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Abstract 24 
This study presents large-scale normative models of white matter (WM) organization 25 
across the lifespan, using diffusion MRI data from over 25,000 healthy individuals aged 0-26 
100 years. These models capture lifespan trajectories and inter-individual variation in 27 
fractional anisotropy (FA), a marker of white matter integrity. By addressing non-28 
Gaussian data distributions, race, and site effects, the models offer reference baselines 29 
across diverse ages, ethnicities, and scanning conditions. We applied these FA models to 30 
the HCP Early Psychosis cohort and performed a multivariate analysis to map symptoms 31 
onto deviations from multimodal normative models using multi-view sparse canonical 32 
correlation analysis (msCCA). Our results reveal extensive white matter heterogeneity in 33 
psychosis, which is not captured by group-level analyses, with key regions identified, 34 
including the right uncinate fasciculus and thalami. These normative models offer 35 
valuable tools for individualized WM deviation identification, improving precision in 36 
psychiatric assessments. All models are publicly available for community use. 37 

Teaser 38 
Lifespan models of white matter offer insights into brain health, providing tools for 39 
tracking individual deviations across ages. 40 
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MAIN TEXT 46 
 47 
Introduction 48 

Over the past century, normative growth charts have become integral to paediatric 49 
practice, providing essential benchmarks for comparing individual growth patterns 50 
(height, weight, head circumference) with established population standards. These charts 51 
have facilitated a better understanding of typical developmental trajectories and have been 52 
crucial in identifying deviations from expected growth patterns which are used in clinical 53 
practice to determine if additional medical workup or treatment is required [1]. This 54 
concept has recently been extended to the field of neuroimaging, where it allows for 55 
detailed, individual-level insights into lifespan trajectories of brain measures. By 56 
comparing individual neuroimaging data against large, normative reference datasets, 57 
researchers and clinicians can gain a deeper understanding of both typical and atypical 58 
brain development and aging [2], [3], [4], [5]. 59 

In psychiatric disorders, traditional case-control studies have been valuable for 60 
detecting abnormalities in structural, microstructural, functional and neurometabolic brain 61 
signatures in patient groups compared to  control groups. However, group comparisons are 62 
not designed to capture inter-individual heterogeneity which is prominent at the 63 
phenotypic and biological levels in virtually all psychiatric disorders. This significant 64 
translational gap hampers identification of specific biological markers that explain clinical 65 
heterogeneity in these disorders such as disease risk, severity, and progression, as well as 66 
responsiveness to pharmacological and non-pharmacological treatments and overall 67 
clinical outcomes. Normative modelling provides a precision framework that has emerged 68 
as a promising tool in this endeavour [6], [7], [8]. By comparing brain imaging data 69 
against large reference cohorts, this method allows us to quantify deviations from 70 
expected norms at the individual level. It is now possible to capture deviation profiles in a 71 
single patient, which offers a more nuanced understanding of biological variations in 72 
psychiatric disorders. Even more importantly, it also has promise for bridging this 73 
translational gap by providing a foundational framework for developing tailored tools that 74 
capture disease risk and progression, as well as precision treatments tailored to individual 75 
brain pathology. For instance, normative models capture inter-individual biological 76 
variations that provided important insights into heterogeneity in schizophrenia, major 77 
depressive disorder, bipolar disorder, ADHD and autism spectrum disorders [6], [9], [10]. 78 
Moreover, we have demonstrated that normative measures frequently outperform raw 79 
measures (e.g. cortical thickness in mm) in group difference testing, disease classification 80 
[11] and treatment response prediction [12].  81 

We and others have created large-scale normative models that leveraged >50,000 82 
healthy volunteer imaging datasets for structural [4], [5], [13] and functional MRI [11], 83 
[14]. To our knowledge, no comprehensive normative models for diffusion weighted 84 
imaging measures at comparable scale exist at this time. There are several reasons why 85 
this is the case. First, diffusion imaging was developed more recently than structural and 86 
functional MRI, and a broader adoption in neuroscience research did not happen until the 87 
early 2010s. Second, processing of diffusion data is more computationally demanding 88 
compared to structural and functional MRI and the gold standard for diffusion data quality 89 
control remains visual inspection; both of these factors have been substantial limitations to 90 
scaling efforts. Third, diffusion imaging measures are very sensitive to differences 91 
between vendors, individual scanners (e.g. signal intensity variations, eddy currents), and 92 
sequence acquisition parameters (e.g. b-values), making it difficult to integrate different 93 
datasets necessary to develop lifespan normative models. To date, only two preliminary 94 
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studies have fit normative models to diffusion weighted data [15],[16]. In [15], the authors 95 
used approximately 1,300 single-shell DTI datasets collected at eight different sites using 96 
the same vendor to test performance of different statistical methods within the normative 97 
framework and in [16] the authors focus principally on generating reference curves for 98 
data harmonisation.  99 

The aims of this study are to: (i) develop normative models of Fractional 100 
Anisotropy (FA), the most widely used diffusion metric in neuroimaging [17], across 101 
major white matter tracts using a large dataset of over 25,000 healthy individuals across a 102 
broad age range. By using high-quality diffusion MRI data from the UK Biobank and the 103 
Human Connectome Project, we seek to establish robust models that capture lifespan 104 
trajectories of white matter organization; (ii) investigate white matter FA in early 105 
psychosis, a prototypical psychiatric disorder that is known to be highly heterogeneous in 106 
disease severity and course, as well as clinical symptom expression and clinical outcomes. 107 
Using the HCP Early Psychosis (HCP-EP) dataset [18], we aim to map both group level 108 
differences and individual deviations from the normative model in order to better 109 
understand individual variability in white matter integrity; (iii) we aim to illustrate the 110 
value of normative models for multi-modal data fusion, by combining FA deviations with 111 
cortical thickness and subcortical brain volume deviations with the goal to identify multi-112 
modal biological signatures and specific white matter pathways in psychosis associated 113 
with different psychosis symptom domains. Finally, (iv) we release all models freely to 114 
the community via our existing open-source software platforms [19]. 115 

 116 
Figure 1. A) Flow chart of the main diffusion image processing steps B) Histogram plot of 117 
the data used for normative modeling, showing the population density at each age and 118 
highlighting the different datasets used C) Scatterplot exemplifying the quality control 119 
process using normative modeling and outlier exclusion based on Z-score thresholding. In 120 
this plot, site effects are clearly evident, which are accommodated by the normative 121 
models (see Figure 2).  122 
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Results  123 

Normative modelling 124 

First, we assembled high-quality multi-shell diffusion data from five cohorts 125 
having closely matched acquisition and processing pipelines, namely Human Connectome 126 
Project (HCP) Baby [20], HCP Development [21], HCP Young Adult [22], HCP Aging 127 
[23] datasets, and UK Biobank [24]. Total N=24,915, (N=12,457 for training and 128 
N=12,457 for test, stratified for sex, self-reported race, dataset and site). A summary of the 129 
sample and processing is provided in Figure 1 with further details in the methods. In short, 130 
the datasets were processed using harmonised FSL-based pipelines, involving pre-131 
processing (intensity normalisation, distortion and movement corrections), DTI modelling 132 
to extract fractional anisotropy (FA) values, Tract-Based Spatial Statistics (TBSS) for 133 
skeletonised FA images, and segmentation with the Johns Hopkins University (JHU) atlas 134 
to compute mean FA values across 48 white matter tracts. We then fit lifespan normative 135 
models to these data on the basis of age, sex, site and race using warped Bayesian linear 136 
regression (BLR) and a non-linear basis expansion over age, in line with our prior work 137 
[4], [25]. We assessed the quality of the normative modeling fit using three key out-of-138 
sample metrics, namely explained variance (EV), evaluating the fit of the median 139 
regression line, in addition to skewness and kurtosis, which evaluate the shape of the 140 
distribution used to model the centiles. These metrics offer insight into how well the 141 
models capture the underlying distribution of the data across 48 white matter tracts. The 142 
mean (standard deviation) EV was 0.37 (0.10), indicating good fit across different models. 143 
Skewness, and kurtosis were respectively -0.09 ( 0.12) and 0.42 (0.27), which together 144 
indicate that the shape was also appropriate for the data. Supplementary figure 1 shows a 145 
histogram of the EV, skew and kurtosis of the models.  146 

We illustrate the trajectory and fitted centiles for a selection of white matter tracts 147 
across the lifespan in Figure 2. The complete set can be found in the supplementary figure 148 
2. In addition, we also show the results of models that do not include race in the 149 
supplementary figure 3.  150 
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Figure 2. A selection of six white matter tracts and their corresponding normative 151 
modelling centile plots highlighting the similarity in white matter formation and 152 
degeneration along the lifespan as well as tract specific differences in terms of shapes and 153 
variance of the FA values. For visualization purposes, data from different sites are aligned 154 
to a common reference (e.g. the mean centiles or the centiles for an arbitrary chosen site) 155 
by computing the z-scores separately for each site using the site-specific means and 156 
standard deviations, then inverting the z-scores using the mean and standard deviation 157 
derived from the common reference. 158 

Application to a clinical dataset 159 

Next, we used these models to understand heterogeneity in white matter FA in 160 
psychosis. To achieve this, we applied these reference models to the HCP early psychosis 161 
(HCP-EP) dataset (N=173 with diffusion data - see supplementary table 2 for 162 
demographic information) in order to derive z-scores for each individual and tract. We 163 
evaluated the mean differences in normative deviations between patients and controls for 164 
each tract using a t-test, applying false discovery rate (FDR) correction [26] to account for 165 
multiple comparisons. There were no significant differences in the mean deviations 166 
between individuals with psychosis and healthy controls that survived false discovery rate 167 
(FDR) multiple comparison correction, although we did find nominally significant effects 168 
in the fornix (column and body and the stria terminalis bilaterally). However, we did find 169 
evidence for significantly more heterogeneity in individuals with psychosis relative to 170 
controls in terms of the proportion of extreme deviations. More specifically, individuals 171 
with schizophrenia had a greater proportion of extreme positive (Mann-Whitney 172 
U=1403.0, p=0.0036) and extreme negative (U=1517.0, p=0.0016) Z-scores relative to 173 
controls, indicating substantial differences between groups that were highly variable 174 
across individuals. Notably, while both positive and negative deviations were present, the 175 
prominence of negative outliers (subjects with Z-scores exceeding ±2.6 was particularly 176 
pronounced, highlighting a consistent trend where patients exhibited a greater number of 177 
extreme Z-scores across white matter tracts. We show the percentage overlap of extreme 178 
deviations across all tracts in Figure 3, which reveals that extreme positive and negative 179 
deviations were observed in some individuals with psychosis in nearly all tracts. In 180 
contrast, the extreme deviations in controls were more focused, confined to only several 181 
white matter tracts, as illustrated in the bar plots in the supplementary figure 4, with an 182 
alternative representation highlighting overlap in individual tracts.  183 
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 184 

Figure 3: Glass brain representations illustrating the overlap between extreme 185 
positive and negative Z-score deviations for patients and controls, with thresholds set at -186 
2.6 and 2.6 which correspond to a p-value of 0.01. This stringent threshold enhances the 187 
detection of significant deviations while controlling for false positives. The top two panels 188 
depict positive Z-score deviations for patients and controls, while the bottom two panels 189 
show negative Z-score deviations for patients and controls. The legend indicates the 190 
percentage of subjects having extreme deviations in each tract. 191 

 192 

Next, we sought to demonstrate the utility of these normative models in identifying 193 
multivariate brain-behaviour associations within a clinical cohort. To achieve this, we 194 
combined FA deviations with cortical thickness and subcortical volume measures from 195 
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our previously published models [4] in a multimodal analysis. Symptom severity was 196 
quantified using the Positive and Negative Syndrome Scale (PANSS) [27], with domain 197 
scores for positive, negative, and cognitive symptoms, as well as the total score, 198 
summarised using a standard factor model, the ‘Marder’ factors, which were estimated 199 
and released by the HCP-EP consortium. More specifically, we included the positive 200 
symptom factor, negative symptom factor, cognitive/disorganised symptom factor in 201 
addition to the total PANSS score. To determine the multivariate association with 202 
symptoms, we used an approach we have employed in prior work [28], based on a multi-203 
view sparse canonical correlation analysis (msCCA) and stability selection [29] (see 204 
methods for details). Briefly, aimed to learn the association between three ‘views’ of the 205 
data, namely symptom domains, FA deviations and structural deviations (i.e. deviations 206 
from normative models of cortical thickness and subcortical volume). Next, we randomly 207 
split the data 1000 times into training (70%) and test (30%) sets, then fit an msCCA model 208 
and report the mean canonical correlation on the test set. This analysis yielded a 209 
significant mean test canonical correlation of r=0.25 for the leading component (p=0.003 210 
under permutation testing, see Methods for details). This model showed good predictive 211 
performance for both the associations between symptoms and FA deviations and 212 
symptoms and structural (cortical and subcortical) deviations, but not between diffusion 213 
and structural deviations (Figure 4 A). This is expected because we deliberately do not 214 
optimise directly for this to prevent the model learning the trivial correlation between 215 
different types of brain features (see  methods). The second and third components 216 
achieved test canonical correlations of r=0.04 (p=0.11) and r=0.02 (p=0.03) respectively. 217 
However, considering the limited clinical relevance of associations of this magnitude and 218 
their marginal significance of the third component, we focus principally on the first.  219 

The symptom loadings derived from the msCCA analysis show that the association 220 
was principally driven by the cognitive factor and total PANSS scores (Figure 4 B). We 221 
used stability selection to determine the most informative features driving the association 222 
by counting the number of times each feature was selected under the 1000 random splits 223 
described above and considered samples having a selection probability greater than 0.8 as 224 
informative. Note that this threshold is theoretically justified in order to control the type 1 225 
error rate [29]. Under this threshold, FA in the right uncinate fasciculus and volume of the 226 
thalamus bilaterally were predictive of PANSS symptoms Figure 4 C-F. 227 

 228 
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Figure 4: (A) Density plot of the multiple sparse Canonical Correlation Analysis (msCCA) 229 
main components, highlighting the distribution of test canonical correlations separately for 230 
each pair of views. (B) Violin plots representing the weights of PANSS symptom scores 231 
across the four symptom categories, namely negative symptoms, positive symptoms, 232 
cognitive symptoms, and total symptoms. (C) and (D) Selection probabilities for diffusion 233 
white matter tracts and Cortical Thickness white matter tracts, respectively, with a red 234 
threshold line indicating the chosen selection threshold of 80%. (E) and (F) Glass brain 235 
representations of the significantly selected white matter tracts and subcortical regions of 236 
interest, respectively. Note that no cortical thickness ROIs survived the selection 237 
threshold. The highlighted regions include the uncinate fasciculus (right) for diffusion and 238 
the cortical thickness regions: Left-Thalamus and Right-Thalamus 239 
 240 

Discussion  241 

This study presents a set of large-scale normative models for FA across major 242 
white matter tracts, estimated from a dataset of over 25,000 individuals spanning infancy 243 
to old age. Leveraging high-quality multi-shell diffusion MRI data, these models map the 244 
trajectory of white matter development and degeneration over the lifespan whilst also 245 
quantifying variance across the population. We showcase the clinical utility of these 246 
models by mapping inter-individual variation in cohorts of individuals with early 247 
psychosis. We show a high degree of inter-individual heterogeneity in these individuals, 248 
evidenced by relative increases in both positive- and negative deviations from the 249 
normative model in individuals with psychosis relative to controls. These differences were 250 
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evident despite an absence of case control effects, indicating that the differences were 251 
highly individualized.  Finally, we show that normative deviations of FA, cortical 252 
thickness and subcortical brain volume were accurate multi-modal predictors of 253 
symptomatology. Taken together, our findings provide a step toward advancing the 254 
understanding of the heterogeneity of white matter alterations in early psychosis. 255 

Our normative models show region-specific developmental trajectories in white 256 
matter organization that align well with foundational findings on lifespan changes in FA  257 
[30], [31]. However, we also show that inter-individual variability is considerably higher 258 
than the magnitude of lifespan-related changes in FA, underscoring the importance of 259 
using approaches such as this to characterize this at the individual level.  Studies suggest 260 
that increased FA during development relates to synaptic pruning and myelination, while 261 
declines in old age are linked to axonal degradation and reduced fiber coherence [32], 262 
[33]. Our models robustly capture these patterns, underscoring their relevance as a 263 
normative reference sample and utility for studies examining brain aging and clinical 264 
conditions. 265 

In the HCP-EP cohort, we show a high degree of inter-individual variability in 266 
white matter organization in psychosis, consistent with the variability that has already 267 
been described in brain structure [9], [10], and in other  psychiatric conditions [6], [7], 268 
[34], which speaks to the potential for normative models as a basis for stratifying cohorts 269 
[3]. Note that this variability was evident in an absence of case-control effects, which 270 
indicates that inter-individual variability masks group level effects, which we also have 271 
observed in gray matter in autism [7]. We also show a multivariate correspondence 272 
between brain connectivity deviations, structural deviations and clinical symptoms driven 273 
by decreased volume in the thalamus and FA in the right uncinate fasciculus. The left and 274 
right thalamus showed negative weights, indicating that reductions in subcortical volume 275 
may be linked to greater symptom severity. The uncinate fasciculus exhibited a positive 276 
weight in relation to clinical symptoms, suggesting a possible compensatory role, although 277 
we cannot rule out that this finding may also reflect other factors (such as crossing fibres). 278 
In line with this interpretation, alterations in the uncinate fasciculus have been previously 279 
reported in psychotic disorders, suggesting its involvement in the pathophysiology of 280 
these conditions [14], [35]. Studies utilizing DTI have reported abnormalities in the 281 
uncinate fasciculus among individuals with schizophrenia and affective psychosis. For 282 
instance, Kawashima et al. [36] found reduced FA in the uncinate fasciculus of patients 283 
with recent-onset schizophrenia, indicating compromised white matter organisation in this 284 
tract [36]. 285 

One of the benefits of this study is that we focus on acquiring a high-quality 286 
diffusion sample with closely harmonized protocols. This maximizes the ability to 287 
attribute detected variations to biological differences, rather than artefacts such as data 288 
quality or residual site effects. In this study, we prioritised modelling FA as it is the most 289 
commonly used diffusion metric in the field due to its sensitivity to microstructural 290 
integrity factors like axonal density, fibre coherence, and myelination, making it a 291 
valuable and accessible measure for understanding white matter architecture. Additionally, 292 
FA is less affected by CSF contamination compared to metrics like mean diffusivity 293 
(MD), allowing for more accurate assessments in regions prone to such contamination, 294 
such as the fornix [37]. However, this is only the first step, we intend to augment these 295 
models with further models, including other tensor-based metrics, such as mean diffusivity 296 
MD and non-tensor models (e.g. neurite orientation dispersion and density imaging; 297 
NODDI [38], [39], to take full advantage of the multi-shell diffusion data and provide an 298 
even more comprehensive resource for white matter analysis. Finally, we provide these 299 
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models to the field via our established no-code software platform [19] and via open-source 300 
software tools (https://github.com/ramonacirstian/fa_normative_modeling), so that others 301 
in the field can easily apply these models to their own data.  302 

Finally, we acknowledge some limitations to the current study. The age 303 
distribution in our dataset is skewed, with fewer data points at the extremes of the lifespan 304 
particularly in young children between the ages of 5 and 8 and adults over 85 years old. 305 
Although great care was taken to ensure that this did not bias the analysis (e.g. by ensuring 306 
smoothness for the interpolating centile curves), this gap should be considered as limiting 307 
the generalizability of the models for younger and older populations at this time. We 308 
intend to augment our dataset with additional samples to increase data density in these 309 
regions as future high-quality datasets come online. Additionally, while our models 310 
effectively account for site-specific differences, variability due to demographic factors like 311 
socioeconomic background was not fully explored and should be considered in future 312 
normative modeling efforts. A strength of our analysis is that we specifically account for 313 
ethnicity in our models, by including self-reported race using fixed effects in the analysis, 314 
following our prior work [40]. We consider this important to reduce the risk of racial bias, 315 
but it should be remembered that the datasets on which these models were trained on are 316 
not representative of the wider population and are themselves biased towards ‘Western 317 
Educated, Industrialised, Rich and Democratic’ (WEIRD) populations [40]. Self-reported 318 
race is also an imperfect proxy for ethnicity, and it is likely that using more flexible 319 
modelling approaches may be needed to properly account for these effects [41]. For these 320 
reasons we also release the models that do not include race so that each researcher using 321 
these models can decide for themselves which model is more appropriate for their needs.  322 

 323 
In summary, this study provides comprehensive normative reference models for FA across 324 
the lifespan, using an extensive dataset that spans infancy to old age. By integrating high-325 
quality diffusion MRI data and using robust modeling techniques, we captured the typical 326 
trajectory of white matter development and decline, aligning with prior research and 327 
enhancing the field’s understanding of brain aging. Our application of these models to a 328 
clinical early psychosis cohort underscores their potential utility in identifying atypical 329 
white matter patterns in psychiatric conditions. These models not only serve as a 330 
benchmark for individual-level assessments but also offer valuable insights for precision 331 
medicine, facilitating more personalized interventions. This study highlights the relevance 332 
of normative modeling in neuroimaging, paving the way for its integration into clinical 333 
and research settings focused on individual variability in brain structure and pathology. 334 

 335 
Materials and Methods 336 

Data acquisition and processing 337 

The construction of the lifespan dataset involved integrating data from five cohorts having 338 
high-quality multi-shell diffusion data, i.e.: the HCP Baby [20], HCP Development [21], 339 
HCP Young Adult [22], HCP Aging [23] datasets, and the UK Biobank [24]. The 340 
demographic information is available in supplementary table 1. 341 
The processing of these datasets followed harmonized FSL-based pipelines, summarized 342 
in Figure 1A. Initially, pre-processing was performed: B0 intensity normalization, 343 
correction for EPI distortions, eddy-current-induced and movement corrections. These 344 
corrections were executed using the HCP-pipeline [42] for the HCP datasets while the 345 
UKB dataset was already processed according to the UKB documentation [43]. 346 
Subsequently, we estimated the DTI model using DTIfit on the lowest shell value in order 347 
to extract the fractional anisotropy (FA) values. Following this, we ran Tract-Based 348 
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Spatial Statistics (TBSS) [44] on the FA images which included registration to a standard 349 
space (FMRIB58_FA), projection of each individual's FA image to the standard space 350 
skeletonized image (threshold at 0.2) to generate skeletonized FA images for each 351 
individual in the same space. Finally, segmentation was conducted using the Johns 352 
Hopkins University (JHU) atlas  [45]. This process delineated 48 white matter (WM) 353 
tracts (listed the supplementary figure 4), for which we computed the mean FA values 354 
along the skeleton of each tract.  355 

Normative modeling 356 

To prepare for the modelling stage, we began by splitting the dataset of subjects 357 
(N=24,915) into two equal groups: a test set (N=12,457) and a training set (N=12,457), 358 
stratified to ensure an even distribution of sex, race, dataset and site. A normative model 359 
was then fit to the training set for each white matter tract. The model incorporated several 360 
covariates, including sex, age, and dummy coded race, and site. To address potential non-361 
linear effects and non-Gaussian distributions, we employed a warped Bayesian linear 362 
regression (BLR) model and used in previous research [4], [25]. This approach involved 363 
applying a third-order polynomial B-spline basis expansion over age, with five evenly 364 
spaced knots, combined with a SinhArcsinh warping function. 365 
Next, we estimated deviation scores for each subject and white matter tract. In line with 366 
our prior work [46] we refit the models after excluding gross outliers having deviations 367 
larger than 5 standard deviations from the mean (Figure 1C). Once the models were refit 368 
with the cleaned data, we calculated the fit statistics, including explained variance, skew, 369 
and kurtosis. The extent of deviation for each subject was visualized by plotting individual 370 
z-scores against the mean and centiles of variation predicted by the model. All statistical 371 
analyses were conducted using Python version 3.8, with the Predictive Clinical 372 
Neuroscience PCN toolkit (GitHub, PCNtoolkit). 373 

Application to a clinical dataset 374 

Next, we applied the model to the Human Connectome Project Early Psychosis (HCP-EP) 375 
dataset [18] (Jacobs et al., 2024), which includes multi-shell diffusion data and T1-376 
weighted structural MRI derived from participants diagnosed with early psychosis 377 
(n=118) and control participants (n=55). The dataset's demographic distribution comprises 378 
37% females and 63% males, with a racial composition of 58% White, 28% Black, 9% 379 
Asian, 1% Mixed, and 3% Other. Participants with early psychosis were diagnosed using 380 
the Structured Clinical Interview for DSM-5 (SCID-5) (First et al., 2015) and symptoms 381 
assessed with the Positive and Negative Syndrome Scale (PANSS) [27], including 382 
negative symptoms (e.g., social withdrawal), positive symptoms (e.g., hallucinations), 383 
disorganisation, and general psychopathology. The item-level data were subsequently 384 
summarized by the HCP-EP consortium using a standard factor model [47] and the 385 
positive, negative and cognitive symptom domain scores were used in in addition to the 386 
PANSS total score to quantify symptomatology across multiple domains [47]. Medication 387 
status was also documented, including antipsychotic type and dosage converted to 388 
chlorpromazine equivalents.  389 
The diffusion data were processed with the same pipeline as described above (Figure 1A), 390 
and structural data were processed using Freesurfer version 6.0 following similar 391 
procedures as we have described previously [4]. Next, we divided this dataset into a 392 
training set, consisting of half of the control participants, and combined it with the larger 393 
training set described above to retrain the normative models for each white matter tract. 394 
Using transfer learning, as in our previous work, we can efficiently adapt the models with 395 
only a small amount of calibration data to account for site-specific effect. We then 396 
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computed z-scores for the patients and remaining controls for the FA data and computed 397 
the deviations for cortical thickness and subcortical volumes derived from models we have 398 
previously brought online [4]. Note that the splits for this analysis were matched so that 399 
the same participants were in the training and test sets for diffusion and structural 400 
measures at each iteration.  401 
We next assessed the mean difference of the deviations between patients and controls for 402 
each tract using a t-test with false discovery rate (FDR) correction for multiple testing 403 
[26]. We then tested whether the proportion of extreme deviations differ between groups 404 
for each tract. To achieve this, we calculated the percentage of participants falling below 405 
and above the threshold in each of the 48 tracts. To achieve this, we set a z-score threshold 406 
between -2.6 and 2.6, which correspond to a p-=value of 0.01 as in prior work to identify 407 
extreme deviations then employed a non-parametric Mann-Whitney U test [48], again 408 
followed by FDR correction for multiple comparisons. This stringent threshold enhances 409 
the detection of significant deviations while controlling for false positives 410 
Next, we combined the FA deviations with structural deviations in a multimodal analysis 411 
aiming to predict the four symptom domains described above. To achieve this, we 412 
conducted a multi-view sparse canonical correlation analysis (msCCA), using an approach 413 
we have described previously [28]. To identify relationships between multiple datasets, 414 
msCCA maximises the cross-correlation between weighted sums of variables from each 415 
dataset (Equation 1).  416 

�����,...,��
��
���

� ∑ ����
�
��	                                                            (Equation 1) 417 

where X� represents psychiatric symptoms and X� to Xm represent neuroimaging 418 
measures from m different modalities. The weights (w�, w�, ..., wm) are subject to 419 

constraints: |	�|	 
 1, |	�|	 
 1, |	�|� 
 ��, |	�|� 
 ��, ensuring sparsity and 420 
interpretability. The regularization parameters for each view v are assumed  to be set such 421 

that 0 � �
 � ��
 where �
 is the number of feature in view v, which is helpful to bound 422 

the (approximate) number of selected variables [28]. Importantly, this approach avoids 423 
optimising correlations between different neuroimaging modalities directly, focusing 424 
instead on shared variance between psychiatric symptoms and neuroimaging measures. 425 

This involved creating three views of the data (i.e. symptoms, structural deviations 426 
and diffusion deviations) and then fitting an msCCA model to maximise the association 427 
between symptom domains and each of the diffusion and structural deviations but –428 
crucially– not the imaging views with one another [28]. This requires setting (L1-norm) 429 
sparsity parameters for each of the data views �
. These were fixed throughout such that 430 
approximately 90% of the PANSS features were selected and 20% of the FA and 431 
structural image features. This corresponds respectively to light regularization for the 432 
symptoms, and moderately high regularization for the FA and structural measures. Note 433 
that we deliberately choose fixed parameters rather than optimizing them via nested cross-434 
validation given the moderate sample size for the clinical data. Instead, we employed 435 
stability selection to assess the generalizability of the coefficients, which is theoretically 436 
guaranteed to provide tight type-I family-wise error control [29].  437 

In more detail, we performed 1000 random splits of the dataset into a training 438 
(70%) and test set (30%) and selected the most stable features, i.e. features that were 439 
selected in more than 80%  of the splits. This threshold is justified as it is sufficiently high 440 
that the theoretical guarantees on controlling the type 1 error rate become operative. In 441 
order to assess generalizability, we then ran an additional 1000 permutations, where 442 
within each permutation, we computed the test canonical correlation averaged across 10 443 
random splits of the data, both before and after randomly permuting the order of the 444 
PANSS data view to destroy the relationship between the symptom scores and imaging 445 
data. We did this for the first three canonical components, which were derived by 446 
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successively applying projection deflation to the data matrices [28], [49]. In order to 447 
compute significance, we then counted the number of times the true mean test canonical 448 
correlation exceeded the permuted value and divided by the number of permutations.  449 
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