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Abstract 
Most amino acids are encoded by multiple codons, making the genetic code degenerate. 
Synonymous mutations affect protein translation and folding, but their impact on RNA itself is often 
neglected. We developed a genetic algorithm that introduces synonymous mutations to control the 
diversity of structures sampled by an mRNA. The behavior of the designed mRNAs reveals a 
physical code layered in the genetic code. We find that mRNA conformational heterogeneity directs 
physical properties and functional outputs of RNA-protein complexes and biomolecular 
condensates. The role of structure and disorder of proteins in biomolecular condensates is well 
appreciated, but we find that RNA conformational heterogeneity is equally important. This feature of 
RNA enables both evolution and engineers to build cellular structures with specific material and 
responsive properties.  
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The degeneracy of the genetic code allows for multiple codons to be exchanged in an mRNA 
coding sequence and still produce the same polypeptide (1, 2). This degeneracy can result in a 
combinatorial explosion such that 1086 possible mRNA sequences can encode a 200 amino acid 
protein. Analysis of codon usage variation has focused on protein production and folding rates (3, 
4), yet codons also directly influence RNA structures, making synonymous mutations far from silent 
in terms of the RNA polymer itself. RNA structure controls RNA-binding protein recruitment (5), 
subcellular localization (6), RNA editing (7), and stability (8). In many of these contexts, RNAs are 
components of biomolecular condensates (9). 
 
Many condensates are enriched in RNA-binding proteins with low complexity sequences (LCS) that 
are predicted to contain intrinsically disordered regions (IDRs) (10). IDR conformational 
heterogeneity supports multivalent interactions, and specific residues influence the composition and 
physical properties of condensates (11, 12). In contrast to proteins, how conformational 
heterogeneity or disorder in RNA polymers influences the properties of condensates has not been 
systematically examined. We set out to measure how mutations in RNA sequences that are 
synonymous for the purpose of protein coding alter the conformational heterogeneity of RNAs and 
impact the physical properties of mesoscale cellular assemblies. We show that the primary 
sequence of mRNAs encodes physical information and that this embedded code can exploit 
synonymous mutations to impact RNA function. 
 
Algorithmic design of RNA structural ensembles using in silico evolution with synonymous 
mutations  
Due to the small number of nucleotides and its hydrophilic nature, RNA is inherently 
conformationally promiscuous and can sample many energetically comparable structures, 
commonly resulting in more rugged and shallow energy landscapes compared to globular proteins 
(13). Therefore, conformational heterogeneity is far more descriptive of RNA structure than a single, 
minimum free energy state (14). The predicted conformational heterogeneity of sequences can be 
approximated by the ensemble diversity (ED), which is the Boltzmann-weighted average pairwise 
distance between all secondary structures in the ensemble (15). Distance is defined as the number 
of base pairs needed to rearrange to transform one secondary structure into another. The ED can 
vary greatly between RNA sequences, and different mRNAs with distinct EDs have been correlated 
with altered morphology of biomolecular condensates (16). However, the physical mechanisms by 
which RNA ED impacts mesoscale cell assemblies like condensates remain unexplored, in striking 
contrast to protein counterparts. A challenge in examining how ED impacts RNA assemblies lies in 
isolating the property of ED from the many other features and functions of RNA molecules. 
 
We found an opportunity to address this problem when we noticed that ED can vary substantially 
even for mRNAs encoding the same protein when comparing sequences between individuals of the 
same species (Fig 1A). Specifically, there is a wide range of ED within the cyclin mRNA CLN3 from 
wild isolates of the fungus Ashbya gossypii (17) (Fig 1A). Interestingly, these ED differences arise 
in large part from a significant enrichment of synonymous mutations (Fig S1) and prompted us to 
predict that synonymous mutations may be important for generating different EDs for a given 
mRNA, even within a species (18). CLN3 forms biomolecular condensates through interactions with 
an RNA-binding protein called Whi3. CLN3-Whi3 condensates are a well-established model for 
examining RNA-driven condensate formation in vitro and in cells (19, 20). We set out to design 
CLN3 mRNA sequences with widely variable ED that arises solely from synonymous mutations to 
examine how RNA conformational heterogeneity impacts condensates. 
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Figure 1: Design of RNA structural ensembles. (A) CLN3 mRNAs in Ashbya gossypii wild isolates have 
different sequences and sample a range of predicted ensemble diversities (ED). Representative centroid 
structures are shown to the right of the plot points. (B) Top: A schematic of the CLN3 transcript is shown in 
which the lengths of the 5′ UTR and the coding sequence (CDS) and the positions of the Whi3 binding sites 
(BS) are drawn to scale. Middle: Several mutant sequences are generated by random synonymous mutations 
within the CDS by swapping codons subject to the constraints described in the text. Bottom: The mutant 
sequence with the maximum (minimum) predicted ED is chosen as the parent of the next generation. This 
process is iterated N times until a sequence with desired properties is found. (C) Secondary structure 
predictions of the minimum free energy (MFE) and centroid structures from designed sequences L3 (top) and 
H3 (bottom) at 25°C and 150mM NaCl are shown. (D) The normalized pairwise distances among the longest 
1000 reads for each sequence are shown. White and black bars represent medians. All distributions are 
significantly different based on the Mann-Whitney U test with p < 0.01. (E) Top: Predicted radius of gyration 
(Rg) from simulations for each sequence. Error bars are smaller than markers. Bottom: Predicted average Whi3 
binding site (BS) solvent accessibility from simulations for each sequence. Error bars represent standard 
deviations of accessibility among the 5 BS for each sequence.   

We created a genetic algorithm that designs mutants of a given mRNA sequence using codon 
swapping within the coding sequence that preserves the encoded protein. mRNA sequences are 
selected for maximum (or minimum) predicted ensemble diversity (ED) as determined by RNAfold 
(15) (Fig 1B, S2). We initialized the algorithm with the sequence of CLN3 from the lab reference 
strain. Mutations in each generation are accepted subject to the following constraints: transcript 
length is unchanged, the UTRs are unchanged, nucleotide composition is within 1% of the 
reference sequence, usage of each codon is within 10% of codon usage in the reference sequence, 
encoded amino acid sequence is unchanged, and no Whi3 binding sites (BS) are created or 
destroyed. We designed 3 different CLN3 sequences with minimized predicted ED (L1, L2, L3) and 
3 sequences with maximized predicted ED (H1, H2, H3). Multiple sequences of each class were 
designed to generalize ED as the physical property of focus and eliminate sequence-specific 
phenomena. The sequence identity varies similarly within and between the different L and H 
designs, eliminating sequence bias concerns (Fig S3). Despite the strict design constraints, we are 
still able to access highly distinct conformational ensembles. For the designed sequence, ED is 
visually apparent in the differences or similarities between the predicted minimum free energy 
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(MFE) structure, and the centroid structure, which is the structure closest to all others in the 
ensemble (Fig 1C). 
 
We experimentally validated that the evolved sequences behaved as modeled by in vitro 
transcribing WT CLN3 and the 6 structure mutants and using RNA structure probing with single-
molecule, long read, direct RNA sequencing using Nanopore technology (21). This approach 
enabled us to measure the pairwise distance between the structures of individual mRNA molecules 
in the population. Any adenosines in single-stranded regions can be chemically modified and this 
adduct state is read out in single-read RNA sequencing. To estimate the ED of each sequence, we 
calculated all of the pairwise distances among the 1000 longest reads, normalized by their degree 
of overlap (Fig S4). Low ED sequences (L1, L2, L3) have lower pairwise distances, indicating 
structures that are more similar to each other, and high ED sequences (H1, H2, H3) have higher 
pairwise distances, indicating structures that less similar to each other (Fig 1D). The average 
Jensen-Shannon distance (JSD) among the pairwise distance distributions for the low ED 
sequences is 0.11, among the high ED distributions is 0.2, and between the high and low ED 
distributions is 0.39 (Fig S5). Unprobed control sequences show no differences in pairwise 
distances, but distance measurements of predicted structural ensembles for these sequences 
agree with the probed data (Fig S5, S6). We find a Pearson’s correlation coefficient between 
predicted length-normalized ED (NED) and average pairwise distances of 0.89 and between 
average pairwise distances from the unprobed control and NED of -0.03 (Fig S7). We also 
mathematically show an inverse linear relationship between ED and the variance of nucleotide 
structural states across a given sequence and observe this relationship experimentally and for 
predicted structures (Supplementary Text and Fig S8). Importantly, both the ED-pairwise distance 
and ED-variance relations are independent of the accuracy of the prediction of any given secondary 
structure but rather reflect inherent features of the structural ensemble. Although the inaccuracy of 
predictions of specific secondary structures for long RNAs has been shown (22), these data 
experimentally validate that the ensemble-level designed structures indeed have different ED and 
behave as predicted. 
 
To generate predictions about 3-dimensional structures, we performed Langevin dynamics 
simulations of each sequence as monomers using a previously published RNA forcefield (23). Low 
ED sequences were predicted to have smaller radii of gyration (Rg) and less solvent-accessible 
Whi3 binding sites (BS) than their high ED counterparts which may promote higher protein 
recruitment (Fig 1E). The radius of gyration and ED predictions for each sequence are consistent 
with native RNA gels (Fig S9), further validating that these RNA sequences indeed behave as 
designed to have high or low ED. 
 
RNA structural heterogeneity controls RNA-protein complex size 
To characterize the effects of ED on RNA assemblies, we first analyzed single molecules of the 
different CLN3 mutants with total internal reflection fluorescence (TIRF) microscopy. In 
subsaturated conditions (24), a single phase is formed by CLN3 molecules clustering with Whi3 
protein (Fig 2A). High ED CLN3 mutants form larger and brighter CLN3 puncta than low ED CLN3 
mutants, indicating more recruitment of RNA by high ED sequences (Fig 2A, B). The average JSD 
among the low ED CLN3 intensity distributions is 0.12, among the high ED distributions is 0.2, and 
between the low and high ED distributions is 0.33 (Fig S10). There is little apparent colocalization 
with protein because a very low percentage of Whi3 protein was labeled and few molecules 
comprise a given cluster. Protein is, however, required to facilitate significant interactions among 
CLN3 molecules as experiments with a similar concentration of RNA with no Whi3 protein in the 
same buffer conditions reveals smaller clusters that do not vary in size among CLN3 structural 
mutants (Fig S10, S11). 
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Figure 2: RNA ED controls composition of subsaturated RNA-protein assemblies. (A) Total internal 
reflection fluorescence (TIRF) microscopy was performed to visualize subsaturated clusters of CLN3 structural 
mutants and Whi3 protein. Magenta corresponds to CLN3, and green corresponds to Whi3. Scale bars are 
5μm. (B) Distributions of puncta intensities from the data represented in panel (A) are shown. White and black 
bars indicate medians. All distributions are significantly different based on the Mann-Whitney U test with p < 
0.01. (C) RNAfold predictions of dimer ΔG, defined in the text, versus monomer ED, for the CLN3 structure 
mutants and 40 additional designed sequences (“other” in legend) are shown. 𝜌!",$% is the Pearson’s 
correlation coefficient, and p is the associated p-value. (D) The same sequences are analyzed as in (C) but for 
dimer ΔED and monomer ED. 𝜌!",$!" is the Pearson’s correlation coefficient between monomer ED and dimer 
ΔED. 

To investigate the connection between ED and cluster formation, we modeled RNA homodimer 
conformational ensembles for each sequence using RNAcofold, which predicts the free energy of 
the structural ensemble, G, and the ED for dimers (25). We computed changes to G and ED upon 
dimerization by comparing their values for the dimer with the values for 2 copies of non-interacting 
monomers, which gives a change in G or ED associated with dimerization, dimer	ΔG = G!"#$% −
2 × G#&'&#$%, and similarly for dimer	ΔED. Additionally, we designed 40 new sequences in order to 
investigate general relationships between monomer ED and homodimer properties. We found that 
high ED sequences on average had a more negative predicted dimer	ΔG compared to low ED 
sequences, indicating more favorable dimer formation (Fig 2C), especially the H1 mutant which 
also showed the greatest RNA recruitment (Fig 2B). The prediction that dimer formation is more 
energetically favorable for the high ED CLN3 mutants than the low ED mutants is consistent with 
the patterns of ED-dependent CLN3 recruitment to subsaturated clusters. Interestingly, we also 
observed that dimers formed by high ED sequences on average gained less ED upon dimerization 
than their low ED counterparts, although the trend was weak (Fig 2D). This behavior suggests 
possible differences in conformational entropy costs upon dimerization, or higher-order 
associations, between the structure mutants. 
 
Biomolecular condensate material properties and function controlled by RNA structural 
heterogeneity 
We next examined the impact of RNA conformational heterogeneity on mesoscopic condensate 
formation. In higher bulk concentrations that promote CLN3 and Whi3 phase separation, the low ED 
CLN3 mutants form large spherical droplets with Whi3, while the high ED CLN3 mutants form 
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extensive branched networks that appear to be dynamically arrested clusters of very small droplets 
(Fig 3A, C). In addition to different shapes, condensate composition varies, with low ED CLN3 
mutants recruiting both more CLN3 and Whi3 than their high ED counterparts, and WT recruiting 
intermediate amounts across a range of combinations of bulk concentrations (Fig 3B, S12). The 
ability of low ED CLN3 mutants to recruit more protein molecules to the dense phase upon phase 
separation despite their lower predicted Whi3 BS accessibility (Fig 1D) is in striking contrast to the 
behavior seen at subsaturated conditions (Fig 2A, B) and suggests different assembly properties 
across the phase boundary. The morphological differences likely reflect underlying differences in 
the viscoelasticity of the condensates (26), with low ED CLN3 mutants forming liquid-like 
condensates and high ED CLN3 mutants forming elastic, dynamically arrested condensates. These 
findings show that RNA conformational heterogeneity can inform the composition and material state 
of condensates, and that RNAs of the same length, nucleotide composition, and protein binding site 
valence can generate highly distinct types of assemblies at different scales. 
 
Do the morphological differences encoded by these RNAs persist in the non-equilibrium context of 
live cells with RNA helicases and protein chaperones? To investigate this question, we integrated 
the L1, L2, H1, and H2 CLN3 structure mutants at the endogenous locus and promoter as the only 
copy of CLN3 into Ashbya cells also expressing Whi3-tdTomato (Fig 3D). We found that the 
condensate morphologies seen in vitro were largely recapitulated in vivo. WT CLN3 forms small 
condensates and some network-like condensates consistent with previous work and are likely on 
the ER based on morphology (27). Low ED CLN3 mutants had either extremely large Whi3 
condensates which were often spherical and resulted in very little signal in the dilute phase/cytosol 
(Fig 3D, L1 image), or a mixture of extremely large condensates and networks of intermediate-
sized assemblies (Fig 3D, L2 image). In contrast, high ED CLN3 mutants primarily exhibited 
networks of small, seemingly dynamically arrested condensates that filled the cytoplasm (Fig 3D, 
H2 and H1 images) and occasional larger puncta (Fig 3F). These mutant strains had comparable 
concentrations of CLN3 RNA in the cytoplasm but some differences in degree of cell-to-cell 
variability of concentrations (S14). There was also some hypha-to-hypha variability in the 
appearance of condensates which we suspect reflects known differences in metabolism, growth, 
and cytoplasmic organization that are seen in these cells. Differences in material properties of Whi3 
condensates in the low and high ED CLN3 mutant Ashbya cells were apparent in timelapses. The 
L1 and L2 cells often showed large, flowing, liquid-like condensates (Fig 3E, top), while the H1 and 
H2 cells often showed relatively static and rigid, cytoplasm-spanning networks (Fig 3E, bottom) 
(supplemental movies S1-S4). Thus, RNA conformational heterogeneity similarly impacts 
properties of Whi3 condensates both in vivo and in vitro (Fig 3A, D, F). 
 
We next assessed the functional consequences of different material states of Whi3-CLN3 
condensates. CLN3 is a G1 cyclin and is responsible for progression through the cell cycle, so we 
measured the nuclear division state in the mutant cells using spindle pole body and nuclei staining 
(Fig S15). Previous work has shown that knockouts or mutations that eliminate Whi3-CLN3 
condensates in cells synchronize nuclear divisions (28). We found no significant differences in 
nuclear synchrony among the mutants indicating that the cell cycle is still regionally controlled 
despite different material states of Whi3 assemblies (Table S3) which may be expected since 
condensates persist in all strains. We did, however, observe that the L1 cells, which have the most 
pronounced increased droplet size phenotype, have a ~40-50% reduction in the proportion of G1 
nuclei and a ~40-50% increase in the proportion of G2 nuclei, relative to the other mutants (Fig 
3G). This observation suggests that the rate of progression through the cell cycle may be increased 
in the L1 cells which have exceptionally fluid-like and large condensates. We predicted this would 
lead to an increase in the nuclear density if the nuclei progress faster through the cell cycle, 
however, we surprisingly found no differences in the density of nuclei among the CLN3 structure 
mutants (Fig S16). We therefore reasoned that the growth rate of L1 cells may be higher, and 
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found indeed that the hyphal growth rate is ~40-80% higher in the L1 cells than in the other strains 
(Fig 3H). These data suggest that the exceptionally large Whi3 condensates in the L1 cells can 
promote increased progression through the cell cycle and concomitant enhanced growth rates. 
 

 
Figure 3: Upon phase separation, RNA ED encodes condensate material properties and can alter cell 
physiology. (A) Images are maximum z-projections of condensates formed by incubating 50nM of each CLN3 
structure mutant with 1μΜ Whi3 for 5 hours at 25°C. Green corresponds to Whi3 and magenta corresponds to 
CLN3. Each channel is contrasted identically in all images. All scale bars throughout this figure correspond to 
5μm. (B) The central regions of the largest 50 condensates from experiments corresponding to panel (A) are 
used to estimate dense phase fluorescence intensities for Whi3 and CLN3 (see Methods and Fig S13). 
Fluorescence intensities have been divided by 100. Error bars represent standard deviations. (C) The circularity 
is plotted against the area of each condensate from experiments corresponding to panel (A). (D) Images are 
maximum z-projections of Whi3-tdTomato in Ashbya strains with the indicated CLN3 structural mutants 
integrated into the genome. Each image is contrasted separately to aid visualization. (E) Images corresponding 
to the indicated times from time lapses of Whi3 in the L1 (top) and H1 (bottom) Ashbya strains are shown. 
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Circular black regions of exclusion correspond to nuclei. Each image is a single z-slice, and each row is 
contrasted separately to aid visualization. (F) Hyphae in images from experiments corresponding to panel (D) 
were categorized as belonging to 1 of 3 categories: “big condensates” as shown in the L1 image in panel (D), 
“intermediate” as shown in the L2 and WT images in panel (D), or “network” as shown in the H1 and H2 images 
in panel (D). The total numbers of categorized hyphae for each CLN3 mutant Ashbya strain are L1 (75), L2 
(30), WT (17), H1 (60), and H2 (18). (G) Spindle pole body and nuclei staining were performed on fixed Ashbya 
cells from which nuclear division states were determined (see Fig S15). The total numbers of categorized nuclei 
for each CLN3 mutant Ashbya strain are L1 (109), L2 (39), WT (61), H1 (150), and H2 (66). (H) Hyphal growth 
rates were measured for each of the indicated CLN3 mutant Ashbya strains. Black and white bars represent 
medians. The total numbers of measured hyphae are L1 (672), L2 (681), H1 (895), and H2 (675). All 
distributions are significantly based on the Mann-Whitney U test with p < 0.01, except for L2 and H1 which are 
different with p = 0.048. 

Opposing effects of RNA conformational heterogeneity on RNA clustering across the phase 
boundary 
What is the molecular basis of the ED impacting the composition and form of condensates given 
the opposing trends seen above and below saturation concentrations? We investigated the 
surprising reversal of ED-dependent RNA recruitment across the phase boundary (Fig 2B, Fig 3B) 
by studying the nature of condensates formed just within the phase boundary using TIRF 
microscopy (Fig 4A). Relative to the subsaturated conditions shown in Fig 2B, we increased the 
Whi3 concentration by 50nM and observed small condensates for all CLN3 structure mutant 
systems (Fig 4A). We segmented and quantified condensate properties and found that low ED 
CLN3 systems form larger condensates (Fig 4B) that recruit more CLN3 (Fig 4C) than their high 
ED counterparts. We conclude that low ED CLN3 systems switch from recruiting less CLN3 to 
recruiting more CLN3 than high ED systems as they cross the phase boundary. 
 

 
Figure 4: RNA conformational heterogeneity has opposite effects on RNA clustering across the phase 
boundary. (A) TIRF microscopy was used to visualize the first condensates formed as the phase boundary is 
crossed. The magenta channel corresponds to CLN3 and the green channel corresponds to Whi3. Scale bars 
correspond to 5μm. (B) Condensates in experiments corresponding to panel (A) are segmented, and their radii 
are plotted for each CLN3 structure mutant. Error bars represent 95% confidence intervals. (C) CLN3 
fluorescence intensity distributions are plotted for segmented condensates. Black and white bars indicate 
medians. All distributions are significantly different based on the Mann-Whitney U test with p < 0.01. 

These data suggest that the phase boundary represents a change in the mechanisms by which 
RNA ED impacts condensate composition and properties. We hypothesize that RNA conformational 
entropy is a key piece of physical information encoded in the mRNA sequence itself (see 
supplementary text Physical Information and Fig S17). The ensemble diversity is a readily 
computable proxy for conformational entropy within a range of values which are relevant to our 
studies (Fig S17B). In subsaturated conditions, high conformational entropy exposes many single-
stranded regions and increases the probability of productive RNA-RNA interactions (Fig S17C). 
However, we hypothesize that upon phase separation, there is a large entropic penalty associated 
with large-scale RNA networking within condensates, which limits partitioning for RNAs with high 
conformational entropy. Our hypothesis is based on the observation that high ED sequences tend 
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to gain less or even lose ED upon dimerization (Fig 2D), and the prediction that this relationship 
becomes more extreme as RNAs form trimers, tetramers, and larger networks within condensates. 
For high ED sequences, we propose that the entropic penalty upon phase separation dominates 
the enthalpic gain of increased RNA-RNA interactions and explains the weakened recruitment of 
Whi3 and CLN3 to condensates (Fig 3B). We propose that high ED sequences also lead to longer 
viscoelastic relaxation times due to enhanced networking within the dense phase, generating 
dynamically arrested assemblies in vitro and in cells (Fig 3A, C, D, F). 
 
RNA encodes physical information 
These experiments show that RNA sequences can encode a hierarchy of information that includes 
both the genetic information to build a protein but also physical information that can impact the 
extent of RNA-RNA interactions in subsaturated assemblies and material properties of 
condensates. Because the genetic code is redundant with respect to amino acids specified by 
codons, there is extensive tunability in RNA conformational entropy and RNA-RNA interactions 
without altering the encoded amino acid sequence (Fig 5). 
 

 
Figure 5: RNA encodes physical properties via disparate free energy costs of conformational entropy 
penalties. Synonymous mutations are designed and introduced to the WT mRNA to generate RNAs with 
polarized ensemble diversity. The low ensemble diversity RNA monomer samples a class of structures very 
similar to each other (top, green), which limits RNA-RNA interactions in the dense phase, but as a result, 
minimizes conformational entropy costs upon condensation. The high ensemble diversity RNA monomer 
samples a class of structures that greatly diverge from each other (bottom, purple), which lead to mesh-like 
RNA-RNA interactions in the dense phase and a high conformational entropy cost upon condensation. 
 
We demonstrate that RNA can encode physical information, such as conformational heterogeneity, 
to influence condensate composition by balancing enthalpy contributions with conformational 
entropy costs (Fig 5). Similarly, proteins have long been recognized for this capacity to affect free 
energy landscapes through conformational entropy, impacting Boltzmann-weighted sampling 
across dense and dilute phases (29, 30). 
 
RNA conformational heterogeneity may represent an orthogonal target of natural selection 
independent of protein sequence that nonetheless can impact the fate of the RNA’s localization, 
expression, or stability through condensate formation or smaller-scale assemblies sensitive to this 
property. It is clear that there are constraints on ED in the human genome (31, 32), potentially to 
maintain specific structures. However, examples of pathologies where synonymous mutations 
impact a pathology and are associated with altered ED exist, including in the critical oncoprotein 
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KRAS (32). We predict that synonymous mutation might be a mechanism used by free-living 
organisms that can quickly adapt to rapidly fluctuating environmental conditions through tuning 
RNA conformations and condensate properties without altering protein-coding sequences. This 
study shows that RNA can encode physical information along with the message of the genetic 
code. We have demonstrated that this physical information can impart material properties to 
biomolecular condensates, which may drive different phenotypic outcomes. Similarly, the physical 
properties of RNA could play a significant role throughout its entire lifespan in the cell. 
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