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Medicinal plants, also known as herbs, have been discovered and utilized in traditional 
medical practice since prehistoric times. Medicinal plants have been proven rich 
in thousands of natural products that hold great potential for the development 
of new drugs. Previously, we reviewed the types of Chinese traditional medicines 
that a Tang Dynasty monk Jianzhen (Japanese: Ganjin) brought to Japan from 
China in 742. This article aims to review the origin of Kampo (Japanese traditional 
medicine), and to present the overview of neurodegenerative diseases and retinitis 
pigmentosa as well as medicinal plants in some depth. Through the study of 
medical history of the origin of Kampo, we found that herbs medicines contain 
many neuroprotective ingredients. It provides us a new perspective on extracting 
neuroprotective components from herbs medicines to treat neurodegenerative 
diseases. Retinitis pigmentosa (one of the ophthalmic neurodegenerative diseases) 
is an incurable blinding disease and has become a popular research direction 
in global ophthalmology. To date, treatments for retinitis pigmentosa are very 
limited worldwide. Therefore, we intend to integrate the knowledge and skills 
from different disciplines, such as medical science, pharmaceutical science and 
plant science, to take a new therapeutic approach to treat neurodegenerative 
diseases. In the future, we  will use specific active ingredients extracted from 
medicinal plants to treat retinitis pigmentosa. By exploring the potent bioactive 
ingredients present in medicinal plants, a valuable opportunity will be offered 
to uncover novel approaches for the development of drugs which target for 
retinitis pigmentosa.
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1 Introduction

Plants have long served as the primary source of medicinal 
compounds since the advent of humanity. Plants harbor a vast array 
of compounds, and these various compounds have tremendous 
potential in the development of future medicines. Here, we explore the 
realm of herbal medicine and plant science in relation to retinal 
neurodegenerative diseases. There has been limited research focused 
on extracting active ingredients from plants specifically for the 
treatment of retinitis pigmentosa. Therefore, a multidisciplinary 
approach is necessary to uncover effective solutions for these 
conditions. Collaborations across various disciplines such as plant 
science (1, 2), pharmaceutical science (3, 4), and medical science 
(5–10) can yield synergistic outcomes and contribute to the 
development of more sophisticated treatments for retinitis pigmentosa.

2 Overview of the neurodegenerative 
diseases

Neurodegenerative diseases (NDDs) are characterized by the 
gradual loss of neurons and/or their myelin sheath, leading to 
functional deterioration over time. Within the field of neurology, 
prominent neurodegenerative diseases include Alzheimer disease 
(AD), Parkinson disease (PD), amyotrophic lateral sclerosis (ALS), 
and more. Similarly, in the realm of ophthalmology, neurodegenerative 
diseases encompass retinitis pigmentosa, age-related macular 
degeneration, glaucoma, and other related conditions.

Neurodegenerative diseases are driven by various shared 
pathogenic mechanisms, including: (1) abnormal protein dynamics 
characterized by protein misfolding and aggregation; (2) oxidative 
stress resulting from the formation of reactive oxygen species and free 
radicals; (3) dysfunction of neurotrophic factors; (4) mitochondrial 
dysfunction; (5) neuroimmune inflammation; (6) failure of neuronal 
Golgi apparatus; (7) disruption of cell/axonal transport; and (8) 
altered cell signaling. The convergence of these diverse pathogenic 
factors ultimately leads to multifaceted neuronal cell death (11–14). 
Effective therapeutic strategies aim to tackle these pathogenic 
mechanisms to halt or delay disease progression.

Developing therapeutic strategies for neurodegenerative diseases 
has profoundly drawn much attention from the public and medical 
field. On December 23, 2021, President Biden signed the Accelerated 
Access to Critical Treatments (ACT) for amyotrophic lateral sclerosis 
(ALS) Act (ACT for ALS) into law as Public Law 117–79. This 
legislation mandates the Department of Health and Human Services 
(HHS) to collaborate with the Food and Drug Administration (FDA) 
and the National Institutes of Health (NIH) in establishing public-
private partnerships focused on rare neurodegenerative diseases. 
These partnerships will be facilitated through collaborative agreements 
or contracts, with the goal of enhancing our understanding of these 
diseases and expediting the development of treatments for ALS and 
other related conditions (whitehouse.org). The FDA has devised a 
comprehensive five-year plan to promote innovation, has streamlined 
processes, and accelerated the development of drugs specifically 
tailored for treating rare neurodegenerative diseases, including ALS 
(fda.org). Consequently, scientists around the world are actively 
engaged in research, development, and advancement of drugs aimed 
at addressing the treatment needs of individuals with rare 

neurodegenerative diseases, steering us toward a brighter future in 
this field.

3 Overview of the origin of Kampo 
(Japanese traditional medicine)

Monk Jianzhen, also known as Ganjin in Japanese, is renowned in 
Japan for his teachings on Buddhist precepts (Vinaya). Additionally, 
he played a crucial role in introducing Chinese herbal medicines to 
Japan. He not only cultivated medicinal plants within the country but 
also instructed his disciples on the identification and prescription of 
medicinal materials. Unfortunately, he lost his eyesight upon arriving 
in Nara, Japan (15). This event can be seen as the planting of a seed in 
the land, which subsequently led to numerous developments, 
including the field of pharmacognosy, the formulation of various 
Kampo medicines, and the treatment of countless people.

Jianzhen had five unsuccessful attempts to travel to Japan which 
finally led to achieving success on his sixth try. He lost his eyesight, 
when he arrived in Japan. During that era, these was no advanced 
medical technology for diagnosing the cause of blindness. Numerous 
sight-threatening conditions, such as cataract, glaucoma, age-related 
macular degeneration (AMD), diabetic retinopathy, as well as 
ophthalmological neurodegenerative disorders like retinitis 
pigmentosa (RP), remained undiagnosed and untreated. In contrast, 
contemporary medical advancements enable the diagnosis of these eye 
diseases and provide treatments to improve vision. Among the 
prominent areas of research in ophthalmology, retinitis pigmentosa 
stands out. Regrettably, most patients with this disease have no choice 
but to endure progressive vision loss.

4 Overview of the retinitis pigmentosa

Inherited retinal diseases (IRDs) are a group of inherited eye 
disorders that alter the structure and function of the retina, leading to 
vision loss and sometimes blindness. Eye is highly compartmentalized 
and shows the immune privilege during retinal degeneration (16, 17) 
which becomes an ideal tissue to evaluate genetic and pharmacological 
therapies. There are many types of IRDs, such as Retinitis pigmentosa 
(RP), Rod dystrophy or rod-cone dystrophy, Usher syndrome (USH), 
Bietti crystalline dystrophy (BCD), Alport syndrome, Leber congenital 
amaurosis (LCA) or early onset retinal dystrophy (EORD), Cone 
dystrophy, Cone-rod dystrophy (CORD), Macula dystrophy, 
Stargardt’s disease, Best disease, X-linked retinoschisis (XLRS). Most 
of IRDs affect the photoreceptor cells, which reduces or prevents the 
retina’s response to light and causes vision loss. Photoreceptors are 
light-sensing neurons that capture and convert light photons to 
electrical signals at the specialized primary cilia called outer segments 
(18). Two classes of photoreceptors, rods and cones, are found in the 
outer nuclear layer (ONL) of the retina that is located at the back of an 
eye. Rods are more sensitive in the condition of dim light, whereas 
cones are more sensitive in daylight and responsible for color vision 
(19, 20). In addition, cones are concentrated in the central area (i.e., 
macula) of a human retina (21). Cones localize in the center of the 
retina at the fovea. There are approximately 6 million cones and more 
than 100 million rods in a human retina (22). The most common IRD 
is retinitis pigmentosa (RP). RP is characterized by a progressive loss 
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of rods followed by the concomitant loss of cones (23). The disease 
syndrome is commonly exemplified by night blindness or nyctalopia 
at early stages, accompanied by the deterioration of abnormal 
rod-driven electroretinogram. As RP progresses to later stages, 
gradual ocular fundus changes become noticeable, primarily 
encompassing a triad of optic disk pallor, attenuation of retinal blood 
vessels, and the dispersion of bone spicule-like pigments (24). 
Extensive loss of photoreceptors eventually leads to tunnel vision or 
blindness. RP inheritance can be autosomal dominant, autosomal 
recessive, or X-linked recessive (23). The advancement of genetic 
testing has identified the genetic causes of IRDs for approximately two 
thirds of associated patients (25, 26), including cases of 
RP. RP-associated genes include rod-function genes such as RHO, 
ABCA4, CNGA1, and CNGB1, and rod-specific transcription factor 
genes NRL and NR2E3 (27–29) (retnet.org).

RP is currently uncurable for the majority of patients. Gene 
therapy, particularly gene augmentation/replacement, yields a new 
hope for these patients. LUXTURNA (voretigene neparvovec-rzyl) is 
a prescription gene therapy product used for the treatment of patients 
with recessive mutations in RPE65 gene (30). Many clinical trials are 
testing AAV-mediated gene therapies for various forms of RP (31, 32). 
Unfortunately, gene therapy does not cover all forms and onsets of 
RPs. Some of the advantages of herbal medicines and extracted 
compounds in treatment for IRDs include: (1) Genetic testing cannot 
detect all RP-associated genes or compound heterozygosity. Hence, 
gene therapy may not be applicable to patients with unknown genetic 
causes. These patients would opt for other forms of medication to 
delay the disease progression. Pharmacological interventions are 
gaining great popularity for early-stage RP (33–35). Many preclinical 
tests involve the therapeutic applications of antioxidants and other 
natural products to RP-related animal and/cell models (details are 
discussed in the following section). (2) Gene therapy usually targets 
early-onset IRDs. There is no clinical trial of genetic interventions for 
mid- and late-onset RP. In addition, the clinical diagnosis of mid- and 
late-onset neurodegenerative diseases often suffers from the low 
specificity of individual assessment methods and biomarkers (36). 
Hence, antioxidants provide the conservative treatment to patients 
with mid- and late-onset RP. (3) Different forms of RP demonstrate 
variable onsets and patterns of disease progression (37, 38). The 
accuracy of forecasts for the disease progression is unavailable. The 
herbal medicines would prolong the window of opportunity for 
symptom monitoring and further interventions. (4) The herbal 
medicines would serve as a general therapeutic strategy, regardless of 
the specific mutations, aging conditions, and spatial patterns. (5) The 
herbal medicines would become a valuable second-line therapy to 
enhance the efficacy of gene therapy, chemical intervention (39–42) 
and cell transplantation (43).

5 Overview of the medicinal plant

5.1 The history of medicinal plant use

The history of medicinal plants dates back thousands of years, 
with various archeological discoveries attesting to their early use. For 
instance, a cave in South  Africa revealed 77,000-year-old beds 
constructed from the anti-mosquito plant Cryptocarya woodii (44). 
Dental calculus from Neanderthals dating back 49,000 years (during 

the Paleolithic Age) contained residues of Asteraceae plants such as 
Matricaria chamomilla (chamomile) and Achillea millefolium 
(common yarrow) (45), that have functions of alleviating toothache. 
In Xiaoshan, Hangzhou, Zhejiang, an 8,000-year-old tea tree seed was 
found at the Kuahuqiao site (46), alongside pottery cauldron cooking 
utensils containing plant residues associated with herbal medicine. 
Archeologists also discovered a range of medicinal plants, including 
Ziziphus jujube, Gorgon fruit, and water chestnut, in the ruins of the 
5,000-year-old Liangzhu ancient city (47).

Traditional Chinese medicine (TCM) holds a prominent position 
with its long-standing history of thousands of years, serving as a global 
representative of traditional medicine. In the quest for disease 
treatment and health maintenance, more and more people have 
turned to natural medicines and green plants (Figure 1). Traditional 
medicine practices are often passed down through generations orally. 
Jianzhen’s prescription, for example, has been verbally transmitted for 
over 1,000 years and has now been compiled into a book by Lei Yutian, 
a 52nd generation inheritor, making it available to the public (15).

China, specifically, boasts numerous traditional Chinese medicine 
formulas that demonstrate potent therapeutic effects, although their 
standardization still requires international recognition. Such 
traditional medicinal practices can be found worldwide and harbor 
significant therapeutic potential. However, many of these herbal 
medicines are at risk of disappearing due to insufficient 
documentation. Establishing relevant regulations and policies for their 
protection would elevate the standards of traditional herbal medicines 
to international levels, ultimately benefiting a greater number 
of patients.

In TCM, various parts of natural plants, such as roots, stems, and 
leaves, are utilized as medicinal materials (Figure 1). Each Chinese 
medicine recipe contains hundreds of known and unknown chemical 
compounds. Presently, China recognizes over 10,000 types of 
traditional Chinese medicines, serving as a vast reservoir of organic 
compounds waiting to be explored. From these organic precursor 
compounds, diverse drugs for numerous diseases can be developed in 
the future.

Japan, with its distinct approach, approves Kampo medicines 
based on governmental assessments of their safety, effectiveness, 
quality, and manufacturing control. These medicines are prescribed 
alongside Western medicines under national health insurance and are 
also available as over-the-counter drugs in pharmacies. The materials 
used in Kampo medicines are derived from medicinal plants 
(Figure 2). The plant names were checked with http://mpns.kew.org. 
It has been discovered through recent research that the origin of the 
structured and systematic prescriptions in Japanese Kampo medicine 
can be attributed to Jianzhen, who arrived in Japan during the Nara 
period in the eighth century. Some herbal medicines brought by 
Jianzhen are preserved in the Shoso-in of Todaiji Temple, and certain 
prescriptions are included in the oldest medical book, “Ishin-ho,” 
compiled by Tanba Yasuyori in 984, albeit with limited details available.

5.2 Current market value of medicinal plant 
compounds

Medicinal plant compounds have a long history, and many 
early medicines were derived from natural metabolites found in 
plants. Prominent examples of plant-derived medications include 
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aspirin, quinine, and digoxin. Plants contain a vast array of 
compounds, including secondary metabolites, which can 
be broadly categorized into three groups: phenolics, terpenoids, 
and alkaloids (48). Numerous natural compounds from these 
plants which now serve as active ingredients in many modern 
pharmaceuticals. The global pharmaceutical market, valued at 
around US$1.1 trillion annually, relies on the drugs derived from 
natural products. Among these sources, plants contribute 25%, 
microorganisms contribute 13%, and animals contribute 3% (49). 
The utilization of natural products offers several advantages 
compared to other sources. These compounds exhibit chemical 
novelties that can serve as starting points for developing potential 
drug candidates targeting complex diseases. Moreover, naturally 
derived ingredients possess chemical diversity, intricate bi- and 
tri-dimensional structures, and can be efficiently absorbed and 
metabolized within the body (50). Medicinal plant compounds 
encompass a variety of active ingredients and secondary 
metabolites that demonstrate favorable properties, including 
anti-inflammatory, anti-bacterial, antiviral, anti-cancer, 
antioxidant, and anti-apoptotic effects. In this article, we provide 
a review of select medicinal plant components employed in the 
treatment of retinitis pigmentosa, and we  anticipate future 
research directions and advancements in the application of 
medicinal plants within this field. The significant role of 
medicinal plants as invaluable resources for the development of 
new drugs within the global pharmaceutical industry cannot 
be overstated (Table 1).

6 Phytogenic compounds currently in 
development to treat retinitis 
pigmentosa

Herbal medicines currently being developed for the treatment of 
retinitis pigmentosa include Lycium barbarum polysaccharide, 
salvianolic acid B, tanshinone IIA, rutin, quercetin, lutein, Safranal, 
curcumin, etc. (Figure 1), which mainly protect retinal nerve cell 
damage through the antioxidant properties of herbal medicine. 
Numerous clinical and epidemiological studies have demonstrated the 
beneficial effects of these plant-derived compounds on ocular diseases 
(51). More importantly, these compounds have been tested in animal 
models of retinitis pigmentosa (details are listed below).

Major animal models of retinitis pigmentosa are described as 
follows. (1) Mice homozygous for the retinal degeneration 1 (rd1) 
mutation have an early-onset severe rod degeneration mainly due 
to a nonsense mutation in exon 7 of the Pde6b gene (52, 53) which 
causes undetectable PDE6B protein. At postnatal day (P) 10, the 
rod outer segment shows signs of disruption, the apoptosis of 
photoreceptor cells increases with a rapid loss of rods by P14 (age 
of eye opening). Rod degeneration happens in prior to cone 
degeneration in all regions of the retina. By P21, less than 2% of 
rods can be found in rd1/rd1 mice but more than half of cones are 
still present (54). Expression of rod-enriched genes is 
downregulated in rd1/rd1 mice (55, 56). (2) The retinal 
degeneration 10 (rd10) mouse carries a missense mutation (R560C) 
in exon 13 of the Pde6b gene (57), causing a reduced PDE6B 

FIGURE 1

Structures of the main component of some Chinese herbal medicines.
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protein expression. Photoreceptor loss occurs from the central 
retina at P16 and spreads to the peripheral retina around P20 in 
homozygous mutants, for which the peak of apoptosis happens 
between P18 and P25. ONL is fully degenerated by P60 (58). (3) 

Autosomal dominant RhoP23H is the most frequent RP mutation 
(59). Rod outer segments appear shorter in RhoP23H/+ mouse retinas 
at P35, and about 50% ONL neurons are lost in mutants at P63 
(60). The pathogenic mechanism indicates that a misfolded 

FIGURE 2

Medicinal plants for Kampo Medicines in Medical Botanical Garden (Okayama University, Japan). (A) Scutellaria baicalensis Georgi, (B) Ocimum 
basilicum L., (C) Typha orientalis C.Presl, Nymphaea tetragona georgi, (D) Catharanthus roseus (L.) G.Don, (E) Ephedra intermedia Schrenk & C.A.Mey., 
(F) Bupleurum chinense DC., (G) Stemona sessilifolia (Miq.) Miq., (H) Lagerstroemia indica L., (I) Agrimonia pilosa Ledeb., (J) Senna obtusifolia (L.) 
H.S.Irwin & Barneby, (K) Ficus erecta Thunb., (L) Fagopyrum cymosum (Trevir.) Meisn., (M) Isodon japonicus (Burm.f.) H.Hara, (N) Ziziphus jujuba Mill. 
(O) Chamaecrista nomame (Makino) H.Ohashi.

TABLE 1 Representative herbal medicines for the treatment of Retinitis Pigmentosa.

No. Chinese herbal 
medicines

Extraction source Pharmacological effects in 
the treatment of retinitis 
pigmentosa

Animal model of 
retinitis pigmentosa

1
Lycium barbarum 

polysaccharide (LBP)
Goji berry fruit (Lycium barbarum L.) Antioxidant effect rd1

2 Salvianolic acid B The root and rhizome of Danshen (Salvia miltiorrhiza Bunge) Antioxidant effect rd10

3 Tanshinone IIA The root of Danshen (Salvia miltiorrhiza Bunge) Antioxidant effect rd10

4 Rutin Citrus fruits, buckwheat, asparagus, and apples, etc. Antioxidant effect rd10

5 Quercetin Peppers, onions, berries, broccoli and red apples, etc. Antioxidant effect rd10

6 Lutein Spinach, kale, and broccoli, etc. Antioxidant effect rd10

7 Safranal Stigmas of saffron (Crocus sativus L.) Antioxidant effect, antiapoptotic effect P23H

8 Curcumin Turmeric ginger (Zingiber officinale Roscoe) Antioxidant effect P23H
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monomer of P23H opsin induces aggregation of mutant rhodopsin 
protein with WT counterpart and prevents the formation of rod 
outer segment.

 1) Lycium barbarum polysaccharide (LBP). LBPs are a group of 
water-soluble glycoconjugates and can be  extracted from 
wolfberry or goji berry (Lycium barbarum L.) (61, 62). Goji 
berry is a common herb of traditional Chinese medicine (63). 
Regular treatment of LBPs benefited the neuronal survival in 
studies of animal models (64–67). In particular of 
retinopathies, LBPs could preserve neurons (ex: rod bipolar 
cells and amacrine cells) of inner nuclear layer in the model of 
retinal ischaemia (68), and protect retinal ganglion cells from 
CoCl2-induced apoptosis (69). Notably, LBPs delayed the 
ensuing degeneration of retinal ganglion cells and cone 
photoreceptors in rd1 mice (70), which matched results of a 
placebo-controlled intervention trial with 12-month LBP oral 
administration (71). Since the therapeutic window for rods 
appeared longer in rd10 mice, LBP treatment reduced 
photoreceptor apoptosis via inhibition of through inhibition 
of NF-κB and HIF-1α pathways and improved scotopic and 
photopic electroretinogram responses. In addition, LBP 
treatment could inhibit the activation of microglia in rd10 
retinas (72). However, polysaccharides have limited solubility 
in conventional solvent system, leading to difficulties in 
effective extraction and co-delivery with other 
compounds (73).

 2) Salvianolic acid B (Sal B). Sal B is a 1-benzofuran derived from 
the root and rhizome of the plant species Danshen (Salvia 
miltiorrhiza Bunge), which has been commonly used in 
traditional Chinese medicine for various therapeutic purposes 
(74, 75). Sal B is well known for its anti-apoptotic and anti-
inflammatory properties in treating neurodegenerative diseases 
via associated pathways of PI3K/Akt (76, 77), AMPK (78, 79), 
SIRT1 (78, 80) etc. Furthermore, studies have explored the 
therapeutic effects of Sal B in RPE and lens diseases, indicating 
its anti-oxidative stress roles via examples of NRF2 signaling 
(81), TNF-α signaling (82). On the other hand, studies have 
shown the neuroprotective effects of salvianolic acid A (Sal A), 
that has similar chemical properties with Sal B, in a 
photoreceptor degenerative model (83). A marked limitation 
of applying salvianolic acids in clinical assessments is their low 
stability in buffers with plasma pH (84).

 3) Tanshinone IIA (Tan IIA). Tan IIA is another compound 
found in the root of Danshen, and belongs to a group of 
diterpenes called tanshinones. Tan IIA and its derivative 
sodium tanshinone IIA sulfonate carry o-naphthoquinone 
chromophore and provide anti-oxidation protection to retinal 
(85) and RPE cells (86) in stress-related models. A notable 
challenge of applying Tan IIA in clinical assessments is the 
poor oral bioavailability and water solubility (87), even though 
sodium tanshinone IIA sulfonate has improved water-soluble 
property (88). Sal B and Tan IIA have not been largely applied 
to IRD models and patients. Promisingly, the extracts from 
salvia miltiorrhiza bunge (containing Sal B and Tan IIA) could 
improve retinal morphology and function in rd10 mice via the 
inhibition of oxidative stress by regulating the NRF2/HO-1 
pathways (89).

 4) Rutin. Rutin is also known as rutoside, a flavonoid that can 
be extracted in several plants, including tea leaves, citrus fruits, 
buckwheat, asparagus, and apples (90). Rutin inhibited 
cataractogenesis by maintaining the activity of antioxidant 
proteins (91, 92), and also delayed the photoreceptor 
degeneration in streptozotocin-induced diabetic retinas by 
directly regulating anti-apoptotic and antioxidant pathways 
(93, 94). In addition, ginkgo biloba extracts, procyanidin B2 
and rutin, promoted RPE cell survival against t-BHP-induced 
apoptosis, suggesting their therapeutic potentials in treating 
age-related macular degeneration (AMD) (95). However, rutin 
has not been largely practiced in IRD-related trials.

 5) Quercetin. Quercetin is a flavonoid found in fruits and 
vegetables, such as peppers, onions, berries, broccoli and red 
apples (96, 97), and its extraction is relatively easy (98, 99). The 
compound has two pharmacodynamic groups: a catechol 
group in the B ring and a 3-position OH group. Quercetin 
upregulated antioxidant peroxiredoxins through activation of 
the pro-survival signaling such as NRF2 and HO-1 signaling 
in models of AMD (100–102) and diabetic retinopathy (103, 
104), and promoted the photoreceptor survival in NaIO3-
treated mice (105). Moreover, quercetin downregulated photo-
oxidative stress in light-damage photoreceptors by inhibition 
of the heterodimer binding of c-Jun and c-Fos proteins 
involved in the AP-1 pathway (106). More importantly, 
quercetin promoted the cone survival and functions in rd10 
mice during the period of persistent rod degeneration by 
reducing the expression of oxidative stress markers (107). Since 
its effective antioxidant and anti-inflammatory properties have 
been well observed in treating ocular diseases (108–110), 
quercetin can be a good candidate for second-line therapy to 
RP treatment.

 6) Lutein. Lutein is a dietary carotenoid, found in various plants, 
particularly in green leafy vegetables such as spinach, kale, and 
broccoli. Its extraction from plants is not complicated (111–
113). The neuroprotective effects of lutein in treating ocular 
diseases have been well documented (114–116), including its 
profound therapeutics in AMD treatment (117–119). In 
addition, 1-week treatment of lutein rescued rods and cones in 
rd10 mice and reduced the reactive gliosis of Müller cells and 
inflammatory response (120). A 24-week lutein 
supplementation significantly preserved the visual field in 
placebo-controlled clinical trial on RP patients (121), however, 
inconsistent findings were obtained in other studies (122, 123).

 7) Safranal. Safranal is a component extracted from stigmas of 
saffron (Crocus sativus L.) (124). Saffron extracts including 
safranal improved anti-inflammation and retinal functions in 
glaucoma models (125) and POAG trials (126, 127), and 
preserved photoreceptor and RPE cell survival in AMD models 
(128–130) and trials (131–133). In addition, the dietary 
supplementation of safranal prolonged photoreceptor survival, 
ameliorated the loss of retinal function, and improved the 
vascular network in RhoP23H/P23H rats (134). The neuroprotection 
to rod photoreceptor by safranal can be further exemplified in 
light-damage models (135, 136). Therefore, safranal or saffron 
extracts may have the promising therapeutic potential in RP 
treatment. However, the application of saffron extracts exhibits 
dose-dependent adverse effects (137). Hence, the clinical and 
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experimental studies with safranal or saffron extracts usually 
adopted dosages of milligrams, showing minimum 
adverse effects.

 8) Curcumin. Curcumin is the active compound extracted from 
turmeric ginger (Zingiber officinale Roscoe) (138, 139). 
Curcumin is a powerful antioxidant and anti-inflammatory 
agent that has been used in traditional Chinese medicine and 
widely used in clinical applications (140). In particular, 
curcumin treatment upregulated the expression of rod- and 
cone-specific genes and translocated rhodopsin to rod outer 
segment in RhoP23H/P23H rats. Curcumin treatment also 
reduced the endoplasmic reticulum stress in retinas (141). A 
similar rescue result by curcumin was reported in P23H 
swine model (142). Neuroprotective effects of curcumin on 
the photoreceptor survival can be  seen in N-methyl-N-
nitrosourea (MNU)-treated rats (143). However, clinical 
studies have shown adverse effects at high doses (>12 g/
daily) of curcumin (144).

7 Treatment of retinal 
neurodegenerative diseases requires 
multidisciplinary collaboration

Genes, proteins, and lipids in the photoreceptor cells of retinitis 
pigmentosa animal models were highly oxidized, and oxidative 
damage was present in retinitis pigmentosa regardless of genotype 
(145). Retinitis pigmentosa is a disease caused by multiple genetic 
factors, and the path of disease expansion and rate of degeneration 
vary from person to person. Treatments that target different genes 
mutations are expensive and not efficient. The ideal solution would 
be to develop a treatment that can treat retinitis pigmentosa caused by 
all the different genetic defects. At the same time, treatments of early 
stage of degeneration of retinitis pigmentosa caused by genetic defects 
in rod photoreceptor cells will be  required. Oxidative damage is 
related to the pathophysiology of retinitis pigmentosa such as death of 
rods and cones, and retinal inflammation may become a common 
therapeutic target for retinitis pigmentosa. A limitation of current 
research is that plants for the use in retinitis pigmentosa have not yet 
been fully developed, and more plants with effective active ingredients 
are worth developing and applying in this field. Other botanicals, 
including Tibetan medicines (Saussurea medusa Maxim, known as 
“snow lotus”) (146–148) and health products (various types of tea and 
mulberry leaves) also have antioxidant and neuroprotective effects. 
These herbal medicines can be developed for the treatment of retinal 
degenerative diseases (149, 150). In the future, we look forward to 
jointly developing new drugs for retinitis pigmentosa caused by 
oxidative damage through multidisciplinary collaboration with 
botanical scientists, pharmaceutical scientists, medical scientists, 
and ophthalmologists.

8 Future perspectives

In China, doctors currently prescribe several traditional Chinese 
medicine (TCM) to patients. The main principle of TCM is to restore 
the balance of yin and yang as well as the harmony of body and mind. 

Using the “look, smell, ask, and feel” method, doctors collect 
comprehensive information about the patient’s symptoms and signs. 
Based on this diagnosis, doctors select appropriate medicines and 
determine their dosages. A TCM prescription typically consists of 
multiple drugs, ranging from several to dozens. In TCM, it is believed 
that every medicine has a 70% therapeutic effect and a 30% potential 
for side effects. Furthermore, a famous ancient book from the Former 
Han Dynasty called “Huangdi Neijing” categorizes Chinese medicine 
into four groups based on toxicity: highly toxic, moderately toxic, 
mildly toxic, and non-toxic. Medicines can not only cure diseases but 
also cause them or have lethal effects. As a result, ensuring the safety 
of TCM prescriptions is paramount. The Pharmacopeia and literature 
have clear warnings regarding the cautious use or avoidance of 
toxic medicines.

While some patients travel to Western countries seeking gene 
therapy, others, due to genetic incompatibility or economic factors, 
opt for more affordable TCM treatments upon returning to China. 
Encouragingly, many have experienced positive therapeutic effects. 
Western medicine primarily targets specific or multiple disease-related 
factors, while TCM aims to rebalance the overall yin and yang in the 
body for therapeutic outcomes. Herbal medicine is often considered 
an alternative or complementary treatment option (151).

Research-based repositories of natural products are available, for 
example, the National Cancer Institute Natural Products Repository 
of NIH offers thousands of plant samples and resulting extracts, 
including Traditional Chinese Medicinal Plant Extracts Library, for 
drug screening studies. The eight above-mentioned compounds and 
associated herbs can be found in this repository, although a large 
majority of herbal extracts have not been tested in the treatment for 
inherited retinal diseases such as retinitis pigmentosa. In 2004, the 
FDA formulated the Botanical Drug Guidance, which is applicable to 
the clinical trials and inspection registration of new botanical drugs. 
Then the “Botanical Drug Development” guidance was announced in 
2016, to address development considerations for late-stage trials and 
provide recommendations designed to facilitate botanical drug 
development (fda.org) (152). However, only some botanical New 
Drug Applications (NDAs) have been approved in the United States 
so far: Veregen in 2006, Fulyzaq in 2012 (152), Zoryve in 2023 
(zoryve.com) and Filsuvez in 2023 (filsuvez.com). Scientists used this 
guidance to guide the research and development of botanical 
medicines (153). On the other hand, the European Medicines Agency 
(EMA) of the European Union proposed a draft “Guideline on quality 
of herbal medicinal products / traditional herbal medicinal products” 
in 2005 for the quality control of botanical medicines, then officially 
announced it in 2006, and a revised version (revision3) was released 
in 2022 (ema.europa.eu). Although Chinese pharmacy and Western 
pharmacy are separate disciplines in China, some scholars argue that 
the two can complement each other and have synergistic effects (154–
156), thus surpassing the efficacy of either approach alone. In 
addition, we found in clinical practice that when doctors are seeing 
patients in outpatient clinics, genetic testing department and clinical 
trial staff are participating at the same time. In the future, the 
treatment of patients with retinitis pigmentosa can be combined with 
personalized medicine (157, 158) or comprehensive medical care. For 
example, the genotype of patients with retinitis pigmentosa can 
be detected first, then genetic testing can more accurately classify/ 
diagnose inherited retinal diseases and relevant drug treatment can 
be formulated based on the genotype.
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TCM was introduced to Japan and, after over a thousand years 
of adaptation, has evolved into Kampo medicine, tailored to the 
Japanese constitution. In the future, TCM may be adjusted to suit 
the constitution of people from different regions and become a 
form of medicine applicable to individuals worldwide. Given the 
diverse medicinal plants found across the globe due to variations 
in soil, climate, and region, it is crucial to fully explore and develop 
medicinal herbs derived from these plants. Additionally, 
developing new drugs from the organic compounds present in 
these herbal extracts, combining them with gene therapy, cell 
therapy, and other innovative approaches, holds great value in 
overcoming rare human diseases and improving physical and 
mental well-being.
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