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ABSTRACT

The prediction of subject traits using brain data is an important goal in neuroscience, with relevant applications in clinical re-

search, as well as in the study of differential psychology and cognition. While previous prediction work has predominantly been

done on neuroimaging data, our focus is on electroencephalography (EEG), a relatively inexpensive, widely available and non-

invasive data modality. However, EEG data is complex and needs some form of feature extraction for subsequent prediction. This

process is sometimes done manually, risking biases and suboptimal decisions. Here we investigate the use of data-driven Kernel
methods for prediction from single channels using the EEG spectrogram, which reflects macro-scale neural oscillations in the
brain. Specifically, we introduce the idea of reinterpreting the spectrogram of each channel as a probability distribution, so that
we can leverage advanced machine learning techniques that can handle probability distributions with mathematical rigour and

without the need for manual feature extraction. We explore how the resulting technique, Kernel mean embedding regression,

compares to a standard application of Kernel ridge regression as well as to a non-Kernelised approach. Overall, we found that

the Kernel methods exhibit improved performance thanks to their capacity to handle nonlinearities in the relation between the

EEG spectrogram and the trait of interest. We leveraged this method to predict biological age in a multinational EEG data set,
HarMNqEEG, showing the method's capacity to generalise across experiments and acquisition setups.

1 | Introduction

Predicting behavioural and cognitive traits from brain data in
a way that generalises to unseen subjects and is robust to ac-
quisition idiosyncrasies is important because it can offer objec-
tive measures to otherwise elusive neurobiological constructs
(Haynes and Rees 2006). A widely studied example is brain age.
While measuringactual age isa straightforward task, the concept
of brain age provides a marker of mental health by quantifying

how much a subject's brain appears to have aged with respect to
the population average; that is, a predicted age that is lower than
the individual's chronological age, for example, may indicate
that the person has a brain that appears younger than expected
for their actual age (Franke and Gaser 2019; Smith et al. 2019).

Much of the work on the prediction of subject traits (such
as age) from brain data has been done with resting-state
fMRI data (Dosenbach et al. 2010). Since we cannot
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straightforwardly predict from the raw data, an intermediate
representation is typically used for prediction. In the case of
fMRI, this is often a simple description of functional connec-
tivity (Rosenberg et al. 2016) or some model of brain dynamics
(Liegeois et al. 2019; Vidaurre et al. 2021; Ahrends, Woolrich,
and Vidaurre 2024). Here, we focus on EEG, a considerably
less costly technique. As an intermediate representation, we
consider the EEG frequency spectrum, reflecting neural oscil-
lations that are well-known correlates of different behavioural
and cognitive states (Buzsdki and Draguhn 2004). How to
meaningfully extract features for prediction from an EEG
spectrum is an open question. Some current efforts are based
on manual feature extraction (Al Zoubi et al. 2018; Engemann
et al. 2022); or are based on models that need to be estimated
from raw data and whose properties depend on the choice of
configuration and hyperparameters (Vidaurre, Bielza, and
Larrafaga 2013).

In this paper, we present a method to predict from single-
channel spectrograms, that is, with no need of the raw data. In
contrast to other studies that make predictions on whole brain
signals (Dimitriadis and Salis 2017; Vandenbosch et al. 2019;
Sabbagh et al. 2019), sometimes with complex methods such
as deep learning (Khayretdinova et al. 2022), our approach
has not only benefits in terms of computational simplicity but
also for interpretation, as it allows us to compare the predic-
tive power across sensors or brain regions. Specifically, with
no prior predefinition of frequency bands or any manual fea-
ture engineering besides basic preprocessing, we propose the
idea of interpreting the EEG spectrogram as a probability
distribution. This way, we can fully leverage all the powerful
machinery of Kernel learning on probability distributions. We
consider Kernel mean embeddings (KMEs), a technique used
to construct a representation of the data in a high-dimensional
feature space (Smola et al. 2007; Iyer, Jagarlapudi, and
Sarawagi 2014; Borgwardt et al. 2006). The KME technique
maps joint, marginal and conditional probability distributions
to vectors in a high (or even infinite) dimensional feature space
that completely characterises the distribution (Fukumizu,
Song, and Gretton 2011). Building upon KME, we used the
maximum mean discrepancy (MMD) (Smola et al. 2007), a
distance metric defined on the space of probability measures
(here, EEG spectrograms) in combination with Kernel ridge
regression (KRR) (Saunders, Gammerman, and Vovk (1998)).
We refer to our approach as Kernel mean embedding regres-
sion (KMER), which we compare to KRR and ridge regres-
sion (RR).

We demonstrate the superior performance of the Kernel ap-
proaches (both KMER and KRR) for age prediction. Using
a multisite, public resting-state EEG dataset with a very wide
distribution of age (HarMNQEEG; Li et al. 2022), we show that
these lead to better predictions, which can be projected on the
EEG scalp for interpretation. Focusing on KMER, we show that
parietal sensors are the most accurate in predicting age, with
slightly greater accuracy in men. We also showed that the pre-
dictions generalise well across experiments and acquisition sites,
even considering the large differences in age distribution across
sites (a well-known problem in machine learning referred to as
prior shift). Overall, by demonstrating its predictive capacity

and interpretability, Kernel methods can help unveil insights
about brain age or other neurobiological constructs.

2 | Results
2.1 | Kernel Mean Embedding Regression

We developed KMER, a novel method to predict subject traits
from EEG spectrograms; see Section 3 and Figure 1. In short,
KMER is based on the idea of interpreting EEG spectrograms
as probability distributions so that techniques based on Kernel
learning of distributions are readily applicable. By forming a
subject-by-subject Kernel matrix of similarities between subjects
(using a Gaussian Kernel; see Section 3), this technique allowed
us to derive predictions for each EEG channel that can naturally
accommodate nonlinearities in a data-driven way without the
need for manual feature extraction.

2.2 | Comparison of Performance Between
Methods

First, compared KMER to: (i) RR, a regularised, linear regression
method that uses the frequency bins' power as features; and (ii)
KRR, the Kernelised version of RR, which allows the modelling
of nonlinearities by the use of an appropriate Kernel. Our exper-
iments were based on the prediction of age in the HarMNqEEG
data set (Li et al. 2022), a multibatch, multicountry resting-state
EEG dataset of 1966 subjects encompassing people across the
entire lifespan (excluding the very youngest and using only sub-
jects between 5 and 97 years old); see Figure S1 and Table S1 for
some basic statistics about the dataset in terms of age, gender,
and geography. The performance of the methods was assessed
using cross-validation, such that the acquisition batches were
never split across folds. The hyperparameters (described in
Methods) were chosen using nested cross-validation for all ap-
proaches. We assessed the performance of the three methods
per EEG channel using two measures of accuracy: prediction
explained variance (R?) and mean absolute error (MAE), which
offers complementary information (Engemann et al. 2022).

Figure 2 summarises the results per EEG channel. Figure 2A
illustrates an example of age vs. predicted age for a given chan-
nel (T3). Figure 2B,C shows a comparison of the three methods
across channels in terms of MAE and explained variance, respec-
tively. As shown, MAE oscillates between 11 and 12.5years ap-
proximately for all channels. There is a larger variation in terms
of explained variance, ranging from R?>=0.24 for sensor Fpl to
R?=0.44 for sensor C3. KRR and KMER outperform RR for all
channels, and KMER outperforms KRR only for some channels.
The advantage of KRR and KMER over RR is highly significant
(p=1x1075; permutation testing), but the advantage of KMER
over KRR is not significant (p =0.093). This improvement of the
Kernel methods over RR is likely due to the presence of non-
linearities in the relation between EEG spectrograms and age.
Results for the linear and polynomial Kernel (referring to the
Kernel used to construct the Kernel matrix, f(-); see Section 3)
are shown in Figures S2 and S3; these performed worse than the
radial basis function (Gaussian) Kernel.
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FIGURE1 | General workflow of the analysis. We used the HarMNQEEG dataset collected across multiple sites (batches), which contains rescaled
power densities per sensor and participant, as well as information on gender and age. We considered three prediction approaches, which we run
separately per EEG sensor: (i) ridge regression (RR) using the power estimates at each frequency bin of the spectrogram as features; (ii) Kernel ridge
regression (KRR), a Kernelised version of RR (based on a nonlinear radial basis function Kernel); and (iii) our Kernel mean embedding regression
(KMER) approach, where we interpreted the power spectral estimates across bins as probability distributions so that we can leverage the mathemat-

ical machinery of Kernel learning on probability measures for prediction.

An important observation, as seen in Figure 2A, is that age
differences are less well-predicted at older ranges. To try to ad-
dress this problem, we considered the prediction of age in log
space (such the differences in the younger are amplified). As ob-
served in Figure S4, we obtained moderate improvements in R?

and MAE.

A post hoc bias correction, where we removed the age depen-
dence on the residual in a second step using linear regression
(Smith et al. 2019), however, resulted in a more substantial im-
provement; see Figure S5. This correction is performed by train-
ing a linear regression model on the residuals of the training
data to decrease the bias of the predictions in the testing data,

30f 10



100
Channel T3
R?=0.42
80
[
o
©
g °° "
g g
=
L 40
Q
-4
s
S 20
e
0 20 40 60 80 100
Age
0.6 - KMER
KRR
e RR
0.5-
0.4-
%o3-
0.2-
01- | | 4 B : : 4 B
0.0- N I
Fpl Fp2 F3 F4 C3 C4 P3 P4 Ol 02 F7 F8 T3 T4 T5 T6 Fz Pz
Channel
FIGURE2 |

14.0-

12.0

10.0

) KMER
KRR
=== RR

8.0

6.0~

4.0

2.0-

0.0-

Fpl Fp2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T3 T4 T5 T6 Fz
Channel

D)

0.35

0.30

KMER R?

0.25

0.20

Comparison between the methods. (A) Illustration of predicted versus real age for example channel T3 for KMER. (B) Mean absolute

error (MAE) per channel for KMER, RR, and KRR. (C) Explained variance R?. (D) R? projected on the sensor space for KMER.

typically improving performance across metrics like R? and
MAE. Specifically, we first calculate the residuals of the train-
ing data by subtracting the predictions from the actual train-
ing values. Then, we fit a linear regression model, where the
chronological age is the independent variable and the residual is
the dependent variable. This makes the (new) residual and age
orthogonal (Smith et al. 2019). Here, the correction is incorpo-
rated into the original KRR/KMER predictions to generate bias-
corrected predictions.

We also studied the effect of normalising each frequency bin
across subjects, such that the variance is equal for all bins. As
shown in Figure S7, the results did not change substantially.

Finally, Figure 2D shows the explained variance in sensor space
for KMER (MAE has a similar but inverted topography; not
shown). We can observe that the parietal sensors are the most
predictive of chronological age, whereas prefrontal and occipital
sensors are the least predictive.

2.3 | Sex Differences

Females and males have previously been shown to exhibit dif-
ferences in their ageing trajectories (Hdgg and Jylhdvd 2021).
Here, using KMER, we investigated the differences between
sexes in prediction accuracy across channels for 884 females and
905 males (for 137 individuals, sex is non-specified).

Figure 3 presents the results. Figure 3A,B shows example scat-
ter plots between age and predicted age per sex. Figure 3B,C
shows R? across sensors in both bar plot and sensor space for-
mat. Analogously, Figure 3D,E shows MAE per sex. As ob-
served, males generally exhibited a higher prediction accuracy
than females (p=0.002), potentially suggesting that their pace
of biological change corresponds more closely to chronological
age; see Figure S6 for a side-by-side comparison.

2.4 | Performance Variations Across
Scanning Sites

The HarMNqEEG dataset encompasses a wide range of age
groups across various sites or geographical locations (14 dif-
ferent sites/experiments), each with a different number of
individuals and specific age distributions; see Figure S1 and
Table S1. Despite efforts made by the data curators to ensure
homogeneity, it is possible that differences in practice and
instrumentation between the sites leak into the data. In our
reported results so far, sites were never split across cross-
validation folds; that is, when predicting the age of subjects
in a given site (e.g., Colombia), none of the subjects of that
site were part of the training data. Given that substantial
differences in age distribution between sites may potentially
coexist with other between-site differences (e.g., instrumen-
tation), this approach was performed to ensure that the re-
ported prediction accuracies were purely reflective of age
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and not mixed with other factors. However, this conservative
approach makes the prediction more difficult, inducing what
is known in the machine learning literature as a prior shift
(Kouw 2018), where the distribution of the dependent variable
(here, age) changes between training and test.

To illustrate the issue, Figure 4A shows predicted age versus
chronological age with colours indicating stratification by site,
with two different perspectives: 3D to better appreciate each site
individually and 2D to compare the sites side-by-side. Here, we
can observe substantial differences between sites in both accu-
racy and age distribution. Figure 4B shows distributions of delta
across sites, defined as the difference between predicted and
chronological age (Franke and Gaser 2019; Smith et al. 2019).
When compared with Figure S1, where we show the age distri-
butions explicitly, we can observe that the distribution of errors
is contingent on the age range within each group, underestimat-
ing the age of older individuals (see Switzerland as an example,
which has the oldest population in the data set). The observed
pattern is consistent across different channels (not shown).

We compared the cross-site to a within-site prediction, where we
ran a cross-validated prediction within one given site without
using data from the other sites. While this can only be done effec-
tively for sites with a sufficient number of subjects, we observed
substantial increases in accuracy in this type of prediction.
Figure 4C,D shows the case of New York, where, the explained
variance went up to 0.63 and MAE became as small as 5.1.

Overall, these results demonstrate the challenges of predicting
across sites when the age distributions are very different, but
also that KMER and KRR can still produce reasonable accura-
cies even in this adverse situation.

2.5 | Comparison With Other Studies

To further compare with existing work on age prediction,
Table 1 presents the prediction accuracies from other studies
that performed age estimation from EEG data, using other
methodological approaches and data sets. Considering that
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(New York).

our method operates at the single-channel level, that it only
has access to the spectrograms, and that our reported ac-
curacies are primarily across sites (which, as mentioned, is
harder), the present accuracies fare well in relation to those
reported elsewhere.

3 | Materials and Methods

The general workflow of our analysis is presented in Figure 1.
In summary, we considered the spectrogram from every subject
as the only input. Predictions of age were made per channel in a

cross-validation fashion, where the acquisition sites (e.g., Russia)
were used as folds. We used three approaches to predict age from
the EEG spectrograms: RR, KRR, and KMER. For scoring pre-
diction performance, we used explained variance (R?) and the
MAE, which offers complementary information (Engemann
et al. 2022). We also computed the so-called delta, defined as
the signed difference between predicted and actual age, which is
often used to quantify brain age. In this section, we describe the
data set and KMER; RR and KRR are standard and their descrip-
tion can be found elsewhere. All code used in this paper is open
and publicly available at: https://github.com/katejarne/Kernel _
Max_mean_discrepancy_EEG_Age.
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Other results from the literature of age estimation using EEG. These figures were obtained using different methods, age ranges and datasets. EO and EC, respectively, denote eyes open and

TABLE 1

eyes closed. The results are compared with ours for the best channel in age space, for NY, in log space and using bias correction (see Figure S5).

Details

R?*/R

MAE

Range

Individuals

Work

(EO and EC) Neural networks

R2=0.81

6+0.33yr

[s, 88]
5, 18]

1335

Khayretdinova et al. (2022)

Random Forest

0.53<r<0.74

702

Vandenbosch et al. (2019)

EO/EC SV Regression + Clasifier

R?=0.60/R*=0.48

19, 67]
[18, 58]

94

Dimitriadis and Salis (2017)

nested-cross-validation (NCV)

6.68+0.69 R?>=0.37

468

Al Zoubi et al. (2018)

and stack-ensemble

(all electrodes)

0.83

R=

7.4yr

18, 80]
[40, 80]

2535

Sun et al. (2019) I

Same I

1974 Same I Same I

Sun et al. (2019) IT

3 EEG data sets: (LEMON, CHBP, TUAB)

R?in the range 0.60-0.74 (best)

Depends on a data set

[25, 75]

2500

Engemann et al. (2022)

R?=0.53 (best in log space) R2=0.73

R?=0.44 (best in age space)

[5,97] 10.78yr./ 5.24yr. (NY best)

1926

HarMNqEEG data set (present

work)

(best with Bias correction)

R2=0.59 (NY best)

3.1 | The HarMNqEEG Dataset

We used EEG spectrograms from the HarMNQEEG dataset (Li
et al. 2022), which originated from a legacy dataset associated
with the Cuban Human Brain Mapping initiative (Valdes-Sosa
et al. 2021). The data used in our study were collected from 9
countries, 12 EEG systems, and 14 experiments, which here we
refer to as batches or sites. Overall, there are 1966 subjects, of
which 40 subjects without a recorded age were excluded. Also,
we discarded babies and toddlers, considering only subjects be-
tween 5 and 97years old. For prediction, we used the rescaled
raw spectrogram, such that (just like a probability distribution)
the values integrate to 1.0. Additional details of the data set are
described in Supporting Information, including batch names in
the repository (Table S1 and Figure SI).

Recordings were taken from the 19 channels of the 10/20
International Electrodes Positioning System: Fpl, Fp2, F3, F4,
C3, C4, P3, P4, O1, O2, F7, F8, T3/T7, T4/T8, T5/P7, T6/PS,
Fz, Cz, and Pz, where Cz was the reference electrode in some
batches, while in others average-referencing was applied.
We therefore discarded Cz from the analysis and performed
the predictions for the other 18 channels. Data was format-
ted as cross-spectral matrices sampled from 1.17 to 19.14 Hz,
with a 0.39 Hz resolution. The scalp EEG cross-spectrum was
calculated by the data set curators using Bartlett's method
(Moller (1986)), by averaging the periodograms of more than
20 consecutive and nonoverlapping segments. Because the
spectra from different sites have different maximum cutoff
frequencies, we used the lowest maximum cutoff frequency
across sites for full compatibility. Thus, the histogram of each
of the 18 channels has 49 bins corresponding to a maximum
cutoff frequency of 19.13 Hz.

3.2 | Maximum Mean Discrepancy

This section describes the mathematical foundations of KME,
which the next section will use to elaborate on how KME can be
applied for prediction using EEG spectrograms.

KME fully characterise the distributions by mapping joint, mar-
ginal, and conditional probability distributions to vectors in a
high (or infinite) dimensional feature space (Fukumizu, Song,
and Gretton 2011; Smola et al. 2007). This implies that any
two distributions P and Q with differences in any moment are
mapped to separate points in a reproducing Kernel Hilbert space
Z (Fukumizu, Song, and Gretton 2011), which is essentially a
space of functions. In this space, we can for instance perform
classification, regression or clustering of probability distribu-
tions, with no loss of information.

In practice, we do not have access to the distributions P or
Q. so we use the available samples X = {x;, ... ,x,} and
Z={zy, ... %y ). The empirical estimate of the KME y, (i..,
the projection of the probability distribution on the reproducing
Kernel Hilbert space) is given by

fir =y 2 k). ®
i=1
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where k(-, -)is a Kernel function.

Now, the MMD, which is a distance metric established on the
space of probability measures (Gretton et al. (2012)), is defined as

MMD(P, Q) = [|up= o, @

The empirical estimate of the MMD, which we use here, is given by:

n m nm

D<P,o>=mk<ao>=¢,; R L AR W)

ip,ip=1 Jrda=1 ij=1

©)
where n and m are the number of samples in distributions P and
Q, respectively. In other words, this formula is based on similari-
ties between samples and quantifies the similarities within- (first
two terms) versus between distributions (third term). In what
follows, we considered this estimate of the MMD as our distance
metric between distributions (EEG spectrograms). We used a
radial basis function Kernel, lineal and polynomial as Kernel
functions.

3.3 | Kernel Mean Embedding Regression

In this section, we link the above concepts to prediction using
EEG spectrograms. We interpret the EEG spectrograms (res-
caled to sum up to 1.0) as probability distributions (denoted
above as P or Q). We expect these to vary across age so that we
can leverage these differences for prediction. We deterministi-
cally generated samples (above, referred to as, e.g., X) from each
rescaled spectrogram (whose bin heights sum up to 1.0) so that
we can compute the MMD following Equation (3). For example,
for a given channel, if the bin “10Hz” has a height equal to 0.2,
and we assume that we have n = 1000 samples, then we have
0.2 X 1000 = 200 samples equal to 10. This way, we can apply the
empirical estimator mk defined in Equation (3) to each pair
of spectrograms in the HarMNqEEG data set, considering dif-
ferent Kernel functions k( -, -). This produced a (N x N) distance
matrix D per Kernel, where N is the number of subjects. This
distance matrix needs then to be converted to a Kernel matrix
K, as required for any Kernelised algorithm. For this, we use a
second Kernel function, denoted as f(-, ), that takes a distance
between two subjects to produce a quantification of similarity.
Specifically, we use a radial basis function Kernel,

K(P,Q) = fiD(P, Q)) = exp(y D(P,Q)*), @

where the two subjects in question have been denoted as P and
Q for continuity in the notation, and y is a hyperparameter of the
Kernel function f{-). The resulting Kernel matrix K can then be
used to estimate prediction weights as

p=(K+al)y ®)

where y is the response variable (age), « is a regularisation hy-
perparameter (which we select using cross-validation) and I is
the identity matrix. A prediction for an incoming subject T is
then made as

™=

I
Jun

y= ) Bf(D(P,T)),

©)

where Py, ..., Py denote the training subjects.

4 | Discussion

In this paper, we have explored the use of Kernel methods for the
prediction of individual traits from EEG spectrograms and we
have introduced KMER, a prediction method based on the idea
of interpreting channel spectrograms as probability distribu-
tions. By doing this, we could leverage mathematical principles
from Kernel learning. Although not pursued in this paper, the
same principles can also be applied to other problems, such as
unsupervised clustering of subjects from EEG spectral informa-
tion. Even though the mathematical foundations of the method
are not particularly trivial, KMER is simple to implement and
use, provides spatial interpretation at the sensor or source space,
and is not computationally costly in comparison to more com-
plex (e.g., deep learning) approaches that are estimated on the
raw data. The fact that it only necessitates the spectrograms has
additional practical benefits in terms of data sharing. These ben-
efits are shared, nonetheless, by KRR.

We tested the methods in the prediction of age in the
HarMNqEEG dataset, a recently published international ini-
tiative that made EEG spectrograms available across different
cohorts and countries. In these data, we observed that KMER
and KRR performed similarly, although they both outperformed
non-Kernelised regression (RR), highlighting the benefits of
Kernel methods in this context. We note that compared to other
works that predicted age within a single cohort, predicting
across sites (i.e., such that models were trained on some sites
and tested in others) presents a more challenging problem be-
cause the distribution of age across sites varies substantially and
potentially also because of protocol or infrastructure differences
between the sites. Despite these difficulties, the presented re-
sults are comparable to previous EEG studies; see Section 2.5.
Furthermore, when training and testing within one site only
(New York, with a large number of subjects and the broadest age
range), the accuracy for some of the individual sensors attained
the state-of-the-art accuracies reported in the literature, some of
which used more complex models and whole-brain data.

An overarching limitation of all the methods is that, while dif-
ferences at younger ages are well-predicted, their predictive ca-
pacity is much reduced for the older age ranges. A conceivable
possibility is that the ageing process is comprised of two sepa-
rate components of change: a developmental and an ageing part,
with more salient differences within development. To investi-
gate this, we performed predictions on the logarithm of the age,
which improved results moderately, and we carried out a post
hoc bias correction (Smith et al. 2019), which did improve the re-
sults substantially. While the cause of this phenomenon may be
important, it falls out of the scope of this work and will require
further investigation.

Although we did not exhaustively explore it here, KMER could
be further optimised by expanding the selection of the Kernel
functions and hyperparameters. For instance, for KMER we
optimised the Kernel hyperparameter that generates the Kernel
matrix from the distance matrix (f(-), Equation 4), the Kernel
used in the construction of the MMD metric (k(-, -), Equation 3)
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also has a Kernel hyperparameter which we set to 1.0 by default.
Improving the hyperparameter tuning thus may be a potential
avenue for KMER to outperform the simpler KRR approach.
Future work will also explore extensions for multichannel pre-
dictions and prediction in source spaces.

Finally, it is worth noting that, although we here demonstrated
the performance of the tested methods on EEG, KMER (as well
as KRR) can be applied to other modalities such as MEG or
ECoG; and can be used to predict other individual traits besides
age, including cognitive and clinical variables.
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