TABLE 1.
Work | Individuals | Range | MAE | R 2/R | Details |
---|---|---|---|---|---|
Khayretdinova et al. (2022) | 1335 | [5, 88] | 6 ± 0.33 yr | R 2 = 0.81 | (EO and EC) Neural networks |
Vandenbosch et al. (2019) | 702 | [5, 18] | — | 0.53 < r < 0.74 | Random Forest |
Dimitriadis and Salis (2017) | 94 | [19, 67] | — | R 2 = 0.60/R 2 = 0.48 | EO/EC SV Regression + Clasifier |
Al Zoubi et al. (2018) | 468 | [18, 58] | 6.68 ± 0.69 | R 2 = 0.37 | nested‐cross‐validation (NCV) and stack‐ensemble |
Sun et al. (2019) I | 2535 | [18, 80] | 7.4 yr | R = 0.83 | (all electrodes) |
Sun et al. (2019) II | 1974 | [40, 80] | Same I | Same I | Same I |
Engemann et al. (2022) | 2500 | [25, 75] | Depends on a data set | R 2 in the range 0.60–0.74 (best) | 3 EEG data sets: (LEMON, CHBP, TUAB) |
HarMNqEEG data set (present work) | 1926 | [5, 97] | 10.78 yr./ 5.24 yr. (NY best) | R 2 = 0.44 (best in age space) R2 = 0.59 (NY best) | R 2 = 0.53 (best in log space) R 2 = 0.73 (best with Bias correction) |