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Abstract
Uncertainties in wildfire simulations pose a major challenge for making decisions about fire management, mitigation, and evacuations. 
However, ensemble calculations to quantify uncertainties are prohibitively expensive with high-fidelity models that are needed to 
capture today’s ever-more intense and severe wildfires. This work shows that surrogate models trained on related data enable scaling 
multifidelity uncertainty quantification to high-fidelity wildfire simulations of unprecedented scale with billions of degrees of 
freedom. The key insight is that correlation is all that matters while bias is irrelevant for speeding up uncertainty quantification when 
surrogate models are combined with high-fidelity models in multifidelity approaches. This allows the surrogate models to be trained 
on abundantly available or cheaply generated related data samples that can be strongly biased as long as they are correlated to 
predictions of high-fidelity simulations. Numerical results with scenarios of the Tubbs 2017 wildfire demonstrate that surrogate 
models trained on related data make multifidelity uncertainty quantification in large-scale wildfire simulations practical by reducing 
the training time by several orders of magnitude from 3 months to under 3 h and predicting the burned area at least twice as 
accurately compared with using high-fidelity simulations alone for a fixed computational budget. More generally, the results suggest 
that leveraging related data can greatly extend the scope of surrogate modeling, potentially benefiting other fields that require 
uncertainty quantification in computationally expensive high-fidelity simulations.
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Significance Statement

Today’s wildfires increasingly spread into populated areas, putting millions of homes at risk and impacting air quality. Numerical 
wildfire simulations are key building blocks for risk assessment and fire management, but uncertainties from environmental meas
urements must be quantified to establish trust for making high-consequence decisions. This work shows that surrogate models 
trained on related data make tractable uncertainty quantification with high-fidelity wildfire simulations of unprecedented scale 
with billions of degrees of freedom, which offers opportunities for using more complex wildfire models that can better aid fire man
agement and evacuation planning. More generally, leveraging related data for surrogate modeling can be applied across other 
fields that require uncertainty quantification in large-scale simulations, such as climate modeling, aerospace engineering, and 
plasma physics.
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Introduction
Today’s wildfires grow faster, burn hotter, and spread more often 
into populated areas than ever before (1, 2). While numerical sim
ulations are key for developing more efficient warning and predic
tion systems (3, 4), they are affected by large uncertainties that 
can pose a major challenge for making decisions about fire man
agement, mitigation, and evacuations (5, 6). In particular, the en
vironmental conditions such as fuel load and wind condition that 
are given as inputs to wildfire simulations are a major source of 
uncertainty due to measurement inaccuracies and sparse or in
complete data (7). It, therefore, is essential to equip numerical 

wildfire predictions with mean estimates, standard deviations, 

and sensitivities that account for input uncertainties so that 

decision-makers can decide how much they trust the predictions 

and act accordingly. However, uncertainty quantification in wild

fire simulations is challenging (8). High-fidelity wildfire models 

that include fluid dynamics with combustion models to capture 

the fire–atmosphere interactions are computationally demanding 

(9–12), which means that even small ensemble sizes for uncer

tainty quantification can lead to infeasible compute runtimes 

(13). This has led to a use of gross simplifications in operational 

models that limit predictive capabilities (6, 14).
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Surrogate models trained on related data
In this work, we scale uncertainty quantification to high-fidelity 
coupled fire–atmosphere simulations with billions of degrees of 
freedom to accurately estimate mean quantities of interest 
from ensembles of fire simulations. We propose an approach 
that trains surrogate models on related data, which are often 
abundantly available from previous, related physics simulations 
or can be cheaply generated via simplified models obtained by ig
noring some of the physical phenomena, linearizing dynamics, 
or stopping iterative solvers early (15), see Fig. 1. We contrast re
lated data to direct data that correspond to actual outputs or re
analysis quantities of the high-fidelity numerical simulations, 
which are used for training in traditional surrogate modeling 
but are typically prohibitively expensive to generated in many 
cases (16–19). We also contribute a mathematical analysis that 
provides a foundation for our approach and insight into the per
formance of the approach with respect to the quality of the re
lated data. We demonstrate the approach on a fire scenario 
resembling the Tubbs 2017 wildfire, where related data are gen
erated with a down-scaled numerical simulation in 3 h, whereas 
generating the same amount of direct data with the high-fidelity 
model would require 3 months, and thus is intractable.

Surrogate models trained on related data provide outputs that 
generally are not predictive about high-fidelity simulations be
cause related data samples typically have a large bias with respect 
to outputs of the high-fidelity simulations. Thus, also the surrogate 
models will have a large bias. The key insight is that related data 
samples are often still correlated and that correlation is all that 

matters while bias is irrelevant for speeding up uncertainty quan
tification when surrogate models are combined with high-fidelity 
models in multifidelity approaches (15, 20). Multifidelity uncer
tainty quantification methods leverage surrogate models to accel
erate the estimation of uncertainties while, in a rigorous manner, 
occasionally utilize expensive high-fidelity models to establish un
biased uncertainty estimators. Mathematically, we focus on the 
correlation that is captured by the Pearson moment correlation co
efficient (21), because it is useful in multifidelity uncertainty quan
tification (15). This means that the outputs of our surrogate models 
and the wildfire simulations show similar responses to changes in 
inputs even though the bias can be high in the sense that the abso
lute values of the outputs can be vastly different. For example, in
creasing wind speed means faster fire spread, higher fuel density 
leads to more heat release; such trends are captured at least ap
proximately by surrogate models trained on related data with 
data samples that are correlated to the high-fidelity simulation 
outputs. In contrast, traditional surrogate modeling that learns 
from direct data aims to accurately approximate the actual fire 
spread and the actual fire temperature rather than just how the 
fire spread and temperature change with respect to inputs.

Literature review
Uncertainty quantification has been extensively studied for wild
fire simulations; however, due to computational costs, only em
pirical or heuristic fire models are used (6, 14). There is work on 
using multilevel methods (22) but we consider orders of magni
tude larger wildfire models in terms of number of degrees of 

Fig. 1. Training surrogate models on related data for multifidelity uncertainty quantification: (i) Simplifications are made to the physics model such as 
formulating it over smaller domains, ignoring some phenomena, linearizing, and stopping iterative numerical solvers early. (ii) The corresponding 
simplified model is simulated many times to rapidly generate large volumes of outputs that form the related training data. (iii) A surrogate model is 
trained on the related data from the simplified model. (iv) For realizations of the uncertain inputs such as environmental conditions, a few output 
samples are computed with the expensive physics model and many output samples are obtained with the affordable surrogate model. (v) The samples 
from physics and surrogate model are combined into unbiased multifidelity estimators of expectations and variances of the quantities of interest.
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freedom. Furthermore, the previous works rely either on coarse- 
grid approximations that provide limited speedup or traditional 
surrogate models that aim to keep the bias low and so require 
large amounts of direct training data.

While machine learning and artificial intelligence have a major 
impact on surrogate modeling (17, 23–34), generating sufficient 
direct training data samples can require many computationally 
expensive physics-based simulations, which is often intractable. 
This is one reason why there is an increasing body of literature 
(35–41) on training surrogate models on multifidelity and related 
data; however, there the aim is to use related data to improve 
the training of traditional surrogate models that aim to keep the 
bias low, which is in contrast to the approach proposed here 
that accepts bias as long as surrogate-model outputs are corre
lated, because the surrogate models are used in conjunction 
with multifidelity methods (20). Analogously, surrogate models 
based on concepts of transfer learning and one-shot learning 
(42, 43) aim to rapidly fine-tune a pretrained model on a new 
task with just a few, direct (i.e. labeled) data points. None of these 
studies realizes the potential of surrogate models that are trained 
purely on related data and thus are only correlated while having a 
large bias. Another line of work aims to construct surrogate mod
els explicitly for use in multifidelity methods (44, 45), which can 
require less training data than generic methods; however, the 
training data are still direct in the sense that they correspond to 
input–output pairs computed with high-fidelity, physics-based 
models rather than related and biased data as we use in this 
work. Yet another line of work aims to scale surrogate modeling 
to large-scale settings with little training data by first performing 
a sensitivity analysis and sub-selecting only a few input compo
nents over which surrogate models are trained (46, 47); however, 
such an approach requires conducting potentially expensive sen
sitivity analyses first.

Surrogate models from related data for 
multifidelity uncertainty quantification 
at scale
Physics models with stochastic inputs
We denote a physics model as a function f :X → Y that maps an 
input vector x ∈ X , which consists of environmental conditions 
and model parameters, onto an output vector y = f (x) ∈ Y, which 
consists of quantities of interest that are computed from the 
simulation output such as the burned area. Evaluating the func
tion f means performing a numerical simulation that typically in
curs high computational costs, which we denote as cf > 0. Notice 
that we consider situations where the challenge lies with the 
high computational costs of evaluating f, rather than the high di
mension of the inputs and outputs. In fact, we consider situations 
where there is only a low number of inputs and outputs, which is 
common in many science and engineering applications.

To account for incomplete knowledge and uncertain environ
mental conditions, we consider random input vectors X that fol
low a distribution that models input uncertainties. For example, 
measuring the wind speed is affected by measurement errors 
and noise due to data sparsity in spatial coverage and temporal 
resolution. In some cases, inputs have to be first obtained from up
stream simulations or inverse problems, which are also affected 
by uncertainties that need to be carried forward. Consequently, 
instead of computing a deterministic output y, we are interested 
in estimating statistics of the outputs such as expected outputs 
E[f (X)] and variances. Notice that only the inputs are stochastic 

whereas the map f corresponding to the numerical simulation is 
deterministic. In the following, we omit X when denoting expected 
values E[f ], variances, and correlation coefficients because all of 
them are taken with respect to the distribution of the inputs X.

A classical approach for estimating statistics is via ensembles 
of m independent and identically distributed (i.i.d.) samples 
x1, . . . , xm of the random input vector X and the corresponding 
ensemble of m output samples y1 = f (x1), . . . , ym = f (xm). The ex
pected output E[f ] is then estimated via Monte Carlo estimation as

y̅(f )
m =

1
m

􏽘m

i=1
f (xi). (1) 

Obtaining an accurate estimate in Eq. (1) is challenging: Recall 
that each evaluation of f entails a numerical simulation, which 
can be expensive and thus severely limits the ensemble size m 
that is tractable.

Surrogate models and multifidelity uncertainty 
quantification
Surrogate models provide only approximations of the outputs 
computed by the high-fidelity physics model f but often with or
ders of magnitude lower runtimes, see (16–19). We denote a surro
gate model as gθ :X → Y, which depends on a parameter vector 
θ ∈ Rp such as the weights of a neural network. The costs of evalu
ating the surrogate model are denoted as cg and are lower cg ≪ cf 

than the costs cf of performing a physics-based simulation with f. 
Using the surrogate gθ instead of the high-fidelity physics model f 
in the Monte Carlo estimator in Eq. (1) leads to speedups, but it 
also means that the estimator is biased with respect to E[f ] be
cause the surrogate model provides an approximation of the out
puts of f only. To leverage the surrogate model for achieving 
runtime speedups while avoiding the introduction of a bias, we 
use the surrogate model gθ in a multifidelity Monte Carlo estima
tor (15). The multifidelity Monte Carlo estimator of E[f ] is based on 
a variance reduction technique called control variates (48) and is 
given by

y̅m1,m2
= y̅(f )

m1 + α(y̅(g)
m2

− y̅(g)
m1 ), (2) 

where ̅y(f )
m1 is a Monte Carlo estimator as in Eq. (1) based on m1 sam

ples from f, and y̅(g)
m1 , y̅(g)

m2 
are Monte Carlo estimators based on m1 

and m2 samples, respectively, of the surrogate model gθ; details 
in the Supplementary Material. The number of samples m1 and 
m2 as well as the coefficient α in the estimator in Eq. (2) can be 
chosen optimally to minimize the mean-squared error (MSE) of 
y̅m1,m2

. We remark that similar multifidelity estimators based on 

control variates have been introduced for higher-order moments 
and sensitivity analyses (49), to which our approach would also 
be applicable.

Using a multifidelity estimator as given in Eq. (2) is key for our 
approach of training surrogate models on related data: First notice 
that y̅m1,m2 

is unbiased in the sense that E[y̅m1,m2
] = E[f ], independ

ent of the bias of the surrogate model

b(gθ) = |E[gθ] − E[f ]| (3) 

compared with the physics model f. One can see the unbiasedness 
of the multifidelity estimator by noting that the expected value 

E[y̅(g)
m2 − y̅(g)

m1 ] of the difference term in Eq. (2) is zero and thus van
ishes, which means that the expected value of the multifidelity es

timator is E[y̅m1,m2
] = E[y̅(f )

m1 ] = E[f ] and thus y̅m1,m2 
is an unbiased 

estimator of E[f ]. Thus, even if the surrogate model gθ has a large 
bias in the sense of Eq. (3), the multifidelity estimator remains 
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unbiased. Second, we want to understand the MSE e(y̅m1,m2
) of the 

estimator in Eq. (2). Because we already know that the multifidel
ity estimator is unbiased, the MSE of the estimator equals the vari
ance of the estimator, e(y̅m1,m2

) = V[y̅m1,m2
]. We now need a few 

more quantities to understand and interpret the MSE of y̅m1,m2
. 

Let σf =
������
V[f ]

􏽰
and σg =

�������
V[gθ]

􏽰
denote the standard deviations of 

f and gθ, respectively, with respect to the random input vector X. 
Let further

ρ(f , gθ) =
Cov[f , gθ]

σf σg
, (4) 

denote the Pearson-moment correlation coefficient between the 
outputs of the physics model f and the surrogate model gθ (21). 

The operator Cov denotes the covariance. Setting α = σf σ−1
g ρ(f , gθ) 

in the estimator in Eq. (2), which is the optimal choice that mini
mizes the variance of the estimator (15), applying transformations 
based on properties of the variance and leveraging that the sam
ples x1, . . . , xm of the random input vector are independent, one 
obtains from Eq. (2) that the MSE of the estimator is

e(y̅m1,m2
) =

σ2
f

m1
−

1
m1

−
1

m2

􏼒 􏼓

σ2
f ρ(f , gθ)2. (5) 

A full derivation of the MSE shown in Eq. (5) as well as the optimal 
choice for the samples m1 and m2 can be found in (15) and the 
Supplementary Material.

The key quantity for interpreting the MSE is the correlation co
efficient ρ(f , gθ). The higher the squared correlation coefficient 
ρ(f , gθ), the lower the MSE e(y̅m1,m2

). Notice that the term 1
m1

− 1
m2

≥ 
0 is nonnegative because naturally more samples m1 ≤ m2 are tak
en from the cheap surrogate model, see (15) for details about the 
optimal choice of m1 and m2. It is critical that the MSE given in 
Eq. (5) depends on the correlation coefficient given in Eq. (4) 
only; and not on the bias given in Eq. (3) of the surrogate model. 
Thus, for the surrogate model gθ to be effective in estimating the 
expected value with the multifidelity estimator given in Eq. (2), 
it is sufficient that the correlation between the physics model f 
and the surrogate model gθ is high.

Let us briefly remark on the coefficient α in the estimator in Eq. (2). 
The coefficient α is a weight of the difference term that includes the 
surrogate model in the multifidelity estimator. We used the optimal 
α = σf σ−1

g ρ(f , gθ) in Eq. (2) to derive the MSE given in Eq. (5), where op
timal means that it minimizes the variance (15). Intuitively, setting 
α = σf σ−1

g ρ(f , gθ) means that it weights samples from the surrogate 
model proportionally to the correlation coefficient and inverse pro
portionally to the variance. Thus, broadly speaking, a higher corre
lated surrogate model with low variance leads to a higher weight 
because the surrogate model can be trusted more than when the cor
relation is low or the variance of the surrogate model is high.

We further remark that the MSE given in Eq. (5) treats the sur
rogate model gθ as deterministic and thus ignores potential varia
tions in the surrogate model due to stochastic training and 
random initializations, which is common when surrogate models 
are based on neural networks. We discuss this point in more detail 
in the Supplementary Material, where we show that the variations 
introduced by different random initializations of the training are 
small compared with the uncertainties introduced by the random 
input vector X in our numerical experiments.

Training on related data
We now exploit that the MSE given in Eq. (5) of the estimator given 
in Eq. (2) depends on the correlation coefficient ρ(f , gθ) between 

the surrogate model gθ and f, and not on the bias given in Eq. (3). 
Thus, high correlation between gθ and f is sufficient for achieving 
a low MSE, whereas providing good approximations of the outputs 
of f in the sense of the bias defined in Eq. (3), i.e. a relative/absolute 
error, is unnecessary.

Requiring a surrogate model to have a high correlation is often 
a weaker requirement than having a low bias: Only the trend of 
the surrogate model gθ and the physics model f have to be similar. 
In particular, it suffices to train gθ on related data D = {(xi, h(xi))}

N
i=1 

generated from a data source h :X → Y that is related to the phys
ics model in the sense that the correlation ρ(f , h) is high. There are 
often plenty of related data samples available or they can be 
cheaply generated from related data sources, even in data-scarce 
science and engineering applications. For example, in our fire 
simulation application, we cheaply generate related data by run
ning fire simulations on smaller scales obtained by simply shrink
ing the spatial domains, which leads to fewer degrees of freedom 
and thus lower runtimes per data sample. While the outputs ob
tained with the fire simulations on the reduced domains are not 
accurately approximating the outputs obtained with the high- 
fidelity, large-scale simulations in the sense of the bias defined 
in Eq. (3), the outputs are correlated to the outputs of the high- 
fidelity simulations in the sense of the correlation coefficient giv
en in Eq. (4), see below. Other strategies for generating related data 
points rely on simplified physics models that ignore some of the 
phenomena, build on linear approximations, or stop iterative 
solvers early (20).

Motivated by this, we propose to train the surrogate model gθ on 
related training data D so that the trained surrogate model gθ yields 
outputs that are correlated with outputs of f: We formally have the 
correlation ρ(f , h) between the physics model outputs and the data 
source h and the correlation ρ(h, gθ) between the data source h and 
the surrogate model gθ. The following proposition provides upper 
and lower bounds on the correlation coefficient ρ(f , gθ) between 
the physics model and the surrogate model. A proof of the propos
ition can be found in the Supplementary Material.

Proposition 1. The correlation coefficient ρ(f , gθ) between outputs of 
the physics model f and the surrogate model gθ is bounded from above 
and below as

ρ(f , gθ) ≤ ρ(f , h)ρ(h, gθ) +
�������������������������������

(1 − ρ(f , h)2)(1 − ρ(h, gθ)2)
􏽱

,

ρ(f , gθ) ≥ ρ(f , h)ρ(h, gθ) −
�������������������������������

(1 − ρ(f , h)2)(1 − ρ(h, gθ)2)
􏽱

.

The upper bound is maximized when ρ(f , h) and ρ(h, gθ) are bal
anced, which indicates that if f and h are poorly correlated, then it 
is unnecessary to accurately train gθ to match well the correlated 
data sampled from h. In Fig. 2, we plot the upper bound of ρ(f , gθ) 
against ρ(f , h) and ρ(h, gθ), which visualizes that the upper bound is 
high when ρ(f , h) and ρ(h, gθ) are of comparable magnitude, i.e. 
when they are balanced. With regards to the lower bound, which 
is also shown in Fig. 2, note that the squared correlation coeffi
cient ρ(f , gθ)2 enters in the MSE in Eq. (5) rather than directly 
ρ(f , gθ). The lower bound stated in Proposition 1 shows that the 
squared correlation coefficient ρ(f , gθ)2 > 0 is greater than zero if

ρ(f , h)2 + ρ(h, gθ)2 > 1 (6) 

holds, see the Supplementary Material for a detailed derivation. 
This result implies that both the high-fidelity model f and the 
data source h as well as the data source h and the surrogate model 
gθ need to be sufficiently well correlated so that the correlation be
tween the high-fidelity model and the surrogate model is not zero. 
We will show in the numerical experiments in Fig. 4 that this 
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condition is met with a large margin in all of our experiments. 
Further visualizations of the bounds and the condition given in 
Eq. (6) can be found in the Supplementary Material.

Critically, as long as the squared correlation coefficient between 
gθ and f is high, the surrogate model gθ is useful in multifidelity es
timation as with the multifidelity Monte Carlo estimator given in 
Eq. (2).

Surrogate models from related data 
for Tubbs 2017 wildfire scenarios
Coupled fire–atmosphere model with about eight 
billion degrees of freedom
The wildfire scenarios that we consider are motivated by the 
Tubbs wildfire that took place in Northern California in October 
2017 (50, 51). We simulate the spread of a wildfire on a 20 km by 
20 km area with a terrain that is representative of the mountain 
area between Calistoga and Santa Rosa, see Fig. 3. The fire is simu
lated up to heights of 4 km to accurately capture atmospheric ef
fects. The domain is resolved with 20 m in horizontal and 4 m in 
vertical direction, which corresponds to 1,024 × 1,024 × 1,024 
grid points and leads to about eight billion degrees of freedom be
cause the physics model is formulated over density, velocity in the 
three spatial directions, potential temperature, oxygen mass frac
tion, solid temperature, and fuel density. The physics model is 
based on the Navier–Stokes equations in a low-Mach formulation 
(11), which eliminates the constraints on the time step size by the 

acoustic waves in the numerical simulation. A multiphase com
bustion model is used to represent the fire behavior, and it is fully 
coupled with the fluid dynamics of the atmosphere to capture the 
fire–atmosphere interactions (12). We remark that the model has 
been validated with other, controlled fire scenarios in (7). Details 
about the model can be found in the Supplementary Material.

The input vector X to the simulation contains the wind speed, 
initial fuel density, and initial moisture content, which are key en
vironmental conditions that influence the fire dynamics. The 
components of the input vector X are considered uncertain and 
distributed uniformly in the intervals [5.0, 12.0], [0.2, 3.0], and 
[0.03, 0.12], respectively so that

X ∼ U([5, 12] × [0.2, 3] × [0.03, 0.12]), (7) 

where U denotes a uniform distribution. The output is the burned 
area over time after ignition. The burned area is computed via the 
fuel density field to identify areas where fuel density has de
creased, which indicates burning; details about computing the 
burned area can be found in Supplementary Material. For a single 
realization of the random input vector, the simulation (one evalu
ation of f) takes about 19.5 h on 128 Tensor Processing Unit (TPU) 
v5e cores of Google Cloud. Even when performing ten simulations 
in parallel, generating 1,000 direct data points for training surro
gate models would take almost 3 months on 1,280 TPUs, which 
is intractable. In our experiments below, we have available up to 
20 simulation results from the high-fidelity physics model, which 
is too little for training surrogate models. These 20 simulations are 
also insufficient for estimating moments with quadrature rules on 
grids, because even only five grid points in each dimension would 
already require >120 simulations in our case and thus six times 
the amount of simulations that we have available.

Wildfire simulations: Related data source
For training surrogate models, we generate related data by using a 
small-scale simulation, in which the domain is scaled (shrunken) 
down by a factor of 10 proportionally. Correspondingly, we require 
only 256 × 256 × 160 spatial grid points so that one simulation 
takes on average 28 min on eight TPU cores. Generating 1,000 re
lated training data samples takes 2.92 h with 10 simulations in 
parallel and each on 128 TPU cores. Thus, the runtime of generat
ing the training data are reduced from 3 months to <3 h. We train 
as surrogate model gθ a multilayer perceptron with three input 
nodes (fuel density, moisture density, and wind speed), three hid
den layers of width five, and a linear output layer on the related 
data to obtain outputs that are correlated with the burned area 
predicted by the physics model; details of the training setup can 
be found in the Supplementary Material.

To demonstrate the correlation between the high-fidelity phys
ics and the simplified model, we plot in Fig. 3a the burned area 
with respect to a decreasing moisture density. The absolute value 
of the burned area given by the physics model and the simplified 
model differ by >30%, which indicates a large bias in the sense of 
Eq. (3). However, with both models we obtain that the burned area 
increases with decreasing moisture density, which indicates that 
the outputs of the physics-based and simplified model are corre
lated and the simplified model is able to reproduce a physically 
meaningful behavior. Figure 3b shows the correlation more direct
ly by plotting the outputs of the surrogate model obtained from 
training data generated with the simplified model against the pre
dictions of the physics model over time t when varying the input 
components. The estimated correlation coefficient given in Eq. (4) 

Fig. 2. The plots visualize the upper and lower bound (Proposition 1) of 
the correlation between the surrogate model gθ and the physics model f 
when the surrogate model gθ is trained on a related data source h that is 
correlated to f. The upper and lower bounds depend on the correlation 
between the data source h and the physics model f (“quality of the data”) 
as well as correlation between the data source h and the surrogate model 
gθ (“quality of training”).
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is shown in Fig. 4a, with the mean value of the correlation coeffi
cient being 0.8335 over time t.

Wildfire simulations: Performance
We now use the surrogate model trained on related data in the 
multifidelity estimator given in Eq. (2) to estimate the expected 
burned area. We compare three cases. First, we consider the phys
ics model alone in a regular Monte Carlo estimator given in Eq. (1), 
which is expensive but leads to an unbiased estimator. Second, we 
use the surrogate model alone in a regular Monte Carlo estimator, 
which leads to a biased estimator because the surrogate model 
has a bias with respect to the physics model. Third, we leverage 
the surrogate model in a multifidelity Monte Carlo estimator given 
in Eq. (2) together with the physics model, which provides an un
biased estimator. We stress that the multifidelity estimator of the 
burned area is unbiased even though the surrogate model is used 
and has been trained on related data rather than on direct data.

The estimated expected burned area is shown in Fig. 5a, to
gether with the estimated root mean squared error (RMSE) shown 
as shaded area. Notice the bias obtained when the surrogate 

model is used alone, which is in agreement with the discussion 
above that a surrogate model trained on related data is not predict
ive in the sense that the surrogate model outputs can have a large 
bias in the sense of Eq. (3) and thus the surrogate model cannot re
place the physics models. However, the surrogate model is still 
useful, namely when it is combined with the physics model within 
the multifidelity estimator, where it introduces no bias. As the re
sults in Fig. 5a show, combining the surrogate model and the 
physics models leads to estimates that predict a burned area of 
about 2.4 km2 at already about 10,000 TPU hours at time t = 600  
s, whereas the estimator that uses the physics model alone takes 
almost 50,000 TPU hours to converge to a comparable burned 
area. Similar observations hold at later times after ignition. 
Figure 5b shows the estimated RMSEs of the estimators as a bar 
plot. We stress that the estimated RMSEs shown in Fig. 5b and 
the estimated RMSEs shown as shaded area in Fig. 5a are affected 
by estimation errors and we thus use them as crude indicators 
only to see if they are in agreement with the other results, see 
Supplementary Material for how we estimate the RMSEs. In agree
ment with the low variance of the curve corresponding to the es
timator obtained with the surrogate model together with the 

a

b

Fig. 3. The high-fidelity physics model as well as the simplified model predict that increasing moisture density leads to smaller burned areas, which 
indicates that the simplified model captures the trends of the high-fidelity physics model and thus is sufficient for generating related training data in this 
example. a) Burned area in Tubbs domain for three input realizations with moisture densities 0.225, 0.136, and 0.029. The surface plots show the terrain 
height using a color gradient and the burned area in black. b) Comparison of burned areas over 20 different input realizations (environmental 
configurations) at different times after ignition between the large-scale simulation and the surrogate model trained on related data.
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physics model shown in Fig. 5a, the estimated RMSE indicates that 
using the surrogate model in the multifidelity estimator leads to a 
lower RMSE than using the samples from the physics model alone. 
The numbers of samples used from the physics model versus the 
correlated surrogate model at time t = 2,400 s are shown in Fig. 5c.

Wildfire simulations: Performance with reused 
surrogate model
It is common to train a surrogate model on an input distribution 
with a larger variance so that it can be reused on input distributions 
with a lower variance in scenarios where more information is avail
able. To illustrate this, we consider a smaller range of wind speeds 
and fuel densities so that

X ∼ U([7, 10.25] × [0.9, 2.3] × [0.03, 0.12]). (8) 

We reuse the surrogate model from the previous scenario and dem
onstrate now that it still leads to an efficient multifidelity estimator 
even over this changed input distribution because it is still corre
lated with the physics model, see Fig. 4b. The predictions of the es
timators are shown in Fig. 6. The lower variance of the input 
distribution leads to a higher correlation of the surrogate model 
to the physics model, which results in a multifidelity estimator 
with the surrogate model that shows less variation over the budget 
and thus settles more quickly on a value for the estimated expected 
burned area compared with using the physics model alone.

a

b

Fig. 4. The estimated correlation coefficients show that the physics 
model is well correlated to the surrogate models trained on the related 
training data. The shaded area corresponds to the upper and lower bound 
of the correlation coefficient ρ(f , gθ), see Proposition 1. a) Input 
distribution given in Eq. (7). b) Input distribution given in Eq. (8).

a

b c

Fig. 5. Scenario with input distribution given in Eq. (7). a) Using the surrogate models trained on related data together with the physics models leads to 
unbiased multifidelity estimators of the expected burned area that exhibit less variance with increasing computational budget (TPU hours) than using 
the physics model alone. Including the surrogate model from related data achieves accurate estimates of the expected burned area at already around 
10,000 TPU hours, whereas using the physics model alone requires up to almost 50,000 TPU hours to achieve a comparable expected burned area. For a 
comparison at additional times after ignition; see Fig. S3a. b) Estimates of the RMSEs are in agreement with the previous results and indicate that 
including the surrogate models trained on related data leads to almost 2× more accurate estimates of the expected burned area compared with using the 
physics model alone. c) The plot shows the number of samples used from the physics and the surrogate model when the two models are combined by the 
multifidelity estimator.
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Discussion
In this study, we demonstrate that training surrogate models on 
related data and using them together with multifidelity estima
tors allows scaling uncertainty quantification to estimate expect
ations of quantities of interest from ensembles of large-scale 
wildfire simulations with billions of degrees of freedom. Our ap
proach captures more accurately the burned area than using ei
ther surrogate models or physics models alone for the same 
computational costs. This study further demonstrates that view
ing surrogate modeling through a broader lens than just aiming 
for accurate point-wise predictions of the outputs of physics mod
els can greatly extend the scope of surrogate modeling. In particu
lar, the results of this study show that it is sufficient for surrogate 
models to yield outputs that are statistically correlated with the 
outputs of physics models with respect to the Pearson moment 
correlation coefficient; it is unnecessary that the surrogate models 
are point-wise predictive about the quantities of interest in terms 
of having a low bias. This allows training surrogate models on re
lated data rather than on direct data that directly describe the in
put–output relationship given by the physics model. Learning 
from related data broadens the scope of data-driven surrogate 
modeling to settings where direct data are scarce, as demon
strated by our application to wildfire simulations.

The focus of this study is on uncertainty quantification, for 
which surrogate models trained on related data are useful in 

multifidelity computations such as multifidelity Monte Carlo 
methods. However, we expect surrogate models that provide cor
related outputs to be useful beyond our specific setting of uncer
tainty quantification such as performing sensitivity analyses 
with multifidelity estimators (49) and estimating objective func
tions in optimal design problems under uncertainty, inverse 
problems, and control. Overall, the findings of this study encour
age the perspective on surrogate modeling that shifts the focus 
away from the classical aim of directly mimicking physics-based 
simulations towards being another information source in multi
fidelity computations (20).

Supplementary Material
Supplementary materialis available at PNAS Nexus online.

Funding
This material is based upon work supported by the Google 
Research Collab on “Uncertainty quantification for wildfire simu
lations: Reaching operational scale with Google’s ML stack and 
multifidelity methods,” the Air Force Office of Scientific 
Research under Award Number FA9550-21-1-0222 (Dr. Fariba 
Fahroo) and the U.S. Department of Energy, Office of Science 
Energy Earthshot Initiative as part of the project “Learning 

a

b c

Fig. 6. Scenario with input distribution given in Eq. (8): Already for low computational budgets of about 10,000 TPU hours, the surrogate model trained on 
related data together with the physics model lead to a multifidelity estimator of the expected burned area that shows little variance as the budget of TPU 
hours is increased. This indicates that including the surrogate model from related data provides more accurate estimates than using the physics model 
alone, because the surrogate model is used via a multifidelity estimator so that it introduces no bias. The estimated RMSEs are in agreement with these 
results and indicate an almost 3× lower RMSE than the estimator that uses the physics model alone. For a comparison at additional times after ignition, 
see Fig. S3b.
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