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ABSTRACT 19 

The explosion of next-generation sequencing technologies has allowed researchers to move from 20 

studying single genes, to thousands of genes, and thereby to also consider the relationships 21 

within gene networks. Like others, we are interested in understanding how developmental and 22 

evolutionary forces shape the expression of individual genes, as well as the interactions among 23 

genes. To this end, we characterized the effects of genetic background and developmental 24 

environment on brain gene coexpression in two parallel, independent evolutionary lineages of 25 

Trinidadian guppies (Poecilia reticulata). We asked whether connectivity patterns among genes 26 

differed based on genetic background and rearing environment, and whether a gene’s 27 

connectivity predicted its propensity for expression divergence. In pursuing these questions, we 28 

confronted the central challenge that standard approaches fail to control the Type I error and/or 29 

have low power in the presence of high dimensionality (i.e., large number of genes) and small 30 

sample size, as in many gene expression studies. Using our data as a case study, we detail 31 

central challenges, discuss sample size guidelines, and provide rigorous statistical approaches 32 

for exploring coexpression differences with small sample sizes. Using these approaches, we find 33 

evidence that coexpression relationships differ based on both genetic background and rearing 34 

environment. We report greater expression divergence in less connected genes and suggest this 35 

pattern may arise and be reinforced by selection.  36 
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INTRODUCTION   37 

Genes neither act nor evolve in isolation. Rather, genes are members of physically and 38 

functionally interacting networks. The nature of these interactions influences the degree to which 39 

changes in gene sequence and gene expression influence higher-level phenotypes, and therefore 40 

the extent to which sequence and expression changes are constrained at developmental and 41 

evolutionary timescales. On the one hand, genes with many interaction partners (i.e., those that 42 

occupy central ‘hub’ positions in a network) may be targets of developmental switches and 43 

evolutionary selection because they most strongly influence network output and higher-level 44 

phenotypes (Chateigner et al., 2020; Friedman et al., 2020). Alternatively, expression changes in 45 

highly connected genes may be constrained by pleiotropic effects imposed by their many 46 

connections (Jeong et al., 2001; Hahn & Kern, 2005), and developmental and evolutionary 47 

changes may therefore be more prevalent in peripheral genes that have lower connectivity and 48 

presumably lower pleiotropic loads (Kim et al., 2007; Mähler et al., 2017). These ideas are of long-49 

standing interest but have historically been difficult to test because physical interaction networks 50 

were well-characterized in only very few species (e.g. protein networks in yeast (Jeong et al., 51 

2001; Hahn et al., 2004; Jovelin & Phillips, 2009)) and simultaneously surveying expression in 52 

large numbers of genes was challenging, if not impossible. The proliferation of next generation 53 

sequencing technologies, and specifically RNA-sequencing (hereafter RNAseq), has removed 54 

these constraints from a technical perspective. Yet, analytical and statistical methods lag behind 55 

our ability to generate big data and – despite falling costs – the number of biological replicates 56 

remains small in many gene expression studies (Fischer et al. 2021). These factors impact 57 

network and gene coexpression analyses in particular. 58 

Although network and coexpression analyses of RNAseq datasets remain less common 59 

than gene-wise differential expression analyses, studies in this area provide intriguing – albeit 60 

conflicting – results. Recent studies have shown that centrality in coexpression networks is 61 

negatively correlated with divergence in gene expression (Warnefors & Kaessmann, 2013; Mähler 62 
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et al., 2017; Kuo et al., 2023) as well as gene sequence evolution (Josephs et al., 2017; Masalia 63 

et al., 2017; Harnqvist, 2021). Conversely, genes in peripheral positions show greater magnitude 64 

expression divergence (Mähler et al., 2017) and signatures of positive selection (Kim et al., 2007). 65 

Collectively, these findings suggest evolutionary constraints imposed on genes with high network 66 

centrality and evolutionary flexibility in genes at the network periphery. Yet this conclusion is in 67 

opposition with evidence for a bias toward changes in the expression of and selection on genes 68 

with high centrality (Koubkova-Yu et al., 2018; Chateigner et al., 2020; Friedman et al., 2020; 69 

Rennison & Peichel, 2022). Evidence for changes in central genes include examples for positive 70 

selection on genes with more interaction partners in human protein networks (Luisi et al., 2015) 71 

and high centrality in coexpression networks of genes associated with lung cancer (Wachi et al., 72 

2005). Together, these latter examples are more consistent with a contrasting hypothesis that 73 

central genes better predict phenotypic variation and are therefore targets of selection.  74 

The contradictory evidence for how gene centrality influences gene expression and 75 

sequence evolvability begs the question of what leads to these opposing patterns. One eventuality 76 

is that the above alternatives are not mutually exclusive, but complementary. Indeed, an extensive 77 

survey of stress responses in Arabadopsis thaliana found expression differences associated with 78 

drought stress in peripheral genes but cold stress in central genes (Des Marais et al., 2017). 79 

Similarly, some evidence suggests that changes in gene sequence versus gene expression may 80 

be favored for physiological versus morphological traits (Warnefors & Kaessmann, 2013) and that 81 

selection for sequence versus expression changes could act more strongly at central versus 82 

peripheral network positions. The authors of (Hämälä et al., 2020) suggest a ‘goldilocks’ 83 

phenomenon, in which intermediate levels of pleiotropy facilitate evolution while excessive 84 

pleiotropy inhibits evolution and insufficient pleiotropy makes selection inefficient (Hämälä et al., 85 

2020). If these seemingly contradictory observations – across taxa as well as within species – are 86 

indeed driven by interactions within gene regulatory networks, then disentangling how interactions 87 
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among genes shape development and evolution requires understanding at what timescales and 88 

to what extent interactions among genes themselves change. 89 

If the relationships among genes are flexible, then the degree of pleiotropy and its 90 

presumed consequences are not fixed. Understanding how changes in coexpression influence 91 

phenotypes is of keen interest for both basic and biomedical research (Gysi & Nowick, 2020; 92 

Stanford et al., 2020). Evolutionary biologists are interested in whether and how changes in 93 

coexpression influence species’ propensity for adaptation to novel and changing environments 94 

and whether changes in coexpression patterns can explain distinct genetic mechanisms 95 

underlying convergent phenotypes (Hu et al., 2016; Koubkova-Yu et al., 2018; Yu et al., 2020b). 96 

Behavioral biologists are increasingly asking how ‘rewiring’ of coexpression networks drives 97 

behavioral changes in health and disease. For example, (Bloch et al., 2021) found changes in 98 

coexpression associated with mating behavior in guppies, and meta-analyses implicated changes 99 

in gene coexpression patterns associated with behavioral disorders in humans (Gaiteri et al., 100 

2014). Changes in coexpression patterns are also of broader biomedical interest as they have 101 

been documented as a feature of diverse cancers (Wachi et al., 2005; Anglani et al., 2014).  102 

The above studies highlight both the interest in and the potential of coexpression analyses. 103 

This demand is being met by a growing collection of tools for (differential) gene coexpression 104 

analysis (Wang et al., 2017; Chowdhury et al., 2020; Tommasini & Fogel, 2023). Yet while these 105 

software packages make advanced network analyses accessible, they do not eliminate the 106 

statistical limitations of these approaches. These limitations arise primarily from the combination 107 

of small sample sizes and high-dimensional data (tens of thousands of genes) emblematic of 108 

transcriptomic studies. While sample sizes have increased as sequencing costs have decreased, 109 

per group sample sizes commonly remain less than ten. Pooling samples across experimental 110 

groups or multiple studies can bring the total experimental sample size into the range 111 

recommended for network analyses (e.g., N=20 by (Langfelder & Horvath, 2008; Ballouz et al., 112 

2015)). However, when explicitly asking if coexpression relationships differ between two or among 113 
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a few experimental groups, small per group samples remain a problem. In brief, inference from 114 

coexpression analyses is problematic without sufficient sample sizes and power, but also when 115 

samples are pooled across experimental groups that can differ in coexpression structure. This 116 

leaves researchers trapped between an experimental rock and hard place.    117 

Like others, we are interested in using transcriptomic analyses to understand the biological 118 

basis of complex phenotypes, and specifically in exploring changes in individual genes as well as 119 

the interactions among genes. To this end, we characterized the effects of genetic background 120 

(high-predation versus low-predation populations) and developmental environment (rearing with 121 

and without predator chemical cues) on brain gene coexpression in two parallel, independent 122 

evolutionary lineages of Trinidadian guppies (Poecilia reticulata). In Trinidad, downstream, high-123 

predation fish have repeatedly and independently colonized upstream, low-predation 124 

environments (Gilliam et al., 1993; Barson et al., 2009; Willing et al., 2010; Fraser et al., 2015), 125 

leading to parallel adaptive changes in life-history, morphology, and behavior (Reznick et al., 126 

1990, 2001; Endler, 1995; Reznick, 1997; Magurran, 2005). In other words, each river drainage 127 

represents a naturally replicated experiment demonstrating parallel phenotypic adaptation. 128 

Recent studies have used laboratory breeding designs to disentangle genetic from environmental 129 

influences, demonstrating that both evolutionary history with predators and developmental 130 

experience with predators shape life history (Torres Dowdall et al., 2012), morphology (Torres-131 

Dowdal et al., 2012; Fischer et al., 2013; Ruell et al., 2013; Handelsman et al., 2014), physiology 132 

(Handelsman et al., 2013; Fischer et al., 2014), and behavior (Huizinga et al., 2009; Torres-133 

Dowdall et al., 2012; Fischer et al., 2016b). Using this breeding (Figure 1), we asked (1) whether 134 

connectivity patterns among genes differed among groups, and (2) whether connectivity 135 

influenced a gene’s propensity for expression divergence. 136 

We previously demonstrated genetic and developmental differences in brain gene 137 

expression (Fischer et al., 2021). Here, we were interested in testing the hypothesis that – in 138 

addition to expression changes in single genes – the relationships among genes are targets of 139 
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developmental and evolutionary processes. In pursuing these questions, we confronted the 140 

statistical challenges that standard approaches may fail to control Type I error and/or have low 141 

power when dimensionality is high (i.e., large number of genes) and sample size is small. From 142 

a biological perspective, we find evidence for flexibility in coexpression relationships based on 143 

both genetic background and rearing environment, suggesting that changes in the interactions 144 

among genes are associated with phenotypic divergence at developmental and evolutionary 145 

timescales. From a technical perspective, we present a case study for those interested in 146 

(differential) coexpression with small per group sample sizes. We discuss key challenges, set 147 

clear sample size guidelines to control Type I error while maintaining power, and provide rigorous 148 

statistical approaches for exploring coexpression differences even with small sample sizes that 149 

can be readily implemented for similar coexpression analyses in other studies.  150 

 151 

 152 

RESULTS 153 

Preliminary analyses 154 

Guppies used in this study were second generation lab-born fish from unique family lines 155 

established from wild-caught high-predation (HP) and low-predation (LP) populations in the Aripo 156 

and Quare river drainages in the Northern Range mountains of Trinidad. At birth, we split second-157 

generation siblings into rearing environments with (pred+) or without (pred-) predator chemical 158 

cues, and they remained in these environments until the completion of the experiment (Figure 1) 159 

(as in (Fischer et al., 2016b)). In brief, each drainage therefore consists of a 2x2 factorial design 160 

that distinguishes genetic from developmental effects of predation. Pair-wise comparisons of 161 

biological relevant are: (1) HP pred- vs LP pred-, an experiment comparing populations reared in 162 

an environment lacking predator cues to identify genetic differences between populations; (2) HP 163 

pred+ vs HP pred-, to identify environmentally induced changes mimicking the situation in which 164 

high-predation fish colonize low-predation environments, i.e., “ancestral plasticity”; (3) LP pred- 165 
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vs LP pred+, to identify environmentally induced changes comparable to the situation in which 166 

low-predation fish are washed downstream and a measure of whether ancestral plasticity is 167 

maintained in the derived population; (4) HP pred+ vs LP pred+, to identify genetic differences 168 

when fish are raised with environmental cues of predation. We also compared the same 169 

experimental groups across drainages (e.g. HP pred+ in Aripo drainage vs HP pred+ in Quare 170 

drainage) to understand differences associated with parallel, independent evolutionary lineages. 171 

 172 

Our initial approach was to characterize and explore gene coexpression using the popular 173 

Weighted Gene Correlation Network Analysis (WGCNA) package in R (Langfelder & Horvath, 174 

2008). We calculated module preservation scores using the methods implements in WGCNA 175 

which combine a number of difference preservation statistics to calculate a summary preservation 176 

score (Langfelder et al., 2011). We found that, in both drainages, ~50% of gene coexpression 177 

modules were not preserved across experimental groups (Supplemental Materials A). In other 178 

words, we identified substantial differences in network structure between groups, suggesting that 179 

the common practice of reconstructing coexpression networks by pooling samples across groups 180 

may not be valid. In brief, our preliminary analyses using WGCNA underscored the need for a 181 

statistical method to discern network differences across groups when dealing with small group 182 

sizes (N=10-12 in our case). We sought to address these issues through the alternative statistical 183 

approaches detailed in the Methods and Supplemental Materials B. We present results from the 184 

most promising approaches below.  185 

  186 
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 187 

 
Figure 1. Conceptual overview and interpretation. (A) Natural populations in different river 
drainages represent distinct evolutionary lineages. (B) Overview of laboratory breeding design 
disentangling genetic and environmental effects. (C) Interpretation of comparisons of interest 
between experimental groups resulting from 2x2 breeding design shown in (B). HP = high-
predation, LP = low-predation, pred+ = reared with predator chemical cues, pred- = reared 
without predator chemical cues. Modified from Fischer et al. 2021.  
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Changes in coexpression networks based on genetics and environment 188 

To overcome problems associated with very small per group sample sizes, yet high-dimensional 189 

data, we used random projection-based tests to compare covariance structures between 190 

experimental groups. We considered the set of all genes (DE and non-DE) that passed filtering 191 

criteria (Aripo: 13,446; Quare: 14,379). We found significant differences in covariance structures 192 

between high-predation and low-predation fish reared with predators (HP pred+ vs LP pred+) in 193 

both drainages (Figure 2; Table 1). Analysis of the Quare dataset found a marginally significant 194 

difference between high-predation fish reared with and without predators (HP pred+ vs HP pred). 195 

We also compared the covariance structures between the same treatment groups across 196 

drainages. Here, we found significant differences in all comparisons (Table 2). In short, when 197 

considering the collection of all genes, we found evidence for changes in gene coexpression 198 

based on evolutionary lineage (drainage), genetic background (population), and rearing 199 

environment.  200 

 201 

Table 1. Approximated p-values from random projection tests 
comparing covariance structure for all genes (DE and non-DE) 
between treatment groups.  
 ARIPO drainage QUARE drainage 

HP pred+ vs HP pred- 1.0000 0.0639 
HP pred+ vs LP pred+ 0.0149 <0.0001 
HP pred- vs LP pred - 1.0000 0.9568 
LP pred+ vs LP pred- 0.1258 0.9943 

 202 
Table 2. Approximated p-values from 
random projection tests comparing 
covariance structure across drainages. 
ARIPO vs QUARE p-value 

HP pred- <0.0001 
HP pred+ 0.0001 
LP pred - 0.0001 
LP pred+ 0.0107 

 203 
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 204 

 
Figure 2. Visualization of coexpression differences between experimental groups and 
evolutionary lineages. Correlation heatmaps provide a visual approximation of statistical 
differences based on genetic background (high- vs low-predation), rearing environment (with 
(pred+) or without (pred-) predators), and evolutionary lineage (Aripo and Quare drainage). 
Gene order is determined by hierarchical clustering of the high-predation pred- group, 
meaning that the same position in two heatmaps represents the correlation of identical pairs 
of genes. For ease of visualization and computation, only the 1,000 most variable genes are 
shown.  
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Coexpression networks and differential expression 205 

In addition to changes in coexpression among genes, we were interested in how interactions 206 

among genes might interface with a gene’s propensity to be differentially expressed at 207 

developmental and evolutionary timescales. To explore this question, we compared coexpression 208 

networks between differentially expressed (DE) and non-differentially expressed (non-DE) genes. 209 

We performed these comparisons separately for each treatment group, given group-level 210 

differences in covariance structures (see above) and DE status being inherently related to 211 

differences in gene expression among treatment groups.  212 

The comparison involved two steps: (i) reconstruction of the coexpression network using 213 

gene-wise correlations, and (ii) comparing two networks of different sizes. To achieve (i), we first 214 

tested whether the correlation between each pair of genes was zero, while controlling the FDR 215 

using the method from (Cai & Liu, 2016), as detailed in Supplemental Section 4.3. Using this 216 

method, an edge is drawn between any two genes (nodes) with nonzero correlation, forming the 217 

coexpression network. To assess the constructed network’s sensitivity to different FDR levels, we 218 

compared network summary plots at multiple FDR cutoffs (α = 0.01, 0.05, 0.1). If two networks 219 

are distinct, their summary plots will differ (Maugis et al., 2017). The network summary plots 220 

(Figure S6) suggest that the correlation-based coexpression network is relatively insensitive to 221 

different FDR levels. Therefore, we used a coexpression network with α = 0.05 for all subsequent 222 

analyses. 223 

A major concern in comparing DE versus non-DE networks, which has been largely 224 

overlooked in literature, is that the different collections of genes in these two sets (e.g., DE genes 225 

are by definition a small subset of all genes) making the two corresponding networks have 226 

different numbers of unmatchable nodes [60]. To address this, we adopted the network 227 

comparison test proposed by (Shao et al., 2022), which accommodates networks of different sizes 228 

by analyzing their network moments for specific motifs using the difference of two subgraph 229 

densities adjusted for their edge densities. Specifically, we used the v-shape (subgraphs with 230 
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three nodes and two edges), triangle (subgraphs with three nodes and three edges), and 3-star 231 

(subgraphs with four nodes and three edges) (see visualizations in Figure S9, Table 3) to compare 232 

the correlation-based coexpression networks. In network sciences, these subgraphs reflect 233 

connectivity and clusterability [60, 61, 62]. Apart from HP pred+ and HP pred- in the Aripo dataset, 234 

we observe that all non-DE networks had higher subgraph densities than their DE network 235 

counterparts (Figure S7 & S8; Table S8). Following this overall trend, we compared the different 236 

subgraph types described above. The Aripo dataset had fewer overall differences, especially for 237 

the 3-star subgraph type (Table S9). In the Quare dataset, DE versus non-DE networks differed 238 

in nearly all groups for all subgraph types (Table S9). To further compare subgraph densities in 239 

DE and non-DE networks, we conducted the same test with one-sided alternatives that DE gene 240 

network subgraphs are more or less connected than non-DE gene subgraphs. The results show 241 

that in the Aripo drainage, non-DE networks generally have higher sparsity-adjusted v-shape 242 

densities, while in the Quare drainage, the DE network in HPP has higher adjusted v-shape and 243 

triangle densities, but DE networks in LPP and LPNP have lower adjusted triangle and 3-star 244 

densities than their NDE counterparts (Table 3). 245 
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 246 

 247 

DISCUSSION 248 

Our goal in this study was to understand how genetic background and rearing environment shape 249 

relationships among genes. We previously characterized expression changes at the level of 250 

individual genes (Fischer et al., 2021), and here we were interested in exploring changes in 251 

coexpression patterns among genes. Our findings suggest that coexpression patterns are flexible 252 

at evolutionary and developmental timescales. Exciting from a biological perspective, exploring 253 

these questions presents statistical challenges, in particular for RNAseq datasets characterized 254 

by high-dimensionality and small sample sizes. We discuss the implications of our work from both 255 

angles.  256 

Gene expression studies remain plagued by small per-group samples sizes and high 257 

dimensionality. Network construction is far from trivial, if not problematic, under these conditions, 258 

especially when network structure – and not just network expression level – differs among 259 

experimental groups. In our own study, we had an overall sample size of N=98 individuals, well 260 

Table 3. Network comparisons of DE vs non-DE genes within treatment groups and across datasets. 
Comparisons of sparsity-adjusted subgraph densities tested the alternatives that DE gene networks had 
smaller or larger subgraph density than non-DE networks. P-values from one-sided alternative tests are 
reported for the v-shape, triangle, and 3-star subgraph types. 
 ARIPO drainage  QUARE drainage 

 v-shape triangle 3-star  v-shape triangle 3-star 

 
   

 

   
DE < non-DE        

HP pred- 0.0051 0.8611 0.6149  <0.0001 0.9523 1.0000 
HP pred+ 0.0676 0.2330 0.5027  <0.0001 <0.0001 0.0665 
LP pred - 0.0056 0.1700 0.2650  1.0000 1.0000 1.0000 
LP pred+ <0.0001 0.0152 0.0749  0.4844 1.0000 1.0000 

DE > non-DE        

HP pred- 0.9948 0.1389 0.3742  1.0000 0.0482 <0.0001 
HP pred+ 0.9358 0.7676 0.5013  1.0000 1.0000 0.9347 
LP pred - 0.9938 0.8277 0.7304  <0.0001 <0.0001 <0.0001 
LP pred+ 1.0000 0.9850 0.9252  0.5122 <0.0001 <0.0001 
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above the recommendation of N=30 for network construction. However, this total sample size 261 

includes samples from two drainages and four experimental groups, and – based on our analyses 262 

here and preliminary analyses using the WGCNA package – we found evidence that network 263 

structure differs between experimental groups and even more strongly between drainages. These 264 

differences are of key biological interest as they suggest that expression relationships among 265 

genes (i.e., network structure) are subject to developmental plasticity and evolutionary change. 266 

However, if network structure differs across experimental groups, then networks must be 267 

constructed separately for each experimental group to avoid construction of ‘average’ networks 268 

that can obscure differences of (biological) interest and lead to biased conclusions (Zhao et al., 269 

2014; Shojaie, 2021; Li et al., 2022; Sai Li & Li, 2023). To take an extreme example, if two genes 270 

have opposing correlations of the same magnitude in two groups, the average correlation across 271 

groups will be zero. Thus, it is the per-group sample size that is most important for network 272 

construction and comparison when gene coexpression patterns are of interest.  273 

While our per-group sample size of N=10-15 is relatively large for an RNAseq study, it is 274 

below the recommended threshold for network construction, such as the minimum sample of 275 

N=20 suggested for RNAseq analyses by (Ballouz et al., 2015). As we illustrate in the 276 

Supplemental Materials, these sample sizes are surprisingly inadequate for recently developed 277 

high-dimensional statistical tests thought to be robust against high-dimensionality, to control Type 278 

I error, and to maintain power. Indeed, from our simulation experiments, most common methods 279 

require N>50 to retain the generally accepted nominal significance levels of 0.05 and satisfactory 280 

power exceeding 0.8. Importantly, the potential misinterpretations resulting from these 281 

shortcomings are not systematic (i.e., directionally biased) and therefore difficult to predict. As a 282 

growing number of studies consider how interactions among genes shape phenotypic differences 283 

across timescales, we present our work as a case study to increase awareness of these 284 

limitations, present complementary statistical approaches to those commonly used, and in hopes 285 

that others will consider these issues in experimental design and analysis.  286 
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We first investigated whether gene coexpression patterns differed based on genetic 287 

background and rearing environment. Using pairwise expression covariance tests, we identified 288 

differences in coexpression patterns between fish reared with and without predators, fish adapted 289 

to high- versus low-predation environments, and fish from distinct evolutionary lineages. 290 

Differences in coexpression structures in both drainages were most pronounced between high- 291 

and low-predation fish reared with predators (HP pred+ vs LP pred+). This comparison represents 292 

the ancestral population adapted to life with predators (HP pred+) versus the derived low-293 

predation population adapted to predator and suddenly re-exposed to predator cues (e.g., as 294 

when fish are washed downstream; LP pred+). Fish adapted to a low-predation life are expected 295 

to be poorly equipped deal with the sudden stressors of predation. Indeed, we previously found 296 

HP pred+ fish to be behaviorally least variable and LP pred+ fish to be behaviorally most variable 297 

(Fischer et al., 2016b). In light of findings here, we suggest that these unpredictable behavioral 298 

patterns could arise from disruptions in gene coexpression networks in the brain.  299 

 In addition to differences within drainages, we found more evidence for coexpression 300 

differences in the Quare as compared to the Aripo drainage, and that differences were ubiquitous 301 

when comparing between the two drainages. We suggest these patterns arise – at least in part – 302 

from the extent of genetic divergence between populations: high- and low-predation populations 303 

in the Quare drainage show greater genetic (Willing et al., 2010) and gene expression (Fischer et 304 

al., 2021) divergence than those in the Aripo drainage, and the two drainages represent distinct 305 

evolutionary lineages (Willing et al., 2010). The importance of genetic background in shaping 306 

evolutionary trajectories is highlighted by our previous work demonstrating distinct underlying 307 

mechanisms associated with parallel phenotypic adaptation in guppies from distinct evolutionary 308 

lineages (Fischer et al., 2016a, 2021). Similar mechanistic flexibility has also been demonstrated 309 

in other systems (Cordero et al., 2018; Jacobs et al., 2020), including those known for parallel 310 

phenotypic evolution (e.g. (Laporte et al., 2015; Hanson et al., 2017; Bolnick et al., 2018)). Our 311 

findings here extend these observations from the expression of individual genes to coexpression 312 
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patterns among genes, suggesting that alternative gene expression network configurations can 313 

give rise to shared organism-level phenotypes.  314 

 What are the potential consequences of changes in gene coexpression relationships at 315 

developmental and evolutionary timescales? If pleiotropic interactions among genes constrain 316 

their propensity for change, then flexibility in these relationships could reduce pleiotropic load 317 

(e.g., (Wang et al., 2010; Pavlicev & Wagner, 2012; Pavličev & Cheverud, 2015). In other words, 318 

genes may be more able to change in expression and drive phenotypic change if their interactions 319 

with other genes can be altered to minimize off-target effects. Conversely, flexibility in 320 

coexpression relationships might improve the ability of underlying gene expression networks to 321 

buffer higher-level phenotypes through homeostatic change (e.g., (Fischer et al., 2016a; Badyaev, 322 

2018; Hoke et al., 2019)). Importantly, either scenario implies that the relationships among genes 323 

may themselves be targets of selection. Alternatively, changes in gene coexpression could 324 

represent transcriptional noise if these changes do not amount to selectable differences at the 325 

network and/or organismal level. While this last scenario is less interesting from an adaptationist 326 

perspective, such ‘neutral’ changes may nonetheless have consequences for evolutionary 327 

trajectories, for example by giving rise to cryptic variation that is revealed under novel 328 

environmental conditions (West-Eberhard, 2003; McGuigan & Sgrò, 2009; Paaby & Rockman, 329 

2014). In brief, all three alternatives highlight that coexpression relationships can change at 330 

developmental and evolutionary timescales with consequences in the short and long term.   331 

 To begin to address the above alternatives, we asked whether connectivity influenced a 332 

gene’s propensity for expression divergence. This question has been considered at various levels, 333 

including in protein-protein interactions (Kim et al., 2007; Luisi et al., 2015), gene expression 334 

networks (Oldham et al., 2006; Bloch et al., 2021), gene sequence changes (Josephs et al., 2017; 335 

Makinen et al., 2018), and the relationship between expression and sequence divergence 336 

(Harrison et al., 2012; Warnefors & Kaessmann, 2013; Chateigner et al., 2020). Overall, we found 337 

that networks of non-DE genes were denser than networks of DE genes. This suggests that DE 338 
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genes are less well-connected than their non-DE counterparts, supporting the idea that differential 339 

expression may be facilitated by lower connectivity and decrease pleiotropy. Comparing across 340 

lineages, we observed more widespread differences in network connectivity in the Quare as 341 

compared to the Aripo drainage. As high- and low-predation populations in the Quare drainage 342 

are more genetically diverged than those in the Aripo (Willing et al., 2010), this observations 343 

suggests that greater genetic divergence may increase network sparseness, suggesting that 344 

selection can reshape network structure. Taken together, our findings support greater expression 345 

divergence in less connected genes and suggest this pattern could facilitate changes in network 346 

topology if there is feedback between greater magnitude expression change and decreased 347 

network connectivity.  348 

 349 

Conclusions 350 

Understanding how underlying genetic architecture shapes the maintenance and evolution of 351 

complex traits is a fundamental goal of biological research. Over the past two decades, the 352 

explosion of next-generation sequencing technologies has allowed us to move beyond the genetic 353 

scale – considering one or a few genes or loci – to genomic scales – considering thousands to 354 

tens of thousands of genes or loci. Among the key advances afforded by these approaches, are 355 

the ease of conducing broadscale, exploratory studies; the opportunity to characterize underlying 356 

mechanisms in non-model species; and the ability to consider genes in the context of their 357 

interactions. As a growing number of studies consider how interactions among genes shape 358 

phenotypic differences across timescales, we provide a case study to increase awareness of 359 

limitations and provide suggestions for analysis. Our findings provide intriguing evidence of 360 

extensive coexpression flexibility at multiple timescales in a species known for rapid adaptation. 361 

The generality of these phenomena and their consequences for adaptation will be revealed by 362 

more studies with larger sample sizes and new statistical approaches. Understanding whether 363 

and how relationships among genes change at developmental and evolutionary timescales has 364 
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consequences for our understanding of how underlying mechanisms shape flexibility and 365 

robustness in higher order phenotypes, how animals adapt to novel and changing environments, 366 

and how behavior and physiology are regulated in health and disease.  367 

 368 

 369 

METHODS 370 

Fish collection and rearing 371 

Samples here are the same as those described in (Fischer et al., 2021). Briefly, guppies used in 372 

this study were second generation lab-born fish from unique family lines established from wild-373 

caught high-predation (HP) and low-predation (LP) populations in the Aripo and Quare river 374 

drainages in the Northern Range mountains of Trinidad. At birth, we split second-generation 375 

siblings into rearing environments with (pred+) or without (pred-) predator chemical cues, and 376 

they remained in these environments until the completion of the experiment (Figure 1) (as in 377 

(Fischer et al., 2016b)). Guppies were individually housed in 12:12 hour light cycle and fed a 378 

measured food diet once daily. All experimental methods were approved by the Colorado State 379 

University Animal Care and Use Committee (Approval #12-3818A). 380 

 381 

Tissue collection and processing 382 

We collected brain tissue from mature males in the groups described above 10 minutes after 383 

lights on in the morning. We extracted RNA from whole brains using the Qiagen RNeasy Lipid 384 

Tissue Mini Kit (Qiagen, Germany) and constructed a sequencing library for each individual using 385 

the NEBNext Ultra RNA Library Prep Kit for Illumina (New England Biolabs, Massachusetts, 386 

USA). For the Aripo dataset, 40 samples (N=10 per group) were pooled with unique barcodes 387 

into eight samples per sequencing library and each library was sequenced on a single lane. For 388 

the Quare dataset, 60 samples (N=12-16 per group) were pooled into three sequencing libraries 389 

with 20 samples per pool and each library was sequenced in two separate lanes. Libraries were 390 
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sequenced as 100bp paired-end reads on an Illumina HiSeq 2000 at the Florida State University 391 

College of Medicine Translational Science Laboratory (Tallahassee, Florida) in May 2014 (Aripo 392 

dataset) and January 2016 (Quare dataset). 393 

 394 

Differential expression analysis 395 

We reported results of differential expression analyses in another study (Fischer et al., 2021), and 396 

we use the resulting differential expression status (DE versus non-DE) as an important criterion 397 

in analyses performed here (see below). Briefly, we normalized read counts using DESeq2 (Love 398 

et al., 2014) and performed differential expression analysis using the lme4 package in R 399 

(github.com/lme4). We used generalized linear mixed models with a negative binomial link to 400 

accommodate our experimental design and data type, including family and sampling week as 401 

random effects. Population of origin (HP / LP), rearing environment (pred+ / pred-), and their 402 

interaction were included as fixed effects. We used the residuals in the covariance and correlation 403 

analyses described below to adjust for fixed and random effects included in model fitting. To 404 

compare differentially expressed and non-differentially expressed genes, we adjusted p-values 405 

for multiple hypothesis testing using a direct approach for FDR control (Storey, 2002) as 406 

implemented in the fdrtool package in R (Strimmer, 2008). We considered transcripts differentially 407 

expressed (DE) if the adjusted p-value was <0.05, and all other genes non differentially expressed 408 

(non-DE).  409 

 410 

Challenges from small sample, high dimensional data 411 

In wanting to understand differences in covariance structure and changes in network architecture 412 

between our experimental groups, we faced two fundamental challenges. First, controlling Type 413 

I error becomes difficult when comparing large networks or covariance structures with limited 414 

sample sizes, often leading to spurious discoveries and unreliable results. Also, detecting true 415 

effects for separating complicated networks or covariance structures in ultra-high dimensional 416 
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datasets is difficult due to low statistical power; a common phenomenon in coexpression analysis 417 

of RNAseq studies. While there are commonly accepted methods for two sample covariance 418 

tests, they either fail to control the Type I error rate with extremely small sample size (e.g., N<25 419 

per group) or have substantially low power (see Supplemental Materials for simulations) (Li & 420 

Chen, 2012; Cai et al., 2013; Chang et al., 2017; Yu et al., 2020a). Second, comparison of multiple 421 

networks is nontrivial, particularly when the networks are of different sizes or have unmatching 422 

nodes (Tang et al., 2017; Agterberg et al., 2020; Qi et al., 2024). For gene coexpression analysis 423 

these issues apply, for example, when sample sizes vary between groups and are fairly small due 424 

to the limitation of experiment constraints, or when comparing subsets of genes of interest that 425 

vary in size (e.g., comparing non-DE vs DE gene sets, or differently sized coexpression modules) 426 

(Agterberg et al., 2020; Alyakin et al., 2024; Jin et al., 2024; Qi et al., 2024).  427 

To highlight these challenges, we first present simulation studies using existing high-428 

dimensional methods designed for valid inference on comparing large covariance structures with 429 

controlled Type I error rate and reasonable power (Li & Chen, 2012; Cai et al., 2013; Chang et 430 

al., 2017; Yu et al., 2020a), before presenting our method and examining the real data set (see 431 

below). We summarize the outcomes of the simulation studies and exploratory comparisons here 432 

and refer the interested reader to additional details provided in the Supplemental Information.  433 

We found that Type I error rates for existing tests were uncontrolled for small sample sizes 434 

of N<50 per group, even when the number of genes was relatively small (250 genes, orders of 435 

magnitude smaller than what is typical for RNAseq analysis) (Figure S1). In addition to 436 

uncontrolled Type I error, the existing methods were substantially underpowered for small sample 437 

sizes. Specifically, the empirical power was overall low (<0.25) for sample sizes N<30 per group 438 

(Figure S2). These issues plagued our dataset, which is representative of most RNAseq studies 439 

exploring connections between gene expression and behavior (per group samples N<10, 440 

~20,000+ genes). Importantly, these issues are not resolved by subsampling the data to include 441 

a smaller number of genes (Figure S3), an approached commonly deployed by network analysis 442 
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packages (e.g., filtering for the 5,000-8,000 most variable genes in WGCNA or the approach of 443 

(Qiu et al., 2021)).   444 

 445 

Our new high-dimensional covariance comparison  446 

From the above simulations, it is clear that existing approaches to compare large covariance 447 

structures fail even when using only a small subset of genes. To overcome these issues, we 448 

employed the random projection (Wu & Li, 2020) to develop a new two-sample covariance 449 

comparison method (Supplemental Information). This new test can control Type I error (Figure 450 

S4) and have satisfactory power (Figure S5), even with very small per group sample sizes and a 451 

large number of genes.  452 

We conduct our newly developed random projection-based tests on residual from the 453 

generalized linear mixed model described above and in (Fischer et al., 2021). We focused on the 454 

pairwise comparisons of biological interest (Figure 1c). Within each drainage, we compared (1) 455 

HP pred- vs LP pred-, an experiment comparing populations reared in an environment lacking 456 

predator cues to identify genetic differences between populations; (2) HP pred+ vs HP pred-, to 457 

identify environmentally induced changes mimicking the situation in which high-predation fish 458 

colonize low-predation environments, i.e., “ancestral plasticity”; (3) LP pred- vs LP pred+, to 459 

identify environmentally induced changes comparable to the situation in which low-predation fish 460 

are washed downstream and a measure of whether ancestral plasticity is maintained in the 461 

derived population; (4) HP pred+ vs LP pred+, to identify genetic differences when fish are raised 462 

with environmental cues of predation. We also compared the same experimental groups across 463 

drainages (e.g. HP pred+ in Aripo drainage vs HP pred+ in Quare drainage) to understand 464 

differences associated with parallel, independent evolutionary lineages. For both within and 465 

between drainage comparison, we considered the four comparisons jointly to control family-wise 466 

error rate.  467 

 468 
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Correlation network comparisons 469 

We used correlation network analyses to examine whether DE versus non-DE genes differed in 470 

their relationships with other genes. A challenge with this analysis was the lack of consensus to 471 

define networks, in addition to the fact that derived networks will usually have very different sizes 472 

and unmatched nodes (i.e., non-DE genes far outnumber DE genes and a single gene is 473 

inherently only in one category). We constructed adjacency matrices using the correlations of 474 

residuals from the aforementioned generalized linear mixed model. From these adjacency 475 

matrices, we identified overall network structure and the frequency of specific subgraphs (i.e., 476 

small motifs or subnetworks with two to seven nodes and one to six edges) for each experimental 477 

group within each drainage. We then compared network pairs of interest to examine their 478 

structural differences, using a network summary plot and two-sample network tests based on 479 

relative frequencies of different subgraphs adjusted for the sparsity of networks (additional details 480 

in Supplemental Information) (Maugis et al., 2017; Shao et al., 2022).  481 

 482 
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