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Deep learning-based patient stratification 
for prognostic enrichment of clinical 
dementia trials
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Dementia probably due to Alzheimer’s disease is a progressive condition that manifests in cognitive decline and impairs patients’ daily 
life. Affected patients show great heterogeneity in their symptomatic progression, which hampers the identification of efficacious treat
ments in clinical trials. Using artificial intelligence approaches to enable clinical enrichment trials serves a promising avenue to identify 
treatments. In this work, we used a deep learning method to cluster the multivariate disease trajectories of 283 early dementia patients 
along cognitive and functional scores. Two distinct subgroups were identified that separated patients into ‘slow’ and ‘fast’ progressing 
individuals. These subgroups were externally validated and independently replicated in a dementia cohort comprising 2779 patients. 
We trained a machine learning model to predict the progression subgroup of a patient from cross-sectional data at their time of de
mentia diagnosis. The classifier achieved a prediction performance of 0.70 ± 0.01 area under the receiver operating characteristic 
curve in external validation. By emulating a hypothetical clinical trial conducting patient enrichment using the proposed classifier, 
we estimate its potential to decrease the required sample size. Furthermore, we balance the achieved enrichment of the trial cohort 
against the accompanied demand for increased patient screening. Our results show that enrichment trials targeting cognitive outcomes 
offer improved chances of trial success and are more than 13% cheaper compared with conventional clinical trials. The resources 
saved could be redirected to accelerate drug development and expand the search for remedies for cognitive impairment.
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Graphical Abstract

Introduction
Dementia is a debilitating, progressive condition that is pri
marily described by cognitive decline. It can be caused by 
multiple neurological diseases, with Alzheimer’s disease 
causing 75% of all cases.1 With increasing symptom severity, 
patients become impaired in their daily life and require full- 
time care, which poses a great burden to patients, caregivers 
and society. With the recent trials of aducanumab,2 donane
mab3 and lecanumab4 being the only successes in the past 20 
years, most clinical trials aiming to identify treatments 
against cognitive decline in Alzheimer’s disease have 
failed.5,6

The low success rate of clinical trials aimed at improving 
cognitive outcomes can be attributed, in part, to the signifi
cant variability in how patients’ symptoms progress, even 
during the earliest stages of the disease.6,7 This variability 
poses a statistical challenge and can impede the identification 
of significant treatment effects. One potential solution to this 
issue is to increase the sample size of clinical trials to enhance 
statistical power. However, this approach is costly as it re
quires more treated patients.

Alternatively, clinical trials can aim for a targeted recruit
ment of patients that will likely exhibit a faster disease pro
gression and change in cognitive outcomes.8 This 
enrichment of patients from a subgroup experiencing a 
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more homogeneous, fast symptomatic progression repre
sents a so-called enrichment trial9 and promises several ad
vantages over traditional clinical trials: It can unmask 
treatments that are only efficacious in specific patient sub
groups but fail in the average population,10 and recruited 
trial cohorts can be smaller due to the reduced heterogeneity 
and increase in effect size.11 The advantages of enrichment 
trials have also been recognized and promoted by the US 
Food and Drug Administration in 2019. To enable enrich
ment trials, however, robust patient subgroups with distinct 
symptom progression patterns must be identified and vali
dated.12 Furthermore, it must be possible to predict the sub
group membership of an individual from cross-sectional data 
already available during patient screening. Also, in the light 
of the recent approvals of three monoclonal antibodies tar
geting the Alzheimer’s disease characteristic amyloid beta 
pathology,2-4 the timely prognosis of patients’ likely course 
of cognitive decline would help to optimize the correct tim
ing and intensity of treatment. Prognostic models designed 
for this task would also be of immense value from a patient 
perspective, because they would allow them to better plan 
their future.

One family of approaches that allows for identifying patient 
subgroups based on multimodal patient-level cohort data is 
clustering methods. In the context of Alzheimer’s disease, 
such approaches were predominantly applied to cross- 
sectional data of patients.13-15 However, cross-sectional clus
terings fall short in capturing the longitudinal dynamics of 
Alzheimer’s disease dementia, and resulting subgroups can 
be biased by the disease stages in which patients resided at 
the time of data collection. Recent studies that take progressive 
signals into account focussed mainly on exploring the path
ology of the disease in the form of imaging biomarkers16 rather 
than the cognitive outcomes directly relevant for clinical trials.

In this work, we apply an artificial intelligence approach 
for clustering multivariate clinical disease trajectories of de
mented Alzheimer’s disease patients. The resulting sub
groups are then externally validated and independently 
replicated in another cohort study. We construct and valid
ate a machine learning classifier to accurately predict the fu
ture progression type of individuals from cross-sectional 
data only. Finally, we demonstrate the value our classifier 
could provide to enrichment trials for treatments of cognitive 
decline by enabling cheaper trials with smaller cohort sizes.

Materials and methods
Cohort data sets and patient 
selection
Two independent cohort data sets were used in this study: 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)17

and the National Alzheimer’s Coordinating Center 
(NACC).18 ADNI is an observational cohort study with pre
dominantly White, highly educated participants.19 NACC 
aggregates data from Alzheimer’s Disease Research Centers 

across the USA and is more diverse and heterogeneous than 
ADNI.20 Both cohort studies adhered to the Declaration of 
Helsinki and got approval from their institutional review 
boards. We only included patients who developed dementia 
probably due to Alzheimer’s disease during the runtime of 
their respective cohort study. Furthermore, patients must 
have had at least one follow-up assessment after their demen
tia diagnosis and visits prior to it were excluded. This led to 
283 analysable patients for ADNI and 2779 for NACC, 
with a median of 2-year follow-up, respectively. Three years 
after diagnosis, 70 patients were available in ADNI and 
1080 patients in NACC.

Multivariate patient trajectory 
clustering
To cluster patients into symptom progression subgroups, we 
used our previously published VaDER approach that was spe
cifically designed with longitudinal clinical data in mind.21

VaDER is a deep learning approach that clusters multivariate 
time-series data and imputes missing values implicitly during 
model training. Hyperparameters were optimized following 
the procedure described in de Jong et al.21: We evaluated sev
eral possible models using different hyperparameter configura
tions (including the number of sought-after subgroups) and 
selected the hyperparameters of the best-performing model. 
Model performance was measured by comparing the predic
tion strength of the clustering induced by the trained model 
against a random clustering of the same data.22 To determine 
the optimal number of clusters, we selected the smallest num
ber that showed a significant difference from random cluster
ing (Supplementary Fig. 1). Selected hyperparameters are 
presented in Supplementary Table 1.

We clustered patients based on their trajectories of three 
major clinical scores measuring symptom progression: 
the Mini Mental State Examination (MMSE), Clinical 
Dementia Rating Sub of Boxes (CDRSB) and Functional 
Activities Questionnaire (FAQ). These measures were cho
sen due to their shared availability in the analysed data sets 
and relevance for clinical trials targeting early Alzheimer’s 
disease (Supplementary Table 2). Patient trajectories were 
aligned on their dementia diagnosis to avoid biases intro
duced through patients being in different clinical disease 
stages at their study baseline. Considering the average length 
of currently ongoing Phase 3 trials for cognitive treatments 
enrolling early Alzheimer’s disease patients (∼24 months; 
Supplementary Table 2) and the longitudinal follow-up of 
ADNI and NACC, we clustered trajectories spanning up to 
3 years. Each clustering was repeated 40 times, and the final 
subgroup assignments of patients were based on a consensus 
clustering across the repeats.

Cluster validation and replication in 
external data
To evaluate the robustness and validity of our identified pa
tient subgroups, we conducted an external validation of 
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ADNI-derived subgroups in NACC and, additionally, per
formed a replication of the analysis starting with NACC 
data. For the external validation, we applied the 
ADNI-trained clustering model to NACC to determine 
whether the resulting subgroups of NACC patients re
sembled those identified in ADNI. Furthermore, we aimed 
to replicate the results by starting with a new, independent 
clustering of NACC to see if we would get an optimal cluster
ing that was similar to the one achieved under the 
ADNI-trained model. We further externally validated this 
NACC-derived clustering in ADNI. Finally, we assessed 
the concordance between patient assignments within each 
data set under both clustering models.

Building a machine learning classifier 
for cluster prediction
We built machine learning classifiers to predict the progres
sion cluster membership of individuals. Only cross-sectional 
data available at the time of each patient‘s dementia diagno
sis were included as predictors. We used the XGBoost algo
rithm that employs an ensemble of decision trees and can 
handle missing values.23 The classifiers were trained and 
evaluated in a nested 8-fold cross-validation, which we re
peated 10 times to ensure robust results. The hyperpara
meter optimization was performed in the inner 8-fold 
cross-validation and model evaluation occurred in the outer 
one (details in the Supplementary material).

As more data modalities were available in ADNI than in 
NACC,24 we built two separate classifiers: a multimodal 
classifier based on the ADNI data and another classifier using 
only features common between ADNI and NACC (in the lat
ter referred to as ‘common predictor’ classifier). The ‘com
mon predictor’ version of the classifier allowed for an 
external validation.

The multimodal classifier incorporated demographic in
formation (7 features), clinical assessments and their sub
scores (11 assessments amounting to 66 features in total), 
biomarkers (62 magnetic resonance imaging-derived brain 
region volumes, 3 positron emission tomography and 4 cere
brospinal fluid], and genetic variables (APOE ϵ4 status, 75 
disease pathway perturbation scores; see Supplementary 
material for details on pathway score calculation and 
Supplementary Data Set 1 for a list of all predictors). 
Individual MMSE questions were summed into subscores 
as described in the Supplementary material. Due to the in
creased requirements on the available data compared with 
the initial clustering, the sample size of ADNI was reduced 
to 230 patients for this analysis.

For the ‘common predictor’ version of the classifier, the 
number of available features decreased to 28, now compris
ing only APOE ϵ4 status, clinical and demographic features 
(1, 22 and 5 features, respectively). The clinical features are 
the Trail Making B score, Montreal Cognitive Assessment 
score, Digit Span score and summary scores and subscores 
of the MMSE, Clinical Dementia Rating and FAQ. A de
tailed list is provided in the Supplementary Data Set 1. 

This classifier was trained on the larger NACC data set 
and externally validated on ADNI.

Simulating the impact of patient 
enrichment on clinical trial design
We estimated a potential reduction in trial cohort sample size 
enabled through an enrichment of patients with ‘fast’ symp
tom progression while maintaining adequate statistical power. 
This analysis was performed by applying the NACC-trained 
‘common predictor’ classifier to ADNI to mirror a scenario 
with classifier-independent data. Stratified patient recruitment 
was simulated by only including patients into our hypothetical 
trial cohort whose predicted probability of belonging to 
the ‘fast’ progressing cluster exceeded a threshold. The specifi
cations of the hypothetical trial were adapted from recent 
clinical trials for early to mild Alzheimer’s disease dementia 
(Supplementary Table 2): As a primary outcome, we used 
the change from baseline in CDRSB since dementia diagnosis 
and considered a trial runtime of up to 24 months. The treat
ment arm was simulated using an effect size of 27%, a value 
that was observed for the recently approved lecanemab.25

Effect size was calculated as Cohen’s d. Conservatively, we 
did not simulate the effect size dependent on the progression 
rate, but uniform over all patients. Effects were only emulated 
in patients who actually experienced a worsening of the out
come during the 24 months. Outcomes for patients showing 
improvement or no change remained unaltered. The theoretic
al control arm consisted of the same patients without simu
lated treatment effects. For a power analysis, we considered 
a two-sided t-test. Following the lecanemab trial, the required 
statistical power was considered 90% at an alpha level (Type I 
error) of 0.05.4

We approximated the impact of reducing the trial sam
ple size through patient enrichment in terms of adverse 
events and monetary expenses using the ‘Clarity AD’ trial 
for lecanemab as guidance.4 We ignored patient dropout 
in our estimations. Annual treatment costs of lecanemab 
amount to $26 500 per patient.26 As exact information 
about the costs of patient screening in the lecanemab trial 
was missing, we assumed the same costs that were previ
ously estimated for the aducanumab trial with $6957 per 
screened patient.27

Adverse events were simulated based on their frequencies 
of occurrence observed in the original lecanemab trial.4

Amyloid-related imaging abnormality (ARIA) diagnosis 
and monitoring incurrences were assumed to involve an add
itional physician visit ($128) and monthly magnetic reson
ance imaging ($353 per scan)27 for a mean duration of 4 
months until resolvement.4

Statistical analysis
We assumed a significance level of 0.05. Where appropriate, 
95% confidence intervals (CIs) were calculated to illustrate 
the uncertainty of estimates.
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Results
Identification, validation and 
replication of two Alzheimer’s 
disease dementia progression 
subtypes
When clustering the ADNI patients’ trajectories, we identi
fied two distinct symptom progression subgroups that sepa
rated patients into ‘slow’ and ‘fast’ progressors (Fig. 1A; 
Supplementary Figs 1A and 3). One hundred seventy-seven 
of the 283 patients (63%) were assigned to the ‘fast’ pro
gressing cluster and 106 (37%) to the ‘slow’ progressors. 
Over the 36-month period, ‘fast’ progressing patients ex
perienced symptom worsening of 6.38 [95% CI: (5.32, 
7.45)] for CDRSB, −9.24 [95% CI: (−7.23, −11.25)] for 
MMSE and 13.19 [95% CI: (11.22, 15.17)] for FAQ. In 
contrast, on average, ‘slow’ progressing patients showed 
significantly reduced worsening with 1.85 [95% CI: 
(1.30, 2.40)], 1.83 [95% CI: (0.87, 2.78)] and 5.59 [95% 
CI: (4.17, 7.01)], for CDRSB, MMSE and FAQ, 
respectively.

When externally validating the clustering achieved in 
ADNI by applying the ADNI-trained model to patient trajec
tories from NACC, we obtained two subgroups of NACC 
patients that were highly similar to those identified in 

ADNI (Fig. 1B). Matching the proportions in ADNI closely, 
∼61% (1709) of the NACC patients exhibited a ‘faster’ pro
gression, while 39% (1070) experienced ‘slower’ symptom 
progression. Also, the observed empirical average trajector
ies of NACC subgroups were similar to those identified in 
ADNI. On average, the ‘fast’ progressors showed symptom 
worsening of 6.93 [95% CI: (6.63, 7.22)] for CDRSB, 
−8.20 [95% CI: (−7.46, −8.94)] for MMSE and 13.64 
[95% CI: (13.04, 14.25)] for FAQ over 36 months. ‘Slow’ 
progressing patients symptoms increased by 1.55 [95% CI: 
(1.35, 1.75)], −1.84 [95% CI: (−1.43, −2.25)] and 4.22 
[95% CI: (3.59, 4.86)], for CDRSB, MMSE and FAQ, 
respectively.

Beyond externally validating the ADNI clustering in 
NACC, we investigated whether the clustering of NACC 
under the ADNI-trained model would be concordant 
with an independent clustering achieved by training a 
new model on NACC. Indeed, a two-subgroup partition 
provided the best clustering solution for NACC, again 
splitting patients into ‘fast’ and ‘slow’ progressors 
(Supplementary Fig. 1B). Comparing the subgroup assign
ment of NACC patients into ‘fast’ or ‘slow’ progressors 
under the NACC-trained model and ADNI-trained model 
showed an agreement of 88%. We additionally applied the 
NACC-trained model on ADNI for external validation. 
Again, a highly similar clustering was found with 82% 
of the ADNI patients assigned to the same subgroup using 

Figure 1 Symptom progression trajectories of identified subgroups. Average symptom progression trajectories of subgroups identified 
in ADNI (A) and NACC (B) under the ADNI-trained clustering model. For each clinical assessment, the severity of the symptom increases along 
the y-axis from bottom to top.
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the independent ADNI-trained and NACC-trained mod
els, respectively.

Characterization of symptom 
progression subgroups
We compared demographic variables (age, education and 
biological sex) between ‘slow’ and ‘fast’ progressors and 
found no statistically or clinically significant differences at 
the time of dementia diagnosis in ADNI (Table 1). In 
NACC, a statistically significant difference was identified 
for patient age, however, of insignificant clinical relevance 
[1.01 years, 95% CI: (0.31, 1.70)]. Furthermore, in ADNI, 
we observed a statistically significant but small difference 
at patient’s dementia diagnosis for the CDRSB score [0.49, 
95% CI: (0.05, 0.94)]. In NACC, FAQ and MMSE scores 
at diagnosis differed statistically significantly across sub
groups [−1.11 (−1.49, −0.73) and 1.86 (0.99, 2.72), respect
ively], but once again with small effect sizes. A further 
significant difference was found in the distribution of 
APOE ϵ4 carriers across NACC subgroups, with 9.33% 
(13.1%, 5.53%) more ϵ4 carriers being assigned to the 
‘fast’ progressing group.

Comparison of cerebrospinal fluid biomarkers of 
Alzheimer’s disease pathology, namely amyloid beta 42, 
phosphorylated tau and total tau, did not reveal any signifi
cant differences between the two clusters in neither ADNI 
nor NACC (Mann–Whitney U test P > 0.05 for all biomar
kers in both cohorts). Also, regarding amyloid PET, no sig
nificant difference was identified (P > 0.05).

Predicting symptom progression 
subtype from cross-sectional data at 
time of diagnosis
The multimodal machine learning classifier trained on ADNI 
was able to differentiate between ‘slow’ and ‘fast’ progres
sing patients with an average area under the receiver operat
ing characteristic (AUC) of 0.69 ± 0.02 estimated via a 10 
times repeated cross-validation (Fig. 2) and an area under 
the precision-recall curve (AUC-PR) of 0.60 ± 0.03.

To externally validate our classifier, we developed a se
cond version that only incorporated features present in 
both ADNI and NACC. Since NACC holds a substantially 
larger sample size, we used this data set to train and intern
ally validate the classifier and used ADNI for external val
idation. In internal validation on NACC, the classifier 
achieved 0.67 ± 0.003 AUC (Fig. 2) and an AUC-PR of 
0.58 ± 0.003. External validation in ADNI demonstrated 
a performance of 0.70 ± 0.01 AUC and 0.56 ± 0.01 
AUC-PR, which was similar to both the multimodal classi
fier’s performance in ADNI and the model’s internal valid
ation scores on NACC (Fig. 2) and thereby indicated the 
model’s generalizability. Feature importance is shown in 
Supplementary Fig. 2. T
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Artificial intelligence-based 
stratification to enrich cohorts with 
specific symptom progression 
subtypes
We emulated an enrichment of a hypothetical clinical trial 
cohort with patients experiencing ‘fast’ symptom progres
sion by applying our ‘common predictor’ classifier to 
ADNI. The predicted probability for each patient to belong 
to the ‘fast’ progressing subgroup was used as an exclusion 
criterion and patients with predictions below a selected 
threshold were excluded from the trial.

Without stratification, at their time of dementia diagnosis, 
144 of the 230 (62.6%) analysed ADNI patients belonged to 
the ‘fast’ progressing subgroup. Expectedly, increasing the 
classifier threshold required for patient inclusion caused a 
decrease in the number of patients remaining in the hypo
thetical trial cohort (Fig. 3B). Simultaneously, however, the 
proportion of ‘fast’ progressors among the remaining pa
tients rose consistently (Fig. 3A). After stratifying ADNI 
using the classifier at a threshold of 0.65, 51.7% of patients 
[95% CI: (49.9%, 53.6%)] remained in the cohort. The re
sulting stratified cohort contained 73.4% ‘fast’ progressors 
[95% CI: (67.5, 79.2)].

Reducing the required trial cohort 
sample size through patient 
enrichment
To estimate a possible reduction in trial cohort sample size 
achieved through patient enrichment with our ‘common 

predictor’ classifier, we performed a statistical power ana
lysis. The parameters for this analysis were taken from recent 
trials with cognitive endpoints targeting early Alzheimer’s 
disease (Supplementary Table 2), primarily the ‘Clarity 
AD’ trial evaluating lecanemab, which identified an effect 
size of 27%.4

As previously discussed, increasing the required predic
tion threshold for patient inclusion led to a more homoge
neous, faster-progressing trial cohort on average (Fig. 3A). 
This can lead to measuring greater effect sizes, which opens 
the opportunity to reduce the cohort sample size while main
taining appropriate statistical power (here, 90%). The rela
tionship between the classifier prediction required for 
patient enrolment and the resulting potential for sample 
size reduction is presented in Fig. 4. Assuming a threshold 
of 0.65, for example, the classifier enabled a sample size re
duction of 36.8% [CI: (34.0%, 39.5%)].

Estimating the impact of patient 
enrichment on economical expenses 
and patient harm
We approximated the economical impact of patient enrich
ment with our proposed classifier on trials by counterbalan
cing the possible sample size reduction with the additional 
expenses of increased patient screening (Table 2). We as
sumed a hypothetical clinical trial similar to the successful 
‘Clarity AD’ trial for lecanemab4 with 24-month runtime 
and CDRSB as primary outcome. The externally validated 
‘common predictor’ classifier was used for patient enrich
ment. As a classifier prediction, threshold for patient recruit
ment 0.65 was selected.

Figure 2 Predicting progression clusters from cross-sectional data. Performance of machine learning classifiers differentiating between 
‘fast’ and ‘slow’ progressors at their time of dementia diagnosis, averaged across 10 repeats. The data set on which the respective performance was 
evaluated is shown in parenthesis on the x-axis. The application of the common classifier to ADNI represents an external validation. AUC-ROC, 
area under the receiver operator characteristic curve; AUC-PR, area under the precision-recall curve.
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In ‘Clarity AD’, 1795 patients were enrolled from 5967 
screened individuals.4 Applying our classifier during patient 
recruitment could reduce the sample size by 36.8% (661 pa
tients) while maintaining 90% statistical power (Fig. 4). This 
would enable an enrichment trial of the same power by en
rolling 1135 participants. Recruiting the enriched trial 

cohort would require screening 867 additional patients, in
creasing the trial costs by $6 031 719. The 24-month treat
ment costs for the lecanemab group (50% of the cohort) 
would amount to ∼$47 594 000 for the conventional trial 
and $30 077 500 for the enrichment trial.

During the original lecanemab trial, 593 participants ex
perienced adverse events4 while only 375 patients would be 
affected in an enrichment trial (218 patients reduction). In 
the enrichment trial, we would further assume 83 fewer ser
ious adverse events than in the conventional trial (144 versus 
227). With respect to ARIA, 102 less cases would occur in an 
enrichment trial, reducing the monitoring costs for ARIA by 
$157 080 (from $428 120 to $271 040).

The estimated expenses for a conventional lecanemab trial 
sum up to ∼$89 534 539 while the enrichment trial would 
cost $77,892,678, thus saving 13% ($11 641 861) of the to
tal costs. Notably, this estimate represents a lower bound ne
glecting the expenses for treating heterogeneous adverse 
events and longitudinal monitoring procedures, such as regu
lar neuroimaging.

Discussion
In this work, we utilized deep learning to identify two dis
tinct Alzheimer’s disease dementia patient subgroups exhi
biting ‘slow’ and ‘fast’ symptom progression, respectively. 
The subgroups were robustly discovered in two independent 
data sets and externally validated. Using a machine learning 
classifier, we were able to predict the longitudinal progres
sion subtype of an individual patient with good performance 
relying only on cross-sectional data collected at the time of 
their dementia diagnosis. By emulating a clinical trial em
ploying prognostic patient enrichment using this classifier, 

Figure 3 Impact of patient enrichment on a hypothetical trial cohort. ADNI data were used as a hypothetical trial cohort employing our 
classifier for patient enrichment. Mean trajectories and CIs were calculated across 10 repeats, each with a newly trained model. (A) Enrichment of 
‘fast’ progressors with higher classifier thresholds. (B) Decrease in sample size with higher classifier thresholds.

Figure 4 Reducing trial cohort size while maintaining 
statistical power. Depicted is the possible reduction in trial 
sample size in relation to the chosen classifier threshold for patient 
enrichment while maintaining statistical power at 90%. The line 
displays the mean trajectory calculated across 10 repeats. The 
shade represents the 95% CI. Larger CIs at higher thresholds are 
due to lower abundance of individuals with higher scores.
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we demonstrated the statistical, economical and patient 
health-related benefits enrichment trials hold over conven
tional clinical trials in clinical Alzheimer’s disease dementia.

Instead of relying solely on cross-sectional data, as is com
monly done for clustering Alzheimer’s disease dementia 
patients,13-15 we utilized a longitudinal approach that clus
ters the multivariate progression of patient trajectories.21

For clustering variables, we deliberately focussed on clinical 
outcomes of high relevance to clinical trials. Such outcomes 
could be biased by differences in the pathological disease 
stage of patients. However, we could not find any significant 
differences in key biomarkers of Alzheimer’s disease path
ology between the two subgroups.

Both of our classifiers that predicted the symptom progres
sion subtype of an individual achieved good prediction 
performance. Using a multimodal classifier over the feature- 
reduced ‘common predictor’ classifier yielded no significant 
benefit in prediction performance. This could be due to the 
lower number of patients for which the additional biomarker 
measurements were available and the complexity of this 
data, which could warrant greater sample sizes to benefit ma
chine learning approaches. In theory, however, additional 
predictors could improve the sensitivity and specificity of a 
classifier. Especially for borderline cases, the continuous na
ture of biomarker values could allow for more nuanced pre
dictions compared with the mainly categorical features used 
in the ‘common predictor’ classifier.

Our developed machine learning classifiers were not de
signed for decision support in a clinical care setting, and 
we do not believe that their performance is sufficient for 
this task. Instead, we deliberately aimed at building classi
fiers for patient screening in clinical enrichment trials. In 
such a setting, the patient enrichment using a machine learn
ing classifier gains its power through an application across a 
substantial number of potential trial participants. While any 
classifier that performs above chance level will lead to an en
richment of a sought-after patient subgroup given that en
ough patients are screened, better-performing classifiers are 
more cost-effective as fewer patients need to be screened to 
achieve the required cohort size and homogeneity. Similar 
conditions apply to the threshold placed on classifier predic
tions, which represents an arbitrary decision that weights the 
expanse of patient screening against the achieved homogen
eity of the resulting trial cohort.

Here, we focussed on prognostic enrichment; however, 
another promising route would be predictive enrichment 
based on disease subtypes.28 The discrimination of patients 
on a mechanistic level could enable novel clinical trial de
signs such as umbrella trials29 for Alzheimer’s disease, but 
would not guarantee an increased homogeneity in the out
come of interest.

Our results indicate that the inter-patient heterogeneity in 
cognitive symptom progression could hamper clinical trials 
especially when their duration is shorter than 2 years. 
During this period, the identified ‘slow’ progression sub
group experienced only minute cognitive decline and even 
highly efficacious treatments would show small effect sizes. 
Previously, the solution to this statistical challenge was often 
considered to involve increasing sample sizes30,31; however, 
we argue that enrichment trials present a promising alterna
tive with additional benefits.

Economically, enrichment trials increase the screening de
mands to recruit a cohort of sufficient size but decrease the 
costs during trial runtime. Accordingly, if treatment becomes 
considerably cheaper, or screening more expensive, the eco
nomic benefit of patient enrichment could vanish. In our si
mulated hypothetical enrichment trial, however, we found 
that an enrichment trial aiming at a cognitive outcome could 
be conducted with significantly smaller cohort sizes as com
pared with currently ongoing and previously successful 
trials. In the dementia context, this will likely lead to cheaper 
clinical trials and less participant harm caused.

Our presented cost analysis comparing conventional clin
ical trials against enrichment trials is limited in many ways 
and the presented amounts are only approximate. 
Additional costs, such as follow-up care and treatments for 
non-ARIA side-effects, have been neglected, and no add
itional expenses for applying the classifier and eventually 
prolonged screening phases were considered. Furthermore, 
the marketed costs of drugs differ from the factual costs cov
ered by trial sponsors and employed statistical analyses 
could differ, depending on the trial analysis plans.

Supplementary material
Supplementary material is available at Brain Communications 
online.

Table 2 Comparing the estimated monetary expenses of a conventional trial to an enrichment trial, assuming our 
‘common predictor’ classifier was used for patient stratification employing a classifier threshold of 0.65

Conventional trial Enrichment trial Difference

Screened patients 5967 6834 867
Screening costs $41 512 419 $47 544 138 $6 031 719
Recruited patients 1796 1135 −661
Treatment costs $47 594 000 $30 077 500 −$17 516 500
Total adverse events 593 375 −218
Serious adverse events 227 144 −83
ARIA cases 278 176 −102
ARIA monitoring costs $428 120 $271 040 −$157 080
Total costs $89 534 539 $77 892 678 −$11 641 861
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