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Abstract 

Background In cohort studies with time‑to‑event outcomes, covariates of interest often have values that change 
over time. The classical Cox regression model can handle time‑dependent covariates but assumes linear effects 
on the log hazard function, which can be limiting in practice. Furthermore, when multiple correlated covariates are 
studied, it is of great interest to model their joint effects by allowing a flexible functional form and to delineate their 
relative contributions to survival risk.

Methods Motivated by the World Trade Center (WTC)‑exposed Fire Department of New York cohort study, we pro‑
posed a partial‑linear single‑index Cox (PLSI‑Cox) model to investigate the effects of repeatedly measured metabolic 
syndrome indicators on the risk of developing WTC lung injury associated with particulate matter exposure. The 
PLSI‑Cox model reduces the dimensionality of covariates while providing interpretable estimates of their effects. The 
model’s flexible link function accommodates nonlinear effects on the log hazard function. We developed an iterative 
estimation algorithm using spline techniques to model the nonparametric single‑index component for potential non‑
linear effects, followed by maximum partial likelihood estimation of the parameters.

Results Extensive simulations showed that the proposed PLSI‑Cox model outperformed the classical time‑depend‑
ent Cox regression model when the true relationship was nonlinear. When the relationship was linear, both the PLSI‑
Cox model and classical time‑dependent Cox regression model performed similarly. In the data application, we found 
a possible nonlinear joint effect of metabolic syndrome indicators on survival risk. Among the different indicators, BMI 
had the largest positive effect on the risk of developing lung injury, followed by triglycerides.

Conclusion The PLSI‑Cox models allow for the evaluation of nonlinear effects of covariates and offer insights 
into their relative importance and direction. These methods provide a powerful set of tools for analyzing data 
with multiple time‑dependent covariates and survival outcomes, potentially offering valuable insights for both cur‑
rent and future studies.
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Background
In cohort studies with survival outcomes, multiple covar-
iates of interest may have values that change over time. 
Time-dependent Cox regression [1] has been widely used 
to characterize the effects of time-dependent covari-
ates on a time-to-event outcome and is specified as 
� (t) = � 0(t)exp

{
β TX(t)

}
, where � 0(t) is an unknown 

baseline hazard function and β is a vector of regression 
coefficients (i.e., log hazards ratio) corresponding to the 
effects of time-varying covariates X(t) . A strong assump-
tion of the Cox regression model is that the covariates 
X(t) have a linear effect on the log hazard function, 
which is not always guaranteed in practice. Furthermore, 
the covariates can be inter-correlated and exhibit com-
plex interactions. Consequently, classical methods may 
suffer from multicollinearity and inefficient estimates. 
When multiple time-dependent covariates are studied, 
we often wish to model their joint effects by allowing a 
flexible functional form.

Several approaches have been proposed to handle 
the challenges presented by multiple time-independent 
covariates. To relax the assumption of linear effects on 
the log hazard function, nonparametric models [2–6] 
have been developed to estimate the log hazard func-
tion using � (t) = � 0(t)exp{ψ (X)}, where ψ (X) is an 
unspecified smooth function of X . However, unstruc-
tured nonparametric function estimation is challenging 
in practice due to the complexities of high-dimensional 
data (i.e., curse of dimensionality). To allow for flexibil-
ity, semi-structured models have been proposed [7–12]. 
For example, single-index models [11, 13] have been 
proposed as � (t) = � 0(t)exp ψ β TX  , where ψ (• ) 
is an unknown smooth link function consisting of a sin-
gle index β TX . Wang [11] proposed the proportional 
hazards regression models with unknown link func-
tion for possible time-dependent covariates, that is, 
� (t) = � 0(t)ψ

{
β TX(t)

}
 . Various techniques such as 

spline or kernel techniques can be used to approximate 
the unknown link functions.

Sometimes, major risk factors of interest exhibit non-
linear effects and inter-correlation, while other confound-
ers such as demographics, anthropometric measures, 
and socioeconomic status can be modeled by linear 
effects in the proportional hazards model. Sun et al. [14] 
proposed a partial-linear single-index (PLSI) hazards 
model to extend the single index model, with the form 
� (t) = � 0(t)exp

{
ψ

(
β TX

)
+ α TZ

}
, in which a set of 

covariates X is modeled using the single index compo-
nent, while other covariates Z maintain their linear form. 
Even though PLSI models have been widely developed for 
continuous, binary, ordinal, count, and survival outcomes 
[15], limited analytical methods currently exist for apply-
ing the PLSI survival model to time-varying covariates.

Motivated by our recently published study in the World 
Trade Center particulate matter-exposed Fire Depart-
ment of New York (WTC-FDNY) cohort [16] that inves-
tigated the time to onset of lung injury after particulate 
matter exposure, this paper proposed a partial-linear 
single-index Cox (PLSI-Cox) model with time-dependent 
covariates. Our scientific question was to assess the total-
ity of overall effects of all five components of metabolic 
syndrome (MetSyn) – including body mass index (BMI), 
triglycerides, high density lipoprotein (HDL), glucose, 
and blood pressure – on the risk of developing WTC-
related lung injury (WTC-LI) and to examine their rela-
tive importance to inform clinical interventions. Several 
features of this dataset motivated us to consider the PLSI-
Cox model: (1) multiple time-dependent MetSyn covari-
ates are inter-correlated; (2) baseline confounders such 
as age, race, and smoking status need to be adjusted as 
linear effects; and (3) the possible nonlinear joint effects 
of MetSyn components and their relative importance for 
future intervention. We adopted a B-spline smoothing 
technique to approximate the unknown link function for 
the joint effects and used the maximum partial likelihood 
estimation method for parameter estimates. We also 
studied asymptotic consistency and normality of the pro-
posed model, which are available in the web appendix.

Our current manuscript is organized as follows. In 
Sect.  2, we present the model specification, estimation, 
inference, and implementation of the proposed method. 
Section 3 includes simulation studies evaluating the finite 
sample performance of our proposed method. The analy-
sis of the cohort study [16] using our proposed PLSI-Cox 
model is illustrated in Sect.  4. We conclude in Sect.  5 
with discussions and suggestions for further study. Tech-
nical details are provided in the web appendix.

Methods
Time‑dependent PLSI‑Cox regression model
Suppose we have an i.i.d. sample {Ti, � i, Xi(t), Zi(t)} 
with n subjects (i = 1, . . . , n) . For subject i , suppose we 
observe an event time Ti = min

(
T ∗
i ,Ci

)
 , where T ∗

i  is the 
true survival time and Ci is the censoring time, respec-
tively, and a censoring indicator � i = I

(
T ∗
i ≤ Ci

)
 , where 

I(• ) is the indicator function. We assume an independ-
ent right censoring scheme in which censoring times are 
independent of true survival time given the covariate var-
iables. Xi(t) and Zi(t) are respectively p - and q-dimen-
sional vectors at time t; t ∈ [0, τ ] . We assume that Xi(t) 
includes all possible nonlinear covariates, while Zi(t) 
includes covariates with linear effects and is pre-specified 
based on prior knowledge (e.g., risk factors for X and 
confounders for Z ). The PLSI-Cox regression model is 
specified as
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where ψ (• ) is the unknown smooth link function, β 
contains the p-dimensional contribution weights of 
X(t) , α is the q-dimensional regression coefficient vector 
for Z(t) , and � 0(t) is unspecified baseline hazard func-
tion. Because ψ (• ) is an unspecified, the relative risk 
function of β TX(t) can accommodate many flexible 
forms. To ensure model identifiability, we assume that 
ψ (0) = 0, ||β || =

(
β Tβ

)1/2 = 1 and the first compo-
nent of β is positive (i.e., β 1 > 0 ). For the implementa-
tion, we select one variable with a strong and positive 
signal as the first component based on prior knowledge, 
which is a mild condition. Note that the details of these 
constraints are well described in Sect. 2.1 of Huang and 
Liu [13].

For the interpretations of our proposed PLSI-Cox 
model, the regression coefficients α for Z(t) can be inter-
preted as usual log hazard ratios. However, due to the 
presence of the unknown link function, the contribution 
weights β do not have the usual interpretation as in the 
standard Cox model. Because we assumed the constraint 
||β || = 1 , the scale of β represents their relative impor-
tance between X(t) while the other terms, ψ (• ) and 
other variables, are held constant. Moreover, if ψ (• ) is 
a monotone increasing function, a positive β indicates a 
higher risk as the covariate value increases, while a nega-
tive coefficient suggests a lower risk. Note that Huang 
and Liu [13] used average derivatives to interpret single-
index model when the link function is nonmonotone. 
Such covariate effects can often be better understood 
using graphical tools.

Estimation of our proposed PLSI‑Cox model
From our proposed model (1), the partial likelihood func-
tion can be constructed as

where Yj(t) = I
(
Tj ≥ t

)
 indicates the risk set at event 

time t, j = 1, . . . , n . In this study, we employ a B-spline 
basis function to approximate the derivative of the non-
linear component ψ ′ (• ) . The B-spline is selected for its 
numerical stability for implementation, although other 
basis techniques can be used in principle.

Let Bk(k = 1, . . . ,K ) be the B-spline basis functions 
with the number of knots K  [17, 18]. For any β in the 
neighborhood of its true parameter value, we assume that 
the support of β TX(t) is a continuous interval [c, d] and 
0 ∈ [c, d] , where −∞ < c < d < ∞ , so that the range of 
the B-splines can be well defined. In our data application, 
we standardized X(t) first and found that the algorithm 

(1)� i(t|Xi(t), Zi(t)) = � 0(t)exp

{
ψ

(
β T

Xi(t)

)
+ α T

Zi(t)

}
,

(2)

PL(β , α , ψ ) =
∏ n

i=1

[
exp

{
ψ

(
β T

Xi(Ti)
)
+ α T

Zi(Ti)
}

∑
n

j=1Yj(Ti)exp
{
ψ

(
β T

Xj(Ti)
)
+ α T Zj(Ti)

}
]� i

,

was stable in handling the data range of the single-index. 
However, in practice we suggest using techniques such as 
logit transformation or the cumulative distribution func-
tion transformation of β TX(t) to convert it into a spe-
cific range before applying the B-spline. Thus, we have an 
approximation represented by

where γ T =
(
γ 1, . . . , γ K

)T and B(µ ) = (B1(µ ), . . . , BK (µ ))T as 
their collection. With the identifiability constraint 
ψ (0) = 0 , we then obtain ψ (

β T
X(t)

)
= γ T

∼
B
(
β T

X(t)
) , where 

∼
Bk (µ ) =

∫ max(0, µ )

min(0,µ )
Bk (s)ds, k = 1, . . . ,K  , are the integrals of the 

B-spline basis functions, and ∼
B (µ ) =

(∼
B1(µ ), . . . ,

∼
BK (µ )

)T . In 
practice, one typically uses quadratic B-splines in the 
basis expansion of ψ ′ (• ) so that ψ (• ) is a cubic spline.

Using the B-spline approximation of the unknown link 
function, the partial likelihood in (2) can be re-written as

with the parameter set θ = (γ , β , α )T . Based on 
the construction of the log-partial likelihood function 
denoted by l(θ ) , the derivations of the joint score func-
tion S(γ , β , α ) of (γ , β , α ) and the Hessian matrix 
H(γ , β , α ) are given in Web Appendix A. The log-partial 
likelihood function l(θ ) is a concave function of (γ , α ) 
for fixed β because H(γ , α ) is negative semi-definite [14]. 
Therefore, given fixed β , the values of (γ , α ) that maxi-
mize the l(θ ) are uniquely defined, if they exist.

For implementation, we develop an iterative estimating 
procedure:

• Step 0. Start with initial values of α and β . For exam-
ple, the initial values can be obtained from standard 
time-dependent Cox regression models using R pack-
age “survival” with a prespecified ψ (• ) unknown 
link function which assumes linear coefficients for all 
covariates.

• Step 1. Given the current value of β̂ (d) , update the 
estimates of γ and α by maximizing the partial likeli-
hood function as

In practice, we can perform a classical time-dependent 
Cox regression model using the covariates of ∼B

(
β̂(d)T

Xi(Ti)

)
 

ψ ′
(
β T

X(t)

)
=

∑ K

k=1
γ kBk

(
β T

X(t)

)
= γ T

B

(
β T

X(t)

)
,

PL(θ ) =
� n

i=1




exp

�
γ T

∼
B
�
β T

Xi(Ti)
�
+ α T

Zi(Ti)

�

�
n

j=1Yj(Ti)exp

�
γ T

∼
B
�
β T

Xj(Ti)
�
+ α T Zj(Ti)

�




� i

,

PL
�
γ ,α; �β(d)

�
=

�n

i=1




exp

�
γ T

∼
B

�
β̂(d)T Xi(Ti)

�
+ αT Zi(Ti)

�

�n
j=1Yj(Ti)exp

�
γ T

∼
B

�
β̂(d)T Xj(Ti)

�
αT Zj(Ti)

�




�i

.



Page 4 of 13Lee et al. BMC Medical Research Methodology          (2024) 24:311 

and Zi(Ti) with respect to γ and α , respectively (e.g., 
coxph() function of “survival” package [19] in R).

• Step 2. Given the current values of γ̂ (d+1) and α̂ (d+1) 
from Step 1, update the estimate of β by maximizing 
the partial likelihood function,

Then we standardize β̂
(d+1)

 such that ||β̂ (d+1)|| = 1 and 
its first component is positive.

• Step 3. Repeat Steps 1 and 2 until the parameter con-
vergence criterion is met. In this study, we defined the 
convergence criterion as max

{∣∣∣θ new − θ old

∣∣∣
}
< 0.0001.

Remark 1. To use existing R packages for Step 
2, we employ the Taylor expansion of ψ

(
βT

X(t)
) 

at constant a(t) = β̂(d)T X(t) , that is, ψ
(
βT

X(t)
)
≈

ψ(a(t))+
(
βT

X(t)− a(t)
)
× ψ ′(a(t)) = γ̂ (d+1)T

B̃(a(t))+
(
βT

X(t)− a(t)
)
× γ̂ (d+1)T

B(a(t)) = βT

{
X(t)γ̂ (d+1)T

B(a(t))

}
+

{
γ̂ (d+1)T

B̃(a(t))− a(t)γ̂ (d+1)T
B(a(t))

}
 . 

Then, the partial likelihood function in Step 2 can be re-
written as

with aj(Ti) = β̂(d)T Xj(Ti) . We use Xi(Ti)γ̂
(d+1)T

B(ai(Ti)) as our 
covariate with respect to β and the remaining terms, {
γ̂ (d+1)T

∼
B (ai(Ti))− ai(Ti) · γ̂ (d+1)T

B(ai(Ti))

}
+ α̂(d+1)T

Zi(Ti)  , 

are constant with the offset (e.g., coxph() function of 
“survival” package [19] in R, with offset() option).

Remark 2.  Even though the log-partial likelihood func-
tion is concave in but not guaranteed in, the iterative alter-
nating procedure is numerically stable and computationally 
simple [13, 14, 20]. In our simulation studies, the proposed 
algorithm performed well and was easily implemented using 
standard statistical software, R, with existing packages “sur-
vival” and “splines2” [19, 21]. Even though our proposed 
PLSI-Cox model can be estimated by using the profiling 
approach, it would not be directly implementable using the 
existing R packages. The R code for our proposed methods 

PL
�
β ; �γ (d+1)

, �α (d+1)
�
=

� n

i=1




exp

�
�γ (d+1)T

∼
B
�
β TXi(Ti)

�
+ �α(d+1)T Zi(Ti)

�

� n
j=1Yj(Ti) exp

�
�γ (d+1)T

∼
B
�
β TXj(Ti)

�
+ �α(d+1)T Zj(Ti)

�




� i

.

PL
�
β ; �γ (d+1)

, �α (d+1)
, �β (d)

�
=

� n

i=1




exp

�
β T

�
Xi(Ti)�γ (d+1)T

B(ai(Ti))

�
+

�
�γ (d+1)T

∼
B (ai(Ti))− ai(Ti) · �γ (d+1)T

B(ai(Ti))

�
+ �α(d+1)T Zi(Ti)

�

� n
j=1Yj(Ti)exp

�
β T

�
Xj(Ti)�γ (d+1)T B

�
aj(Ti)

��
+

�
�γ (d+1)T

∼
B
�
aj(Ti)

�
− aj(Ti) · �γ (d+1)T B

�
aj(Ti)

��
+ �α(d+1)T Zj(Ti)

�




� i

,

is available at https:// github. com/ ml5977/ plsi_ survi val_ 
models.

Statistical inference
We first reparametrize β = β (σ ) =

((
1− ||σ ||2

)1/2
, σ 1, . . . , σ p−1

)T

with σ =
(
σ 1, . . . , σ p−1

)Tsuch that the constraints ||β || = 1 and 
β 1 > 0 hold. Note that such reparameterization is solely 
for the purpose of developing asymptotic theory. Suppose 

we define a map G : ( σ , α , γ ) → ( β ,α , γ ) , so that 
( β ,α , γ ) = G(σ , α , γ ) . By the Delta method, the 
asymptotic variance-covariance matrix can be estimated by

where Is denotes the s × s identity matrix, 01× (q+K ) 
denotes the zero vector with dimension of 1× (q + K ) 
respectively, and H( σ̂ ,α̂ ,γ̂ ) is the Hessian matrix of (
σ̂ , α̂ , γ̂

)
 . Given the regularity conditions and applying 

martingale theory to our proposed model with time-
dependent covariates, we showed that our estimators are 
consistent and asymptotically normal using the sandwich 

formular (see Web Appendix B).
The variability of the estimated single-index function 

ψ (• ) evaluated at a fixed s can be estimated as 
σ 2

ψ̂ (s)
=

∼
B (s)T σ 2

γ̂

∼
B (s) . Thus, an approximate 95% pointwise 

confidence interval (CI) for ψ (s) is given by 
ψ̂ (s)± 1.96

{
σ 2

ψ̂ (s)

}1/2 . Because the analytic form of the stand-
ard error (SE) was difficult to implement directly, we used 
a bootstrapping method, where we resampled subjects 
with replacement, for the finite-sample SE estimation to 
compute 95% CIs of θ in our simulation study and data 
application.

Testing the linearity of single‑index function
When fitting the PLSI model, one question of inter-
est is whether the flexible functional form is necessary 

� �
�β , �α ,�γ

� = G
′ � �σ , �α , �γ

�
� ( �σ , �α ,�γ )

�
G

′ � �σ , �α , �γ
��T

=




�β 2

�β 1

, . . . ,
�β p

�β 1

, 01× (q+K )

Ip−1+q+K



�
−H(�σ ,�α ,�γ )

�−1




�β 2

�β 1

, . . . ,
�β p

�β 1

, 01× (q+K )

Ip−1+q+K



T

,

https://github.com/ml5977/plsi_survival_models
https://github.com/ml5977/plsi_survival_models
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(i.e., whether classical Cox regression would suffice 
to fit the data). To test whether the unknown single-
index function is linear, the likelihood ratio (LR) test 
can be performed because the classical time-depend-
ent Cox regression is nested in our proposed PLSI 
model. Specifically, the test statistic is defined as 
LR = −2

(
log{PLCox} − log{PLPLSI }

)
, where PLCox and 

PLPLSI denote the values of the partial likelihood for 
the fitted time-dependent Cox regression and the fitted 
PLSI-Cox model, respectively. Under the null hypothesis 
that the classical Cox model holds, the LR test statistic 
approximately has a χ 2 distribution with m degrees of 
freedom, where m = K + d − 2 , with K  being the num-
ber of knots and d being the degree of the spline [13].

Simulation study
Simulation setting
To evaluate the performance of our proposed method, 
we conducted extensive simulations under vari-
ous settings. Under the true PLSI-Cox model, that is, 
� i(t) = � 0(t)exp

{
ψ

(
β TX(t)

)
+ α TZ(t)

}
 , we assumed 

8 time-dependent covariates X(t) for nonlinear effects 
and the covariates Z(t) for linear effects were assumed 
to be time-invariant (i.e., Z(t) = Z for all t ) based on the 
model structure from our data application. True parame-
ters were set to β = (1, −1, 1, −1, 1,1, −1, 1)T /

√
8 for 

the norm of 1 and α = (1, −1, 0.5)T . Based on the true 
model specification, we generated the survival time from 
two scenarios of true link function as follows:

i) Linear: ψ (s) = s;
ii) Log curve (nonlinear): ψ (s) = log(1+ s2).

Under the linear model, we generated time-dependent 
covariates from Xp(t) = θ 0p + θ 1pt, where θ op ∼ N (0, 2) for p = 1, ..., 8 , 
θ 1p ∼ U(0, 0.1) for p = 1, 3, 5, 6, 8 , and θ 1p ∼ U(−0.1, 0) for p = 2, 4, 7 and 
time-independent covariates from Z1,Z2 ∼ N (0, 2) 
and Z3 ∼ Bern(p = 0.5) . The baseline hazard func-
tion was � 0(t) = exp(−2.3) . On the other hand, 
for the log curve model our covariates were gener-
ated from Xp(t) = θ o + θ 1t,  where θ o ∼ N (0, 1) and 
θ 1 ∼ N (0, 0.05)  for p = 1, . . . , 8 , Z1, Z2 ∼ U(−0.2, 0.2) 
and Z3 ∼ Bern(p = 0.5) . The baseline hazard function 
� 0(t) was set to exp(−6.9).

We considered sample sizes of 500 and 300 and speci-
fied 25% and 50% censoring rates using a fixed censor-
ing time at the end of the study. We further investigated 
the performance of the PLSI-Cox model under smaller 
sample size, random censoring mechanism and high-
correlation setting (see Web Appendix C). The num-
ber of repeated observations for time-dependent 
covariates per subject was generated from a discrete 

uniform distribution on {1, . . . , 5} including a baseline 
measurement at time t = 0 . The observed measurement 
time was randomly selected between 0 and the observed 
survival time for each subject. For simplicity, we used 
3 equally spaced knots in the range of β TX(t) for the 
B-spline approximation and applied a convergence crite-
rion of 10−4 for each iteration. Note that the performance 
was not sensitive to the number of knots in a reasonable 
range (e.g., one to five knots) under our simulation. For 
each setting, we ran 500 simulations.

Using the generated dataset, we fitted our proposed 
PLSI-Cox model and the classical time-dependent Cox 
regression model. We used 500 bootstrap samples to 
compute standard errors of estimates. Note that we 
rescaled the estimates β of the classical time-dependent 
Cox regression such that the coefficient vector had the 
same norm of 1 as for the proposed PLSI model. To eval-
uate the estimated coefficients for θ = (γ , β , α )T , we 
reported performance measures: (1) Bias: the average of {
θ̂ − θ

}
 , (2) SD: the sample standard deviation of θ̂  , (3) 

SE: the average of estimated standard errors of θ by 500 
bootstrap samples, and (4) CP: the coverage probability 
of the 95% CI for θ . For the estimated link function, we 
reported the mean of the estimated single-index function 
ψ̂ (• ) and 95% CIs, constructed using the 2.5% and 97.5% 
sample quantiles of the estimated link function from 500 
simulations. The rate of convergence (i.e., percent con-
verged out of 500 simulations) was also reported.

Using the LR test statistic, we examined the type I error 
and power of the proposed method. To investigate the 
change in power, ψ (s) = log

(
1+ s2I(s ≥ η )

)
 , where 

η = 0, −1and −∞ (i.e., s ≥ η ), and η = −∞ indicates 
no truncation and the nonlinear relationship becomes 
severe when the truncated value η goes to −∞ . Note that 
an additional 500 simulations with sample sizes of 200 
and 300 were conducted under 10% and 25% censoring 
rates to compute type I error and power. All computa-
tions were performed using R software (version 4.1.2).

Simulation results
Table  1 showed the results of the linear model and 
indicates that both the proposed method and classical 
time-dependent Cox model estimate the parameters rea-
sonably well. Under the linear setting, the performance of 
the time-dependent Cox model was considered the gold 
standard, indicating empirically unbiased and reasonably 
efficient results. Our proposed PLSI-Cox model showed 
proper results with the empirical coverage probabilities 
(CPs) of the 95% CIs for β and α close to the nominal 
level. The biases of parameter estimations were small, 
and standard deviations (SDs) of the estimates were close 
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Table 1 Linear model: simulation results of parameter estimations

Time‑dependent Cox model Proposed PLSI‑Cox model

Bias SD SE CP Bias SD SE CP

N = 500 with censoring rate 25% (100% converged)

β 1 −0.001 0.036 0.035 0.938 −0.001 0.037 0.036 0.952

β 2 0.003 0.035 0.035 0.950 0.003 0.035 0.037 0.956

β 3 −0.001 0.036 0.035 0.942 −0.001 0.037 0.037 0.948

β 4 0.002 0.036 0.035 0.948 0.002 0.036 0.037 0.952

β 5 −0.001 0.036 0.035 0.954 −0.002 0.037 0.036 0.958

β 6 −0.002 0.035 0.035 0.942 −0.002 0.036 0.037 0.940

β 7 0.001 0.036 0.035 0.936 0.001 0.036 0.036 0.942

β 8 −0.004 0.037 0.036 0.946 −0.004 0.037 0.037 0.958

α 1 0.000 0.055 0.055 0.944 0.001 0.056 0.056 0.944

α 2 0.000 0.053 0.056 0.964 −0.003 0.053 0.056 0.972

α 3 0.002 0.114 0.111 0.936 0.002 0.114 0.113 0.938

N = 500 with censoring rate 50% (100% converged)

β 1 −0.002 0.041 0.043 0.954 −0.002 0.042 0.045 0.954

β 2 0.005 0.043 0.043 0.940 0.005 0.045 0.045 0.940

β 3 −0.003 0.043 0.043 0.938 −0.004 0.044 0.045 0.948

β 4 0.003 0.044 0.043 0.936 0.003 0.045 0.045 0.938

β 5 −0.005 0.044 0.043 0.948 −0.006 0.045 0.045 0.946

β 6 0.001 0.044 0.043 0.932 0.002 0.045 0.045 0.934

β 7 0.002 0.043 0.043 0.952 0.002 0.044 0.045 0.948

β 8 −0.003 0.042 0.043 0.942 −0.004 0.043 0.045 0.950

α 1 0.022 0.063 0.068 0.956 0.025 0.063 0.070 0.956

α 2 −0.023 0.066 0.068 0.956 −0.026 0.067 0.070 0.946

α 3 0.015 0.138 0.140 0.958 0.017 0.139 0.142 0.956

N = 300 with censoring rate 25% (100% converged)

β 1 −0.002 0.048 0.046 0.954 −0.002 0.049 0.050 0.952

β 2 0.000 0.048 0.047 0.950 0.000 0.049 0.050 0.954

β 3 −0.003 0.047 0.047 0.950 −0.003 0.049 0.050 0.956

β 4 0.005 0.047 0.047 0.934 0.004 0.047 0.050 0.954

β 5 −0.004 0.048 0.047 0.938 −0.005 0.048 0.050 0.946

β 6 −0.002 0.047 0.047 0.950 −0.001 0.047 0.050 0.956

β 7 0.003 0.047 0.047 0.938 0.003 0.048 0.050 0.950

β 8 −0.007 0.047 0.047 0.940 −0.007 0.048 0.051 0.948

α 1 0.019 0.070 0.077 0.964 0.023 0.071 0.079 0.968

α 2 −0.015 0.074 0.077 0.952 −0.019 0.075 0.079 0.956

α 3 0.008 0.144 0.151 0.960 0.013 0.146 0.156 0.956

N = 300 with censoring rate 50% (100% converged)

β 1 −0.007 0.056 0.056 0.948 −0.007 0.058 0.062 0.952

β 2 0.002 0.057 0.057 0.944 0.003 0.059 0.062 0.952

β 3 −0.003 0.057 0.056 0.942 −0.002 0.059 0.062 0.950

β 4 0.006 0.057 0.057 0.946 0.006 0.058 0.062 0.956

β 5 −0.005 0.054 0.057 0.962 −0.005 0.056 0.063 0.972

β 6 −0.006 0.060 0.056 0.938 −0.006 0.063 0.063 0.942

β 7 0.004 0.054 0.057 0.956 0.006 0.055 0.063 0.974

β 8 −0.003 0.058 0.057 0.936 −0.004 0.059 0.062 0.952

α 1 0.043 0.092 0.096 0.944 0.049 0.094 0.100 0.948

α 2 −0.040 0.091 0.096 0.950 −0.045 0.093 0.100 0.948

α 3 −0.001 0.193 0.193 0.950 0.002 0.197 0.202 0.950
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to the empirical standard errors (SEs). Compared to the 
results of the gold standard when the link function was 
linear, PLSI-Cox yielded a slightly larger SEs but maintain 
good efficiency. When sample size increased, both the 
biases and standard errors of estimates of β and α tended 
to decrease, which is not surprising.

On the other hand, when the true link function was 
nonlinear, the classical Cox model was substantially 
biased (Table  2). Moreover, the coverage probabilities 
for the classical method revealed inaccurate estimates of 
the standard errors, especially for the nonlinear effects 
β . However, our proposed PLSI-Cox model consistently 
performed well and showed unbiased results in estima-
tion and reasonable values of standard errors (Table  2). 
The coverage probabilities also were close to the nomi-
nal level at 0.95. The results for linear and nonlinear cases 
were similar with different censoring rates. Thus, the pro-
posed PLSI-Cox model showed efficient estimates when 
the true link function was both linear and nonlinear.

Figure  1  showed the mean of the estimated function 
ψ (• ) with 95% CIs. Our proposed method demonstrated 
that the estimated function approximates the true func-
tion closely, indicating good performance for both linear 
and nonlinear link function cases. The proposed method 
performed well even when the sample size was small or the 
censoring rate was relatively high (Fig. 1). The results of our 
simulation study were robust under conditions of smaller 
sample size, random censoring distribution, and high-cor-
relation settings (Tables S1–S3 in Web Appendix C).

The results of the empirical size and power using the 
LR test statistic are given in Table 3. Under different sam-
ple sizes and censoring rates, the empirical sizes were 
consistently close to 0.05. Our simulation also demon-
strated that the power increased when the nonlinear rela-
tionship became severe, which is not surprising. When 
we used truncated values such as η = 0 , the power was 
relatively lower in the range from 0.15 to 0.22 because 
the truncated link function is close to a linear. However, 
when the log curve model is true with no truncation (i.e., 
η = −∞ ), the power was 1.00 indicating that the null 
hypothesis as rejected for each of the 500 simulations. 
Moreover, the power also increased when the sample size 
increased as expected.

Data application
As stated in our recent manuscript [16], 5,738 partici-
pants in the WTC-FDNY cohort were longitudinally fol-
lowed and underwent serial pulmonary function tests 
(PFTs), complete blood count, chemistries, and lipids 
as per our recent publication. The details and results 
of this cohort study were reported in Kwon et  al. [16]. 
Our clinical outcome of interest was time to first onset 

of WTC-LI, defined as Forced Expiratory Volume in 1 s 
 (FEV1) percent predicted < lower limit of normal). Lon-
gitudinal MetSyn data of BMI, triglycerides, HDL, glu-
cose, systolic blood pressure (SBP), and diastolic blood 
pressure (DBP) were assessed [16]. Baseline information 
and demographics were previously published in Table 1 
of Kwon et al. [16]. Cases (n = 1,475) did not significantly 
differ from controls (n = 4,263) with respect to baseline 
age, gender, or race as per prior report. However, cases 
were more likely to be smokers, have higher WTC-par-
ticulate exposure and have different patterns of MetSyn 
components than controls (Table 1 of Kwon et al. [16]).

We applied our PLSI-Cox model to assess the pos-
sibly nonlinear joint effect of MetSyn components and 
to delineate their relative contributions to the risk of 
developing lung injury [16]. Due to right-skewness, we 
log-transformed triglycerides and glucose. After log-
transformation, all MetSyn components were standard-
ized to mean 0 and standard deviation of 1 for model 
stability. We used 3 knots for the B-spline technique.

The estimated parameters, corresponding stand-
ard errors by 5,000 bootstrap samples, and p-values 
are presented in Table  4, adapted from Supplemental 
Table E5 in Kwon et al. [16]. As in our recent publica-
tion, we found that BMI had the largest magnitude 
and positive weight (0.733) on the risk of developing 
lung injury after particulate matter exposure, followed 
by log-transformed triglycerides (0.509) and HDL 
(−0.418). HDL had negative weight for survival risk, 
which is clinically reasonable. Among baseline vari-
ables, ever-smoking was a significant risk factor with 
the estimated hazard ratio (HR) of 1.200 ( = e0.182 ) [16].

Figure  2 (adapted from Fig.  6A of Kwon et  al. [16]) 
demonstrates a possible nonlinear joint effect of the 
MetSyn components on the survival risk. Because 
the estimated link function was monotone, we inter-
preted the joint effect qualitatively. When examining 
the extremes, having fewer MetSyn characteristics, and 
thereby being on the negative end of the spectrum of 
MetSyn single indices, had a modest effect on the risk of 
developing lung injury. On the other hand, when exam-
ining positive MetSyn single indices, the risk increased 
exponentially. For example, the HR of a 1-unit increase 
in the single index from 0 to 1 is 1.246 ( = e0.22−0.00) , 
while the HR from 1 to 2 is 2.270 ( = e1.04−0.22 ). When 
assessing the linearity of the single-index function 
using the LR test statistic, p-value=0.118 indicating 
that the overall relationship did not significantly devi-
ate from linearity.

An advantage of using the proposed method is not 
only to provide the joint effects of multiple time-depend-
ent covariates as a functional form ψ (• ) , but also to 
delineate the relative contribution weights with easy 
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Table 2 Nonlinear model: simulation results of parameter estimations

Time‑dependent Cox model Proposed PLSI‑Cox model

Bias SD SE CP Bias SD SE CP

N = 500 with censoring rate 25% (99.8% converged)

β 1 −0.344 0.350 0.247 0.634 0.000 0.014 0.014 0.946

β 2 0.343 0.338 0.245 0.660 0.000 0.015 0.014 0.938

β 3 −0.359 0.340 0.248 0.638 0.000 0.014 0.014 0.932

β 4 0.357 0.326 0.244 0.636 0.000 0.015 0.014 0.930

β 5 −0.344 0.349 0.246 0.638 −0.002 0.014 0.014 0.948

β 6 −0.370 0.381 0.275 0.650 0.000 0.017 0.017 0.958

β 7 0.360 0.374 0.268 0.670 −0.001 0.016 0.015 0.934

β 8 −0.350 0.369 0.275 0.690 0.000 0.017 0.017 0.952

α 1 −0.488 0.431 0.431 0.774 −0.067 0.408 0.423 0.954

α 2 0.455 0.409 0.430 0.848 0.053 0.398 0.425 0.974

α 3 −0.231 0.097 0.099 0.380 −0.023 0.099 0.099 0.948

N = 500 with censoring rate 50% (100% converged)

β 1 −0.362 0.344 0.250 0.650 0.000 0.014 0.014 0.938

β 2 0.361 0.342 0.249 0.638 0.001 0.015 0.014 0.938

β 3 −0.341 0.327 0.250 0.672 −0.001 0.014 0.014 0.952

β 4 0.379 0.342 0.247 0.632 0.001 0.013 0.014 0.958

β 5 −0.349 0.346 0.251 0.670 −0.001 0.015 0.014 0.940

β 6 −0.330 0.387 0.275 0.678 −0.001 0.017 0.017 0.950

β 7 0.357 0.359 0.270 0.660 0.000 0.016 0.015 0.938

β 8 −0.364 0.378 0.278 0.672 0.002 0.018 0.017 0.938

α 1 −0.481 0.419 0.430 0.798 −0.089 0.394 0.422 0.962

α 2 0.471 0.431 0.429 0.814 0.093 0.423 0.422 0.952

α 3 −0.232 0.092 0.099 0.348 −0.022 0.096 0.099 0.952

N = 300 with censoring rate 25% (99.8% converged)

β 1 −0.321 0.336 0.245 0.688 −0.001 0.018 0.019 0.962

β 2 0.356 0.343 0.243 0.638 0.001 0.017 0.019 0.960

β 3 −0.359 0.340 0.244 0.622 0.000 0.019 0.019 0.952

β 4 0.355 0.350 0.241 0.618 0.001 0.018 0.019 0.968

β 5 −0.347 0.353 0.245 0.628 −0.001 0.019 0.019 0.944

β 6 −0.340 0.372 0.272 0.668 0.000 0.022 0.024 0.966

β 7 0.335 0.367 0.266 0.676 −0.001 0.020 0.021 0.968

β 8 −0.333 0.365 0.274 0.700 0.000 0.021 0.024 0.966

α 1 −0.447 0.556 0.574 0.882 −0.026 0.572 0.567 0.956

α 2 0.481 0.564 0.575 0.872 0.094 0.532 0.571 0.968

α 3 −0.235 0.134 0.132 0.594 −0.026 0.127 0.133 0.954

N = 300 with censoring rate 50% (100% converged)

β 1 −0.401 0.346 0.248 0.600 −0.002 0.019 0.019 0.948

β 2 0.392 0.333 0.247 0.600 0.000 0.018 0.019 0.956

β 3 −0.361 0.346 0.250 0.630 0.000 0.019 0.020 0.958

β 4 0.367 0.342 0.245 0.648 0.002 0.018 0.019 0.954

β 5 −0.379 0.335 0.250 0.618 −0.001 0.019 0.019 0.942

β 6 −0.354 0.381 0.276 0.660 0.000 0.023 0.024 0.962

β 7 0.355 0.360 0.268 0.644 −0.001 0.021 0.021 0.948

β 8 −0.364 0.379 0.277 0.662 −0.001 0.024 0.024 0.936

α 1 −0.420 0.565 0.572 0.902 −0.011 0.566 0.567 0.936

α 2 0.440 0.553 0.572 0.878 0.018 0.568 0.566 0.956

α 3 −0.236 0.130 0.132 0.598 −0.030 0.125 0.131 0.962
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interpretability. Our data application led to an R shiny 
application promoting the utilization of metabolic syn-
drome in susceptible populations for dynamic risk assess-
ment (https:// med. nyu. edu/ resea rch/ nolan- lab/ softw are). 
In addition, the proposed method can handle multicol-
linearity and interactions, which are common issues when 
multiple covariates are under study [16, 22].

Discussion
In cohort studies with survival outcomes, multiple time-
dependent covariates are commonly observed; these 
can act synergistically or antagonistically on the risk 
of the event. However, classical methods such as time-
dependent Cox regression model could encounter chal-
lenges with handling multiple time-dependent covariates 
because they (i) are inter-correlated, (ii) exhibit complex 
interactions, and (iii) involve possible non-linear relation-
ships. Furthermore, quantifying the possible nonlinear 

joint effect of multiple covariates could improve our 
understanding of the disease mechanism in a real setting.

For studies involving multiple correlated covariates, 
several methods have been developed, such as weighted 
quantile sum (WQS) regression [23, 24] and Bayes-
ian kernel machine regression (BKMR) [25, 26]. WQS 
regression is a parametric approach that assumes all 

Fig. 1 The mean of estimated single‑index function with 95% confidence intervals under (A) linear single‑index function and (B) log curve 
single‑index function. Each colored link represents N = 300 with a 25% censoring rate (red) and a 50% censoring rate (blue), and N = 500 with a 25% 
censoring rate (green) and a 50% censoring rate (purple). The black solid line represents the true link function [Color figure online]

Table 3 Empirical size and power using LR test statistic with 500 
simulations

a Size was calculated under linear true link function (ψ (t) = t)
b Power was calculated under log true link function (ψ (t) = log(1+ t

2) with 
truncated t  at η (i.e. t ≥ η ). Note that due to truncated dataset sample size was 
not exactly same as either 200 or 300. The sample size was very close to the 
setting
c No truncation

N Censoring Rate Sizea Powerb

η = 0 η = −1 η = −∞c

200 10% 0.056 0.160 0.688 1.000

25% 0.058 0.151 0.656 1.000

300 10% 0.048 0.220 0.863 1.000

25% 0.056 0.191 0.792 1.000

Table 4 Results of parameter estimations of the MetSyn cohort 
study using PLSI‑Cox model

a 5,000 bootstrap samples were used
b All MetSyn components were standardized

Adapted with permission of the American Thoracic Society. Copyright © 2023 
American Thoracic Society. All rights reserved. Cite: Kwon S, Lee M, Crowley 
G, Schwartz T, Zeig-Owens R, Prezant DJ, Liu M, and Nolan A /2021 / Dynamic 
Metabolic Risk Profiling of World Trade Center Lung Disease: A Longitudinal 
Cohort Study /Am J Respir Crit Care Med / Vol 204(9) / 1035-1047. The American 
Journal of Respiratory and Critical Care Medicine is an official journal of the 
American Thoracic Society. Readers are encouraged to read the entire article 
for the correct context at [https:// www. atsjo urnals. org/ doi/ full/ 10. 1164/ rccm. 
202006- 2617OC]. The authors, editors, and The American Thoracic Society are 
not responsible for errors or omissions in adaptations

Estimates SEa P‑valuea

MetSyn componentb

 BMI 0.733 0.175 < 0.001

 Log (Triglycerides) 0.509 0.201 0.011

 HDL −0.418 0.201 0.038

 Log (Glucose) −0.167 0.147 0.256

 SBP 0.011 0.178 0.951

 DBP 0.066 0.173 0.702

Baseline information
 Race (Caucasian) 0.035 0.118 0.767

 Baseline age −0.005 0.004 0.223

 Smoking status (ever) 0.182 0.062 0.003

 Exposure (high) 0.176 0.075 0.020

https://med.nyu.edu/research/nolan-lab/software
https://www.atsjournals.org/doi/full/10.1164/rccm.202006-2617OC
https://www.atsjournals.org/doi/full/10.1164/rccm.202006-2617OC
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exposures affect the outcome in the same direction, 
using a weighted sum score to estimate the overall linear 
effect. However, this assumption can be restrictive when 
the mechanisms of individual exposures are not fully 
understood [27]. BKMR is a nonparametric method that 
accommodates complex, nonlinear relationships between 
exposures and outcomes. However, its results can be 
hard to interpret and require large sample sizes, increas-
ing computational demands [27]. Importantly, both WQS 
and BKMR have been adapted to investigate environ-
mental exposures across diverse outcome types, such 
as WQS for longitudinal outcomes [28] and BKMR for 
time-to-event outcomes [29]. However, analytic meth-
ods remain limited in applying time-varying covariates 
within the Cox regression framework, which represents 
a methodological gap in modern cohort studies with sur-
vival outcomes.

The partial-linear single-index (PLSI) model is a natu-
ral extension of the partially linear model [30] and sin-
gle-index model [31, 32] in which covariates can have 
both linear and nonlinear effects on the log hazard in the 
proportional hazards model. High-dimensional covari-
ates with possible nonlinear effects can be first combined 
as a single index, providing a flexible and parsimonious 
model. This approach can reduce the dimensionality of 

the covariates through the single index and simultane-
ously provides efficient estimates of the covariate effects. 
While the features of multiple time-dependent covariates 
fit PLSI models well, previous studies of PLSI hazards 
models work only for time-independent covariates, mak-
ing them less practical in modern studies. Note that PLSI 
techniques with time-dependent covariates have recently 
been applied to semiparametric transformation models 
with censored data by some of the authors [33].

Motivated by a real example from a longitudinal cohort 
study, we have developed a partial-linear single-index 
Cox regression model with multiple time-dependent 
covariates [16]. This model can be viewed as a natural 
extension of the traditional time-dependent Cox regres-
sion, enabling the investigation of both linear and non-
linear effects of the covariates. A B-spline smoothing 
technique and the maximum partial likelihood method 
are combined to feasibly obtain inferences about covari-
ate effects and estimation of the nonparametric flexible 
function. We chose to use B-splines for their computa-
tional and theoretical advantages. We have shown that 
the proposed PLSI-Cox model performed better than 
the classical time-dependent Cox regression model 
when a nonlinear link function exists. Moreover, our 
novel method provides efficient estimation and clear 

Fig. 2 The estimated link function (solid, black) and 95% pointwise confidence interval (dotted, blue) for data application. The distribution 
of the single index value is indicated along the x‑axis (grey) [Color figure online]. Adapted with permission of the American Thoracic 
Society. Copyright © 2023 American Thoracic Society. All rights reserved. Cite: Kwon S, Lee M, Crowley G, Schwartz T, Zeig‑Owens R, Prezant 
DJ, Liu M, and Nolan A /2021/ Dynamic Metabolic Risk Profiling of World Trade Center Lung Disease: A Longitudinal Cohort Study /Am J Respir 
Crit Care Med / Vol 204(9) / 1035‑1047. The American Journal of Respiratory and Critical Care Medicine is an official journal of the American 
Thoracic Society. Readers are encouraged to read the entire article for the correct context at [https:// www. atsjo urnals. org/ doi/ full/ 10. 1164/ rccm. 
202006‑ 2617OC]. The authors, editors, and The American Thoracic Society are not responsible for errors or omissions in adaptations

https://www.atsjournals.org/doi/full/10.1164/rccm.202006-2617OC
https://www.atsjournals.org/doi/full/10.1164/rccm.202006-2617OC
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interpretation. For example, coefficients of the covariates 
in the nonlinear components are interpreted as relative 
contribution weights, while estimates in the linear com-
ponent have the usual interpretation as the log hazard 
ratio. Therefore, our proposed model is particularly effec-
tive for studying multiple, correlated covariates that may 
exhibit complex relationships, while also adjusting for 
confounding.

In our simulation study, we found that the proposed 
method exhibited robust performance under smaller 
sample sizes, highly correlated covariates, and censor-
ing times generated by various mechanisms. (see Tables 
S1-S3 in Web Appendix C). Previous studies also demon-
strated that the PLSI techniques performed robustly with 
various types of nonlinear relationships, including quad-
ratic, sine curve, and log curve [13, 14, 20, 33–35]. Fur-
thermore, using the LR statistic we examined type I error 
and power of our PLSI model, which have not been inves-
tigated previously in the literatures of the single-index 
models for survival outcomes [13, 14, 20]. It is worth not-
ing that our bootstrapping approach to compute stand-
ard errors is practical for implementation, given the 
minimal computational burden of the PLSI-Cox model 
compared to the traditional Cox regression. For example, 
both methods performed within one second, even with a 
larger sample size (N = 5,000) considered (further details 
are provided in Web Appendix C).

In the analysis of the FDNY cohort study, we also con-
ducted the Weibull proportional hazards (PH) model to 
investigate the impact of each exposure on lung injury 
[16]. Similar results were observed in both the Weibull 
PH model and the PLSI-Cox model; for example, BMI, 
triglycerides and HDL were significantly associated with 
the risk of lung injury. Compared to traditional PH mod-
eling, the PLSI-Cox model not only enables us to rank 
the contributions of individual MetSyn characteristics to 
the risk of developing lung injury, but also offers an addi-
tional advantage by providing the nonlinear joint effects 
of all metabolic syndrome components, without con-
cerns about multicollinearity and interactions between 
potentially highly correlated characteristics, such as SBP 
and DBP. This application facilitates the interpretation of 
the PLSI-Cox models and provides a platform for further 
assessing how individual components impact the MstSyn 
single-index and hazard ratios – for example, how reduc-
ing MetSyn factor lowers the likelihood of lung injury in 
susceptible populations. Furthermore, the weighted sum 
of risk from each component of MetSyn (i.e., single-index 
values) to calculate a cumulative risk score can be inter-
preted as a surrogate of severity of MetSyn using actual 
values and preserving information for future intervention 
(e.g., dietary) studies [16]. Thus, our methods can be gen-
eralized to study multiple longitudinal covariates across 

diseases that may exhibit nonlinear effects, which is a 
critical gap in modeling repeatedly measured exposures 
and evaluating their nonlinear joint effects on the risk of 
the event.

To establish the asymptotic properties, one can assume 
either fixed knots or an increasing number of knots [36]. 
In this manuscript, we assumed the first approach, and 
the bias caused by spline approximation is known to be 
relatively small compared to the variance of the esti-
mated function [13, 14, 20, 36]. Given this assumption, 
we showed that our estimator behaves similarly (i.e., 
consistency and asymptotically normality) as the tradi-
tional Cox PH regression coefficients (Web Appendix 
B). Alternatively, the second approach does not assume 
the unknown function being a spline function. In this 
case, the number of knots must increase as the sam-
ple size increases. Furthermore, Wang [11] provided 
a large-sample theory under the proportional hazards 
regression models with unknown link function g(• ) , 
that is, � (t) = � 0(t)g

(
β TX(t)

)
 , where our proposed 

model can be seen as a special case. Such a development 
appeared to provide a reasonably good approximation in 
our simulation study. To select the number of knots, we 
suggest testing multiple knot configurations and choos-
ing the best one based on a criterion such as AIC, BIC, 
or through a cross-validation procedure. We empirically 
confirmed that the results of our model estimations were 
not sensitive to the number of knots, aligning with previ-
ous studies [13, 14, 20, 33, 34].

This study has several limitations. First, the PLSI-Cox 
model requires the assumption of no interactions 
between X(t) and Z(t) , which may be strong. However, in 
biomedical research—especially when exposures (e.g., 
environmental chemicals or biomarkers) are high-dimen-
sional and highly correlated, but each individual exposure 
has a small impact—it is of interest to model their joint 
effects while adjusting for confounders to be linear effects 
[25, 26, 33–35, 37]. Such studies assume that X includes 
all potential nonlinear exposures, while Z includes con-
founding variables (e.g., patient demographics and socio-
economic status) that are pre-specified based on prior 
knowledge. Furthermore, since our methods incorporate 
a flexible functional form for exposures, they are robust 
to misspecifications in the relationships among expo-
sures, offering an important direction for future research. 
When our interest lies on the interaction between two 
types of the covariates, varying index coefficients models, 
such as 

∑ q
j=1ψ j

(
β T

j X
)
Zj , can be considered [38, 39]. 

Such varying index coefficient model structures allow us 
to account for possible correlations between X(t) and 
Z(t) . Since varying index coefficient models for survival 
outcomes are underexplored (to the best of our knowl-
edge), we leave this topic as a direction for future 
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research. Second, environmental health studies (as well 
as studies in other fields) often encounter complex expo-
sures with natural groupings (i.e., multiple-index struc-
tures), such as phthalates, phenols, and metals. McGee 
et  al. [40] recently proposed Bayesian multiple index 
models that account for non-linear and non-additive rela-
tionships between multiple exposure groupings and a 
continuous health outcome. This approach combines the 
strengths of response-surface methods, such as BKMR 
[25, 26], and exposure-index methods, such as WQS 
regression [23, 24] and single-index models [31, 36, 41–
44]. Similarly, frequentist multiple-index modeling tech-
niques could enhance our PLSI-Cox models, such as 
� (t) = � 0(t)exp

{∑
M

m=1ψ m

(
β T

mXm

)
+ α T

Z

} , where each Xm-vector 
covariate represents a mutually exclusive group based on 
scientific grouping information. These multiple-index 
modeling approaches for various types of health out-
comes are currently being investigated by some of the 
authors. In such studies, we will further examine the 
robustness of the proposed estimator for the PLSI-Cox 
model when the true model includes interactions 
between X and Z , multiple-index specifications, or both. 
Third, our proposed model assumes that the hazard 
depends only on the current covariates at time t , while 
the cumulative hazard and survival functions are condi-
tional on the covariate history up to t . As a result, the 
hazard ratio in the PLSI-Cox regression model reflects 
concurrent effects. Further investigation into potential 
tests for lagged effects would be valuable for future 
implementation. Fourth, an additional assumption of our 
proposed method is that time-dependent covariates are 
external. In survival analysis, time-dependent covariates 
can be categorized in two different ways: external (or 
exogenous) and internal (or endogenous) [45]. As a clas-
sical method, time-dependent Cox regression models 
apply only for external covariates, while joint models 
have been developed to handle internal covariates [45, 
46]. Because our proposed PLSI model assumed external 
covariates, we herein describe a further direction of the 
PLSI survival model under the joint modeling framework 
to incorporate multiple and internal time-dependent 
covariates. These future directions offer opportunities to 
further enhance our proposed PLSI survival models, ena-
bling a more comprehensive analysis of potentially time-
varying covariates in relation to survival outcomes in 
modern longitudinal studies.
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