0.038 1862 4.861 < 0.001*

  3="++” 0.254 0.043 1862 5.844 < 0.001*

  4="+++” 0.342 0.041 1862 8.265 < 0.001*

  5="++++” 0.698 0.137 1862 5.100 < 0.001*

  0=”-” 0.000 - - - -
Insulin -0.663 0.044 1862 -14.940 < 0.001*

Random effects
SDintercept 0.343
SDresidual 0.435
Note: *P < 0.05, S.E: standard error, SDintercept: standard deviation of random 
intercepts, SDresidual error: standard deviation of residuals

Fig. 8  Comparison of AIC and BIC for linear mixed effects models

 

Fig. 7  Distribution of FPG at different measurement time points in T2DM 
patients
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together, the lm11 model seemed to have the best predic-
tive performance.

Among the three NN models, the BPNN1 model had 
the lowest average RMSE, average MAPE, and average 
MAE on the training set (0.505, 121.488, and 0.376) and 
the highest average R2 (0.745) among the three BPNN 
models. The average RMSE on the validation set for the 
10-fold cross-validation of the BPNN2 and BPNN3 mod-
els was the lowest among the three BPNNs (0.573 for 
both), with the lowest value of 0.573. The BPNN3 model 
validation set had the lowest average MAPE and MAE 
(1.291, 0.417) and the highest average R2 (0.661). When 
evaluated in the final test, BPNN2 had the lowest MAPE 
(1.649), and BPNN3 had the lowest RMSE and MAE 
(0.593, 0.422) and the highest R2 (0.648) among the three 
BPNNs. In summary, the BPNN3 model had the rela-
tively best predictive performance among the 3 BPNN 
models. The network structure diagram and feature 
importance diagram of the BPNN3 model are shown in 
Figs. 11 and 12. HOMA-IR, urinary glucose (3), urinary 
glucose (5), HbA1c, urinary glucose (4), and HOMA-β 
played positive roles in the prediction of FPG and urinary 

glucose (2). urinary glucose (1), time, and insulin played 
negative roles in the prediction of FPG levels.

Among the six LMENN models built, on the training 
set, lm22-BPNN1 and lm11-BPNN1 had the lowest aver-
age RMSE and average MAE (0.447 and 0.322, respec-
tively), while their average R2 was the highest (0.800), 
and the average MAPE was the lowest (1.287) for lm22-
BPNN3. For the validation set, the lm11-BPNN3 model 
had the lowest average RMSE (0.525) and average MAE 
(0.359) and the highest average R2 (0.711). The lm22-
BPNN3 model had the lowest mean MAPE (1.347) on 
the validation set. For the test set, lm11-BPNN2 had the 
lowest MAPE (1.411), while lm11-BPNN1 had the low-
est RMSE (0.511) and MAE (0.359) and the highest R2 
(0.738). Thus, the lm11-BPNN1 model had relatively 
the best predictive performance among the six LMENN 
models.

The RMSE for the training set of the LME models 
(including the six LME models built) ranged from 0.547 
to 0.554, the MAPE ranged from 1.364 to 1.388, the MAE 
ranged from 0.400 to 0.408, and the R2 ranged from 0.693 
to 0.700. The RMSE on the validation set ranged from 
0.555 to 0.584, the MAPE ranged from 1.370 to 1.398, the 

Fig. 9  Results of hypothesis testing for the lm22 model. Note: (A): Residual normal distribution and outliers test plot, (B): Residual normal distribution test 
plot, (C): Residual variance homogeneity test plot
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MAE ranged from 0.407 to 0.430, and the R2 ranged from 
0.647 to 0.681. The RMSE on the test set ranged from 
0.557 to 0.562, the MAPE ranged from 1.622 to 1.678, the 
MAE ranged from 0.411 to 0.417, and the R2 ranged from 
0.684 to 0.689.

The RMSE for the training set of the BPNN model 
(including the three BPNN models built) ranged from 
0.505 to 0.527, the MAPE ranged from 1.215 to 1.240, 
the MAE ranged from 0.376 to 0.388, and the R2 ranged 
from 0.722 to 0.745. The RMSE for the validation set of 
the BPNN model ranged from 0.573 to 0.588, the MAPE 
ranged from 1.291 to 1.338, the MAE ranged from 0.417 
to 0.429, and the R2 ranged from 0.644 to 0.661. The 
RMSE on the test set ranged from 0.593 to 0.626, the 
MAPE ranged from 1.649 to 1.658, the MAE ranged from 
0.422 to 0.446, and the R2 ranged from 0.608 to 0.648.

The RMSE for the training set of the LMENN model 
(including the six LMENN models built) ranged from 
0.447 to 0.471, the MAPE ranged from 1.287 to 1.323, 
the MAE ranged from 0.322 to 0.331, and the R2 ranged 
from 0.778 to 0.800. The RMSE on the validation set 
ranged from 0.525 to 0.552, the MAPE ranged from 1.347 
to 1.444, the MAE ranged from 0.359 to 0.380, and the 
R2 ranged from 0.682 to 0.711. The RMSE on the test set 
ranged from 0.511 to 0.565, the MAPE ranged from 1.411 
to 1.628, the MAE ranged from 0.359 to 0.411, and the R2 
ranged from 0.680 to 0.738.

In summary, for the training set, the RMSE and 
MAE range values of the LMENN model were 
LME > BPNN > LMENN, the MAPE range was 
LME > LMENN > BPNN, and the R2 range value was 
LMENN > BPNN > LME. For the validation set, the 
RMSE and MAE ranges of the LMENN model were 
the lowest, and the MAPE range was the lowest for the 
BPNN model. The R2 range was highest for the LMENN 
model. For the test set, the LMENN model had an upper 
RMSE range value that was about the same as that for 
the LME, but had a much lower range; the MAPE range 
was relatively the lowest, and the MAE range values were 
BPNN > LME > LMENN, the BPNN model has the lowest 
R2 range. The LMENN model had an R2 range value with 
a lower limit that was about the same as that of the LME 
model, but had an upper limit that was higher than that of 
the LME model. These results indicate that the LMENN 
model indeed performs better than the single LME and 
BPNN models do, probably because the LMENN com-
bines the advantages of the two models. The LME model 
performed better than the BPNN model on the test set, 
but did not perform as well as the BPNN on the train-
ing and validation sets, which may be due to the fact that 
with fewer feature variables, the BPNN model learns less 
information about the data, resulting in poorer perfor-
mance of the model on the test set. Moreover, on the one 
hand, this may be because the BPNN model was affected 

by overfitting, although the risk of overfitting had been 
reduced slightly by 10-fold cross-validation. On the other 
hand, it may be because random effects are considered in 
LME models, whereas they are not considered in BPNN 
models. The magnitude of the variation in the range of 
values of each metric in the LMENN model was larger 
than that of the LME, probably because we chose the 
optimal LME from two perspectives to build the LMENN 
model: the optimal LME was chosen from the perspec-
tive of the model’s goodness-of-fit and complexity (AIC), 
and the optimal LME model was chosen from the per-
spective of the model’s goodness of fit and complexity 
(AIC and BIC) (lm22) and from the perspective of the 
model’s better predictive performance for FPG (lm11).

For the models integrated by lm22 and the three 
BPNNs alone (lm22-BPNN1, lm22-BPNN2 and lm22-
BPNN3, collectively referred to as lm22-BPNN), the 
RMSE for the training set ranged from 0.447 to 0.471, the 
MAPE ranged from 1.287 to 1.322, the MAE ranged from 
0.322 to 0.331, and the R2 ranged from 0.778 to 0.800. 
The validation set had an RMSE range of 0.527–0.552, 
a MAPE range of 1.347–1.444, a MAE range of 0.361–
0.380, and an R2 range of 0.682–0.709. The test set had 
an RMSE range of 0.542–0.565, a MAPE range of 1.565–
1.628, a MAE range of 0.393–0.411 and an R2 range of 
0.680–0.706.

For the training set, the range values of the RMSE and 
MAE were LME > BPNN > lm22-BPNN, the range value 
of the MAPE was LME > lm22-BPNN > BPNN, and the 
range value of R2 was lm22-BPNN > BPNN > LME. On 
the validation set, the range values of the RMSE and 
MAE were the lowest for lm22-BPNN, BPNN had the 
lowest MAPE range value, and the range value of lm22-
BPNN had the highest R2. For the test set, BPNN had the 
highest RMSE range value, LME and LMENN had about 
the same RMSE range value, and the MAPE range value 
was BPNN > LME > lm22-BPNN, the MAE range value 
was BPNN > LME > lm22-BPNN, and the R2 range value 
was lm22-BPNN > LME > BPNN.

For the model built by integrating lm11 with BPNN 
alone (lm11-BPNN1, lm11-BPNN2 and lm11-BPNN3 
are collectively referred to as lm11-BPNN), the RMSE of 
the training set ranged from 0.447 to 0.471, the MAPE 
ranged from 1.291 to 1.323, the MAE ranged from 0.322 
to 0.330, and R2 ranged from 0.778 to 0.800. The RMSE 
for the validation set ranged from 0.525 to 0.552, the 
MAPE ranged from 1.351 to 1.444, the MAE ranged from 
0.358 to 0.380, and the R2 ranged from 0.682 to 0.711. 
The RMSE for the test set ranged from 0.511 to 0.526, the 
MAPE ranged from 1.411 to 1.455, the MAE ranged from 
0.359 to 0.365, and R2 ranged from 0.723 to 0.738.

The training set had the lowest RMSE range 
value; both the MAPE and MAE range values were 
LME > BPNN > lm11-BPNN; the MAPE range was 
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LME > lm11-BPNN > BPNN; and the R2 range value was 
lm11-BPNN > BPNN > LME. On the validation set, the 
lm11-BPNN had the lowest RMSE range value, the BPNN 
had the lowest MAPE range value, the lm11-BPNN had 
the lowest MAE range value, and the lm11-BPNN had the 
highest R2 range value. For the test set, the range value 
of the RMSE was BPNN > LME > lm11-BPNN, the lm11-
BPNN had the lowest range value of the MAPE, the range 
value of the MAE was BPNN > LME > lm11-BPNN, and 
the range value of R2 was lm11-BPNN > LME > BPNN.

According to the results of the visualisation of the 
predictive metric values of each model on the test set 
(shown in Fig. 10), the RMSE, MAPE, and MAE values of 
the LMENN model were overall lower than those of the 
BPNN model and the LME model, whereas the R2 was 
higher than those of all of them, and the LMENN model 
truly enhanced the predictive performance of the single 
LME and the BPNN model. lm11-BPNN1 had the best 
relative performance, with an RMSE of 0.511, MAPE of 
1.412, MAE of 0.359, and R2 of 0.738 on the test set. The 

predictive performance of lm11-BPNN was better over-
all than that of lm33-BPNN, probably because lm11 itself 
had the best predictive performance for FPG among the 
LME models, whereas lm33 was selected only by com-
paring the AIC and BIC values to fit the data of this study 
better, so naturally, from the aspect of predictive perfor-
mance, the model obtained from its integration was not 
as good as the one integrated with lm11 and BPNN.

Discussion
We used an LME model to analyse FPG levels in patients 
with T2DM, and we were able to effectively fit these 
monitoring data and analyse the influencing factors of 
FPG changes. To predict the longitudinal trend of FPG 
levels in patients with T2DM, we developed multiple 
LME models, a BPNN model, and an LMENN model 

Fig. 12  Characteristic importance of the BPNN3 model

 

Fig. 11  Network structure of BPNN3

 

Fig. 10  Comparison of prediction performance on the model test set
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combining the 2. We improved the reliability of the 
assessment and reduced the risk of overfitting via 10-fold 
cross-validation. The results show that the LMENN 
model was competitive with the traditional LME model 
and the BPNN model, which do not take random effects 
into account, and these results are in line with the find-
ings of Ngufor et al. [3]. The LMENN model developed 
in this study predicted FPG in patients with T2DM, with 
RMSE values ranging from 0.511 to 0.552, MAPE val-
ues ranging from 1.411 to 1.601, MAE values ranging 
from 0.359 to 0.403, and R2 values ranging from 0.694 
to 0.738 on the test set, in which the random slope NN 
model (lm11-BPNN1) achieved relatively good predic-
tive performance. Although a few scholars have previ-
ously conducted studies on mixed-effects ML [3, 16, 18], 
to our knowledge, this is the first study that accounts for 
random effects in an NN model and builds and compares 
the performance of LME, BPNN, and LMENN models in 
predicting the longitudinal trend of FPG levels in patients 
with T2DM.

The factors affecting the effectiveness of DM treatment 
are very complex and include age, sex, weight, disease 
duration, family history of DM, type of DM, dietary hab-
its, lifestyle, and organ function. Therefore, in the treat-
ment of T2DM, practitioners need to consider multiple 
risk factors according to the actual diagnosis and treat-
ment of the patient and provide appropriate treatment 
plans for different patients. Effective assessment and 
prediction of glycaemic improvement after treatment 
can help clinicians better provide personalised treatment 
services to patients. The LMENN prediction model in 
this study can help physicians more accurately predict 
patients’ future blood glucose levels, which can lead to 
more personalised treatment plans and improve the effi-
ciency and quality of diabetes management. At the same 
time, the model can help provide doctors with real-time 
feedback on patients’ blood glucose changes, which can 
help them make timely adjustments to their treatment 
plans and reduce the occurrence of hypoglycaemic or 
hyperglycaemic events. As for patients, they can under-
stand their own blood glucose trends through the model 
and improve their self-management ability.

FPG and HbA1c are the most commonly accepted 
key indicators of glycaemic improvement for the man-
agement of diabetic patients. An LME model was used 
to analyse the factors influencing FPG levels in patients 
with T2DM, and the relatively best fit to the data in this 
study was the random intercept (lm22) model, which 
demonstrated that a correlation between baseline blood 
glucose levels and subsequent blood glucose monitor-
ing values for each patient, and the trend over time was 
consistent (no significant random effect for slope). The 
lm22 results revealed low urinary glucose, low HOMA-
IR, low HbA1c, high time, high HOMA-β, high insulin, 

and low FPG were associated with each other, which is 
consistent with the findings of clinical practice. The nega-
tive correlation of time with FPG levels in this study may 
be because as the follow-up time increased, the patients 
received therapeutic or lifestyle interventions, which 
may have led to a decrease in FPG levels. Patients with 
DM are advised to monitor FPG and postprandial glu-
cose levels, as well as HbA1c, on a regular basis to detect 
and manage fluctuations in blood glucose in a timely 
manner. To obtain a complete picture of glycaemic con-
trol, the American Diabetes Association (ADA) recom-
mends assessing glycaemic status at least twice a year 
in patients with stable glycaemic control [32]. It is also 
recommended that glycaemic status be assessed at least 
quarterly and as needed for patients who have recently 
changed treatment and/or are not meeting their glycae-
mic targets [32]. Existing evidence from randomised con-
trolled trials suggests that lifestyle interventions are more 
effective than standard treatment for glycaemic control 
in people with T2DM [33].

Takai et al. [34] studied blood glucose fluctuations and 
glycaemic control in Japanese patients with T2DM in 
relation to pancreatic β-cell function. When studying the 
relationship between blood glucose fluctuations and aver-
age blood glucose levels in Japanese patients with T2DM, 
the results revealed that fluctuations in blood glucose lev-
els and average blood glucose levels were correlated with 
HOMA-β. HOMA-β is an indicator for assessing β-cell 
function, and in the present study, HOMA-β was nega-
tively correlated with FPG levels, suggesting that patients 
with higher HOMA-β values had lower levels of FPG. 
Higher HOMA-β values indicate that pancreatic β-cells 
function better and are able to secrete enough insulin to 
regulate blood glucose, which leads to lower FPG levels; 
this finding is clinically consistent with the findings of 
Takai et al. [34] Higher HOMA-β is protective against the 
development of DM [35], so improving β-cell function is 
necessary for DM management. To improve β-cell func-
tion, it is recommended that patients adopt a proper diet 
(e.g., following a balanced diet, avoiding foods high in 
sugar and fat, increasing dietary fibre intake), moderate 
exercise, and medication.

Insulin is negatively correlated with FPG levels, which 
is in line with the findings of clinical practice. Silvestre et 
al. [7] also predicted the normalisation of FPG levels via 
fasting insulin levels; during fasting, when insulin levels 
in the body are high, the body tries to lower blood glu-
cose in an effort to regulate high blood glucose levels. If 
insulin secretion is normal and efficient, this results in 
lower FPG levels. Closed-loop control of insulin can fur-
ther improve the quality of glycaemic control [36].

HbA1c is a product of the irreversible binding of glu-
cose in the blood to haemoglobin in red blood cells and 
reflects the average blood glucose level over the past 2–3 
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months [32]; therefore, higher HbA1c values are usually 
associated with higher long-term glucose levels. HbA1c 
has become the gold standard for measuring the effec-
tiveness of glycaemic control and is widely used to guide 
DM clinical management decisions [37]. Regular HbA1c 
testing (every 3 months) is recommended to assess long-
term glycaemic control. Klein et al. [38] advocated set-
ting HbA1c targets of less than 7% for the majority of 
the population, while emphasising that glycaemic targets 
will continue to evolve as new technologies and glucose-
lowering medications are developed. Therefore, it is 
more effective to develop flexible, iterative and person-
alised management plans for patients than to follow strict 
guidelines.

HOMA-IR values are positively correlated with FPG 
levels. The HOMA-IR is an indicator used to assess the 
degree of insulin resistance. Higher HOMA-IR values 
indicate greater insulin resistance, and the body needs to 
secrete more insulin to maintain normal blood glucose 
levels. In the case of insulin resistance, blood glucose 
levels are relatively high. It is recommended that insulin 
resistance be reduced by losing weight, increasing physi-
cal activity and using insulin. Studies suggest that a high-
protein diet does not significantly improve glycaemic 
control or blood pressure but reduces HOMA-IR levels 
in patients with T2DM; thus, an appropriately increased 
intake of high-protein foods may be advisable when 
HOMA-IR values are high [39].

Urinary glucose levels are positively correlated with 
FPG levels. Urinary glucose is detected when individuals 
are in a state of hyperglycaemia, and when the blood glu-
cose level rises above the threshold of renal reabsorption 
capacity (usually approximately 180 mg/dL), the kidneys 
are no longer able to efficiently reabsorb all the glucose 
back into the bloodstream, resulting in a marked excess 
of glucose entering the urine and producing urinary glu-
cose. As a result, higher FPG levels are usually accompa-
nied by higher levels of urinary glucose, and the two are 
positively correlated. Urinary glucose monitoring can be 
used as a supplementary indicator of blood glucose con-
trol. More attention should be given to changes in the 
colour and smell of urine in general, and medical atten-
tion should be sought if there are any abnormalities.

The present longitudinal study of FPG levels revealed 
that HOMA-β, HbA1c, HOMA-IR, urinary glucose, and 
insulin had greater effects on changes in blood glucose 
values during the follow-up period. There was a trend 
towards decreasing FPG levels in the patients followed 
in this study, which may be due to better adherence to 
medication or diet/exercise interventions as a result of 
follow-up, reflecting the importance of follow-up. High 
FPG levels due to poor control is strongly associated with 
the development of diabetic complications such as reti-
nopathy, neuropathy and cardiovascular disease [40]. The 

aim of hyperglycaemic management of DM is to alleviate 
the symptoms of hyperglycaemia, reduce complications, 
especially microvascular complications, and minimise 
side effects, including hypoglycaemia [41]. In addition, 
owing to the progressive nature of T2DM, medication 
alone is not sufficient to maintain normal blood glucose 
over the long term. Therefore, it is recommended that 
patients with DM undergo concurrent dietary and life-
style management after starting medication.

Research strengths and limitations
There are several limitations to this study, including the 
following: the data were obtained from a specific popula-
tion of patients (Japan), and it is not known how these 
models would perform in different demographic or geo-
graphic contexts; thus, the results are not generalizable, 
and further studies are needed to determine whether 
they can be replicated further, but the results are valu-
able. The data are publicly available from other articles 
rather than from our own collection, and the variable 
“group” is important, but in this study, “group” is limited 
to different treatments, among which the “combination 
of two or more of the above drugs” was representative of 
the majority of the study population. It was therefore not 
possible to analyse the specific drug combinations sepa-
rately or to explore each treatment indicator in depth as 
an independent feature. Studies have recommended the 
use of a minimum sample size of 50 times the weight in 
NNs [42]. The sample size (n = 779) in this study may be 
an underrepresentation of the data, the generalisability 
of the model may be limited, and the risk of overfitting 
may be increased. Although we have used 10-fold cross-
validation to ameliorate this limitation, slight overfitting 
remains. We have successfully and simultaneously com-
pared and analysed the performance of three models, 
the LME, BPNN, and Linear Mixed-Effects (LMENN) 
models, for predicting FPG levels in patients with type 2 
diabetes. However, we have not yet considered the appli-
cation of Bayesian Neural Network (BNN) for this pre-
diction task. Compared to the LMEs and MLs used in 
this paper, BNN have significant advantages: first, BNN 
exhibited strong robustness, as it does not depend on 
specific distributional assumptions and can easily cope 
with skewness in, for example, log(FPG) distributions (as 
shown in Fig. 5). Second, BNN is not prone to overfitting, 
which is very different from some ML methods that are 
notorious for overfitting.

Conclusion
Using longitudinal FBG monitoring data, we successfully 
established a novel LMENN model by taking random 
effects into account in the BPNN, and 10-fold cross-vali-
dation mitigated the risk of overfitting and enhanced the 
robustness of the model, achieving effective prediction 
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of FPG levels in T2DM patients with the present data, 
which is highly important for the accurate management 
of diabetic patients, therapeutic decision-making, and 
improvement of patients’ quality of life. In the future, we 
will continue to optimise the model algorithm and aim to 
incorporate a wider range of large sample datasets with 
demographic and geographic distribution characteristics 
to increase the generalizability of the model. Moreover, 
we actively explore ways to improve the interpretability 
of the model and rigorously review its fairness to ensure 
that it is widely used and trusted by different patient 
groups. Finally, in response to the fact that the applica-
tion of the BNN method for the prediction task has 
not yet been considered, and in view of the significant 
advantages demonstrated by BNN over LME and ML, 
as a future research direction, we will explore in depth 
the potential of BNN for the prediction of FPG levels in 
patients with type 2 diabetes mellitus.
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