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Abstract 10 

Background: Difference in Restricted Mean Survival Time (DRMST) has attracted attention and 11 

is increasingly used in non-inferiority (NI) trials because of its superior power in detecting 12 

treatment effects compared to hazard ratio. However, when treatment switching (also known as 13 

crossover) occurs, the widely used intention-to-treat (ITT) analysis can underpower or overpower 14 

NI trials. 15 

Methods: We propose a simulation-based approach, named nifts, to calculate powers and 16 

determine the necessary sample size to achieve a desired power for non-inferiority trials that allow 17 

treatment switching, in ITT analysis using DRMST. 18 

Results: Real-world and simulated examples are used to illustrate the proposed method and 19 

examine how switching probability, switching time, the relative effectiveness of treatments, 20 

allocation ratio, and even time distribution influence powers and sample sizes. Our simulation 21 

study shows that switching time and switching probability decrease or increase powers and sample 22 

sizes compared to those in the scenarios without treatment switching. A shorter switching time and 23 

a higher switching probability amplify the magnitude of these changes. The direction of the change 24 

in powers and sample sizes depends on the relative effectiveness of the treatments. When 25 𝑚2/𝑚1>1, power decreases and sample size increases, while 𝑚2/𝑚1<1 leads to the opposite effect, 26 

where 𝑚1 and 𝑚2 are the median survivals in the control and experimental groups, respectively. 27 

mailto:yu.shyr@vumc.org
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Conclusions: This simulation-based approach offers a preview of how treatment switching can 28 

influence powers and sample sizes in NI trials, providing investigators with useful information 29 

before conducting the trials. nifts is freely available at https://github.com/cyhsuTN/nifts. 30 

Keywords 31 

crossover; intention-to-treat analysis; non-inferiority trials; restricted mean survival time 32 

 33 

1 Introduction  34 

A randomized controlled trial (RCT) is regarded as the gold standard for assessing the effectiveness 35 

of new treatments. Among the various types of RCTs, a non-inferiority (NI) trial aims to 36 

demonstrate that a new treatment is not significantly worse than an existing one, while potentially 37 

offering additional benefits such as fewer side effects or lower costs. One increasingly popular 38 

approach for evaluating treatment effects in NI trials with time-to-event outcomes is to compare 39 

restricted mean survival times (RMST) between treatment groups [1-3]. RMST provides a 40 

straightforward summary by averaging survival times up to a specified time point [4] and does not 41 

rely on the proportional hazards (PH) assumption, which is frequently violated in clinical trials [5]. 42 

As a result, Royston and Parmar [6] suggested using the difference in RMSTs (DRMST) between 43 

treatment groups as an alternative to the hazard ratio (HR) for designing randomized trials with 44 

time-to-event outcomes, including power and sample size calculations. Furthermore, DRMST has 45 

greater power in detecting treatment effects compared to HR, even under the PH assumption [7, 46 

8]. Methods for determining powers and sample sizes in NI trials using DRMST have been 47 

proposed [9, 10]. 48 

In RCTs, including NI trials, treatment switching from the control group to the experimental group 49 

may occur due to ethical concerns or other reasons [11, 12]. This switch may happen when a 50 

disease progresses, when healthcare providers believe the patient's prognosis will improve with 51 

the experimental treatment, or when patients prefer the new treatment due to perceived benefits 52 

such as fewer side effects or greater convenience [11, 13]. However, treatment switching can 53 

confound the results of intention-to-treat (ITT) analysis, making it difficult to determine the true 54 

treatment effect. ITT analysis includes all participants with randomization and compares their 55 

responses to determine the treatment effect according to the initially assigned treatment groups, 56 

https://github.com/cyhsuTN/nifts
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regardless of what treatment they received. This may potentially lead to underpowered trials and 57 

inconclusive results [12]. An alternative approach is per-protocol analysis that excludes 58 

participants who switch treatments from the analysis. Nevertheless, this can heavily bias the results 59 

if there is a significant difference in prognosis between the included and excluded participants, 60 

particularly if the treatment switching is associated with prognostic variables [14]. Therefore, ITT 61 

analysis is still often used in the final analysis. Deng et al. [15] proposed a simulation-based 62 

approach to preview power reduction and sample sizes required in superiority trials with treatment 63 

switching in ITT analysis using the logrank test. 64 

In this study, we propose a simulation-based approach, named nifts, to determine power and 65 

sample size in NI trials that involve treatment switching when comparing RMSTs between two 66 

treatment groups in ITT analysis. To accelerate the computation of sample sizes, a monotonic 67 

smoothing technique is employed to estimate the power trend as sample sizes increase [16]. We 68 

utilize both real-world and simulated examples to illustrate the proposed method and examine how 69 

switching probability, switching time, the relative effectiveness of treatments, allocation ratio, and 70 

even time distribution influence power and sample sizes. nifts is freely available at 71 

https://github.com/cyhsuTN/nifts.   72 

 73 
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Figure 1: An overview of nifts. (a) Accrual time and trial duration. (b) Treatment switching. (c) 74 

Difference in RMSTs between two treatment groups. (d) Non-inferiority holds if the lower 75 

bound of DRMST is larger than −𝛿.  76 

 77 

2 Methods 78 

2.1 Non-inferiority Trials using DRMST  79 

Denote the survival functions for the control group and the experimental group by 𝑆1(𝑡) and 𝑆2(𝑡), 80 

respectively. The restricted mean survival times (RMST) at a specified time 𝜏 (𝜏 > 0) for the two 81 

groups are defined as 𝑅𝑖(𝜏) = ∫ 𝑆𝑖(𝑡) 𝑑𝑡𝜏0 , 𝑖 = 1 and 2. The difference in RMSTs between the two 82 

groups (DRMST) is given by Δ(𝜏) = 𝑅2(𝜏) − 𝑅1(𝜏) . The estimate for Δ(𝜏)  is Δ̂(𝜏) = 𝑅̂2(𝜏) −83 𝑅̂1(𝜏), where 𝑅̂𝑖(𝜏) = ∫ 𝑆̂𝑖(𝑡) 𝑑𝑡𝜏0  and 𝑆̂𝑖(𝑡) is the Kaplan-Meier estimate for 𝑆𝑖(𝑡). The aim of a 84 

non-inferiority trial using DRMST is to test 𝐻0: Δ(𝜏) ≤ −𝛿 vs 𝐻1: Δ(𝜏) > −𝛿, where 𝛿 > 0 is a 85 

prespecified margin. If 86 Δ̂(𝜏) − 𝑧1−𝛼SE (Δ̂(𝜏)) > −𝛿, 87 

we reject the null hypothesis at a one-sided significance level of 𝛼 and claim that non-inferiority 88 

holds (i.e., the experimental treatment is not significantly worse than the control). Here, 𝑧1−𝛼 89 

represents the ( 1 − 𝛼 )th quantile of the standard normal distribution, and SE (Δ̂(𝜏)) =90 √𝑉𝑎𝑟 (𝑅̂1(𝜏))̂ + 𝑉𝑎𝑟 (𝑅̂2(𝜏))̂  . 𝑉𝑎𝑟 (𝑅̂𝑖(𝜏))̂   is the estimate for the variance of 𝑅̂𝑖(𝜏) , whose 91 

explicit expression can be found in [9]. Both 𝑅̂𝑖(𝜏) and 𝑉𝑎𝑟 (𝑅̂𝑖(𝜏))̂  can be calculated using the 92 

survfit function in the survival R package.  93 

2.2 The Choice of Margins  94 

In this study, we propose three options for selecting margins. 95 

Preserved fraction of the RMST of the control group 96 

We aim for 𝑅2(𝜏) to maintain at least the preserved fraction, 𝑓1, of the RMST of the control group, 97 

where 0 < 𝑓1 < 1 . This means 𝑅2(𝜏) > 𝑓1𝑅1(𝜏) . Thus, Δ(𝜏) > −(1 − 𝑓1)𝑅1(𝜏)  and 𝛿 = (1 −98 𝑓1)𝑅1(𝜏). 99 
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Preserved fraction of the DRMST between the control and the placebo groups 100 

In this option, we aim for the RMST of the experimental group to be better than the RMST of the 101 

placebo group, and the DRMST between the experimental and placebo groups to maintain at least 102 

the preserved fraction, 𝑓2, of the DRMST between the control and placebo groups, where 0 < 𝑓2 <103 1 . This means 𝑅1(𝜏) − 𝑅0(𝜏) > 0  and 𝑅2(𝜏) − 𝑅0(𝜏) > 𝑓2(𝑅1(𝜏) − 𝑅0(𝜏)) , where 𝑅0(𝜏) =104 ∫ 𝑆0(𝑡) 𝑑𝑡𝜏0  and 𝑆0(𝑡) is the survival function for the placebo group. Typically, 𝑅1(𝜏) − 𝑅0(𝜏) >105 0 holds, so 𝛿 = (1 − 𝑓2)(𝑅1(𝜏) − 𝑅0(𝜏)).  106 

Conversion from the hazard ratio 107 

Given 𝑆1(𝑡) and assuming proportional hazards, a margin (1/𝜃) for the hazard ratio (HR) of the 108 

experimental group to the control group can be converted to a margin for DRMST from HR21  <109  1/𝜃 to Δ(𝜏) > −𝛿, where 𝛿 = 𝑅1(𝜏) − 𝑅𝜃(𝜏) with 𝑅𝜃(𝜏) = ∫ (𝑆1(𝑡))1/𝜃 𝑑𝑡𝜏0  and 0 < 𝜃 < 1. 110 

2.3 The Design Setting and Assumption 111 

Denote the trial duration by 𝑇𝑒 > 0 and the accrual time during which participants are recruited by 112 𝑇𝑎 ≥ 0. 𝑇𝑒 − 𝑇𝑎 ≥ 0 is the additional follow-up time. Participants are assumed to enter the study 113 

uniformly during the accrual period, i.e., 𝑣 ~ 𝑈(0, 𝑇𝑎), where 𝑣 is the entry time of a participant 114 

(Figure 1a). If 𝑇𝑎 = 0 , all participants are assumed to enter the study at its start. We assume 115 

participants are randomly assigned to the control group or the experimental group with an 116 

allocation ratio of 𝑟, where 𝑟 is defined as the ratio of the participants in the experimental group 117 

to those in the control group.   118 

Denote the survival times for participants in the control and experimental groups by 𝑇1 and 𝑇2, 119 

respectively, and assume 𝑇1 and 𝑇2 follow Weibull distributions with the same shape parameter 120 

but different scale parameters. The scale and shape parameters of the two Weibull distributions are 121 

determined by given median survivals of 𝑚 = 𝑚1 and 𝑚2, and a survival rate at a specific time 𝑡 122 

in the control group. Specifically, the scale and shape parameters are obtained by solving the 123 

equations: scale (log 2)1/shape =  𝑚 and exp(−(𝑡/scale)shape)  =  survival rate. 124 

Denote the censoring times for participants in the control and experimental groups by 𝐶1 and 𝐶2, 125 

defined as the duration from randomization to either dropping out of the trial or reaching the end 126 
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of the trial if participants don’t experience the event of interest. Therefore, the censoring time 127 

comprises dropout censoring and administrative censoring, and its distributions can be formulated 128 

as follows [17]: 129 𝑓(𝑐|𝑣) = 𝑑(𝑐)𝐼(0 < 𝑐 < 𝑇𝑒 − 𝑣) + 𝐷̅(𝑇𝑒 − 𝑣)𝐼(𝑐 = 𝑇𝑒 − 𝑣), 130 

where 𝑑(𝑐)  and 𝐷̅(𝑐)  are the density function and survival function of the dropout censoring, 131 

respectively. 𝐼(∙) is the indicator function. The dropout censoring is assumed to follow a uniform 132 

distribution 𝑈(0, ℎ), where ℎ is determined by a given censoring rate of the control group under 133 

no treatment switching (see Supplementary Materials for details). For the scenario of no dropout 134 

censoring, we set 𝑃(𝑐 = 𝑇𝑒 − 𝑣|𝑣) = 1. Additionally, the distributions of the censoring times in 135 

the two groups are assumed to be the same. 136 

2.4 Treatment Switching 137 

nifts allows participants in the control group to switch to the experimental group if certain 138 

predetermined conditions are met. For example, if patients with cancer have a disease progression 139 

before death (assume death is the event of interest), they may switch from the standard treatment 140 

to the new treatment after disease progression and evaluation by the investigators [11]. Denote the 141 

switching time by 𝑠, defined as the duration from randomization to the moment when a participant 142 

may switch, with a probability 𝑝𝑠. The switching probability (𝑝𝑠) is the likelihood that a participant 143 

who qualifies for treatment switching will switch from the control group to the experimental group 144 

after evaluation by healthcare professionals.  145 

Five options for the distributions of the switching time are provided (Table 1), as used in [15]. The 146 

first three options assume 𝑠  is correlated with 𝑇1 , while the other two options assume 𝑠  is not 147 

correlated with 𝑇1. The parameters in the assumed distributions are determined based on the given 148 

values of 𝑟𝑠  and  𝜌𝑠 (See Supplementary Materials for details). 𝑟𝑠 = 𝐸(𝑠)/𝐸(𝑇1) denotes the ratio 149 

of the average switching time to the average survival time of the control group, and 𝜌𝑠 denotes the 150 

correlation between 𝑠 and 𝑇1.  151 

The survival time for participants starting from switching is assumed to increase by 𝑚2/𝑚1, based 152 

on the rank preserving structural failure time model (RPSFTM) [18]. Thus, the survival time of 153 

the participants with treatment switching will be 𝑇1∗  =  𝑠 +  (𝑇1  −  𝑠)  × (𝑚2/𝑚1). Therefore, 154 

the observable survival time 𝑌1 for the participants without and with treatment switching from the 155 
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control group to the experimental group will be min(𝑇1, 𝐶1) and min(𝑇1∗, 𝐶1), respectively.  The 156 

observable survival time 𝑌2  for the participants in the experimental group will be min(𝑇2, 𝐶2) . 157 

Finally, a non-inferiority test for DRMST between the two samples {𝑌1} and {𝑌2} in ITT analysis 158 

is performed (Figure 1b-1d). 159 

2.5 The Proposed Method 160 

The proposed nifts includes two main functions: calculate_power and calculate_size. The first 161 

function calculates power and outputs the associated expected number of events in the control and 162 

experimental groups. The latter determines the required sample size to achieve a specified power. 163 

The required sample size is obtained by a monotonically increasing power curve to the sample 164 

sizes. This curve is estimated using a monotonic smoothing technique [16] based on a finite 165 

number of power points and sample sizes. 166 

The calculate_power function includes 21 parameters to simulate various scenarios: 𝑛, 𝑟, 𝑚1, 𝑚2, 167 

shape, 𝑓1, 𝑚0, 𝑓2, margin, 𝑝𝑠, 𝑟𝑠, 𝜌𝑠, s.dist, censoring.rate, 𝑇𝑎, 𝑇𝑒 , 𝜏, one.sided.alpha, TXswitch, 168 

n_simulations, and seed. 𝑛: sample size of the control group, 𝑟: allocation ratio, 𝑚1  and 𝑚2 : 169 

median survivals, shape: shape parameter of the Weibull distributions for event times, 𝑓1 and 𝑓2: 170 

preserved fractions, 𝑚0: median survival of the placebo group for calculating 𝑅0(𝜏) if 𝑓2 is given, 171 

margin: non-inferiority margin, 𝑝𝑠 : switching probability, 𝑟𝑠 : ratio of 𝐸(𝑠)  to 𝐸(𝑇1) , 𝜌𝑠 : 172 

correlation of 𝑠 and 𝑇1, s.dist: options for the distributions of switching time (s.dist = “unif”, “beta”, 173 

“gamma”, “indepExp”, or a numeric value), censoring.rate: censoring rate of the control group 174 

(censoring.rate = “AC.only” meaning administrative censoring only, or  = a numeric value), 𝑇𝑎 175 

and 𝑇𝑒 : accrual duration and trial duration, 𝜏 : prespecified time for RMST calculation, 176 

one.sided.alpha: one-sided significance level, TXswitch: direction of treatment switching 177 

(TXswitch = “1to2” (default) or “2to1”), n_simulations: number of simulations, and seed: 178 

simulation seed. When 𝑓1  is provided, the first margin option is used. When 𝑓2  and 𝑚0  are 179 

provided, the second margin option is used. A customized margin is applied when a numeric 180 

margin is provided, for example, an RMST margin converted from an HR margin. 181 

The calculate_size function uses the same parameters as calculate_power while adding 4 182 

parameters 𝑛𝐿, 𝑛𝑈, 𝐵, epwr. The lower (𝑛𝐿) and upper (𝑛𝑈) bounds are minimum and maximum 183 

sample sizes users input when exploring sample sizes for a desired expected power (epwr). The 184 
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function divides the range of the bounds into 𝐵 equal intervals and calculate the powers at 𝑛 = 𝑛𝐿 185 

+ 𝑘 × 𝑤, where 𝑤 = round((𝑛𝑈 − 𝑛𝐿)/𝐵) and 𝑘 = 0, 1, 2, ..., 𝐵. A shape constrained additive 186 

model [16] is employed to fit a monotonically increasing power curve to the sample sizes, from 187 

which the required sample size is determined. 188 

3 Results 189 

3.1 Parameters Setting via Real-World Examples 190 

The first example is an open-label phase III trial comparing survival benefits in patients with 191 

chemotherapy-refractory metastatic colorectal cancer, who were randomly assigned to either 192 

panitumumab + best supportive care (BSC) or BSC alone [11]. A total of 231 patients were 193 

randomly assigned to panitumumab + BSC, and 232 to BSC alone. Among the BSC alone patients, 194 

85% experienced disease progression, and 76% switched to panitumumab + BSC after evaluation 195 

by the investigator. Thus, the switch probability 𝑝𝑠  was 0.89 (= 0.76/0.85). We use the trial 196 

scenario (ClinicalTrial.gov: NCT00113763) to illustrate the proposed method for power and 197 

sample size calculation in NI trials with treatment switching when using DRMST in ITT analysis. 198 

We set 𝑇𝑎 = 0, 𝑇𝑒 = 26 (in months), 𝑛 = 232 with a 1:1 allocation ratio (𝑟 = 1), and a censoring rate 199 

of 0.05 for BSC alone group. We compare the RMSTs of overall survival at 𝜏 = 12 (in months) 200 

between the two groups with a preserved fraction of 𝑓1 = 0.8 (i.e., margin = 0.2𝑅1(𝜏)), and assume 201 

Weibull distributions with 𝑚1 = 6.0 and 𝑚2 = 6.4 and shape = 1 for event time. If there were no 202 

treatment switching, the power at 𝑛 = 232 could reach 90% at a one-sided significance level of 203 

0.005 in this setting. 204 

Next, we examine the changes in powers and required sample sizes when treatment switching 205 

occurs with a switch probability of 𝑝𝑠 = 0.89. We assume s.dist = “gamma” or “indepExp” with 𝑟𝑠 206 

= 0.3 (= 1.96/6.4, the ratio of 𝐸(𝑠) = 1.96 (the reported mean PFS) to 𝐸(𝑇1) = 6.4). For s.dist = 207 

“gamma”, we assume 𝜌𝑠 = 0.1, 0.3, 0.5, 0.7, and 0.9 to model low to high correlations between 208 

progression-free survival and overall survival. The resulting powers at 𝑛 = 232 range from 0.775 209 

to 0.833, which are less than 0.9, and the required sample sizes to achieve the power of 0.9 range 210 

from 284 to 308 (Table 2).   211 
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The second example is a non-inferiority trial involving 1,234 women with early-stage breast cancer 212 

who have undergone breast-conserving surgery [13]. This trial compares hypofractionated 213 

radiotherapy to standard radiotherapy for preventing local recurrence of invasive breast cancer. 214 

Between April 1993 and September 1996, 622 and 612 patients were randomly assigned to 215 

hypofractionated radiotherapy and standard radiotherapy, respectively, and were followed up to 216 

12 years (𝑇𝑎  = 3.5, 𝑇𝑒  = 12, and 𝑟  = 1) with 7.9% dropout censoring. Among the patients 217 

randomized to hypofractionated radiotherapy, 1.2% selected standard radiotherapy instead (𝑝𝑠 = 218 

0.012, 𝑠 = 0, and TXswitch = “2to1”) [9]. Given the assumption of a 7% 5-year local recurrence 219 

rate for standard radiotherapy [13], we assume Weibull distributions with 𝑚1  = 𝑚2  = − 220 

5log(2)/log(0.93) = 47.8 and shape = 1 for event time, and a dropout censoring rate of 4% (about 221 

a half of 7.9%) for standard radiotherapy, i.e., censoring.rate = 0.902 (including 86.2% 222 

administrative censoring). Based on the hypofractionated radiotherapy is not worse than the 223 

standard radiotherapy by 5% in local recurrence-free survival at 5 years, the HR margin is 1/𝜃 = 224 

log(0.88)/log(0.93) = 1.762.  225 

We compare the RMSTs at 𝜏 = 5.75 and 10 (corresponding to two analysis times in [13]) between 226 

the two radiotherapy groups. The DRMST margins, converted from the HR margin, are 0.169 and 227 

0.484, respectively. With a one-sided significance level of 0.05 and a power of 0.9, the required 228 

sample sizes 𝑛 in the standard radiotherapy group are 550 for 𝜏 = 5.75 and 376 for 𝜏 = 10.  229 

3.2 Simulation Scenarios 230 

Various simulations are conducted to examine the impact of treatment switching on power and 231 

sample size estimation in NI trials using DRMST in ITT analysis. These simulations consider 232 

different relative effectiveness of the experimental versus the control group (𝑚2/𝑚1 = 1.1 and 0.9), 233 

switching times (𝑟𝑠  = 0.5 and 0.25) and switching probabilities (𝑝𝑠  = 0.2 and 0.4), event time 234 

distributions (Weibull distributions with shape = 1, 0.75, and 1.25), distributions of switching time 235 

(s.dist = ”unif”, “beta”, “gamma”, and “indepExp”), and allocation ratios (𝑟 = 1 and 2). For each 236 

scenario, we set 𝑇𝑎 = 3, 𝑇𝑒 = 5, 𝜏 = 5, 𝑚1 = 1, 𝜌𝑠 = 0.775, censoring.rate = 0.2, and n_simulations 237 

= 5000. Also, 𝑚0 = 0.5 and 𝑓2 = 0.5 are used for calculating 𝑅0(𝜏) and the DRMST margin, i.e., 238 

the margin equals 0.5 (𝑅1(𝜏) − 𝑅0(𝜏)) . When 𝑟𝑠  = 0.5, 𝜌𝑠  = 0.775, and event times follow 239 

exponential distributions, the results of assuming s.dist = “beta” will be similar to those of 240 
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assuming s.dist = “unif” because the shape1 and shape2 parameters in the beta distributions are 241 

close to 1. The one-sided significance level is set at 0.025. 242 

Effect of relative effectiveness on power and sample size  243 

Treatment switching results in a decrease in power when 𝑚2> 𝑚1 (𝑚2/𝑚1 = 1.1) and an increase 244 

when 𝑚2< 𝑚1 (𝑚2/𝑚1= 0.9). Consequently, this corresponds an increase and decrease in the ratio 245 

(𝑛/𝑛𝑛𝑠) of sample sizes with treatment switching (𝑛) to those without switching (𝑛𝑛𝑠), respectively 246 

(Table 3). For example, at 𝑝𝑠 = 0.2 and s.dist = “unif”, the power is 0.776 at 𝑛𝑛𝑠 = 158 and 𝑛/𝑛𝑛𝑠 247 

=1.044 when 𝑚2/𝑚1 = 1.1, while the power is 0.859 at 𝑛𝑛𝑠  = 656 and 𝑛/𝑛𝑛𝑠  = 0.886 when 248 𝑚2/𝑚1= 0.9. Similar changes in powers and sample sizes are observed for other distributions of 249 

switching time. The powers decrease to between 0.764 and 0.783 when 𝑚2/𝑚1= 1.1 and increase 250 

to between 0.849 and 0.875 when 𝑚2/𝑚1= 0.9. The ratios of sample sizes increase to between 251 

1.019 and 1.082 when 𝑚2/𝑚1= 1.1 and decrease to between 0.849 and 0.886 when 𝑚2/𝑚1= 0.9. 252 

Effect of switching probability on power and sample size  253 

When 𝑝𝑠 increases to 0.4, the magnitude of changes in powers and sample sizes increases. Across 254 

four distributions of switching time, when 𝑚2/𝑚1 = 1.1, the powers decrease to a range of 0.739 255 

and 0.757, and when 𝑚2/𝑚1 = 0.9, the power increase to a range of 0.879 and 0.907. The ratios 256 

of sample sizes increase to a range of 1.127 and 1.184 when 𝑚2/𝑚1 =1.1 and decrease to a range 257 

of 0.706 and 0.788 when 𝑚2/𝑚1 = 0.9. 258 

Effect of switching time on power and sample size  259 

When 𝑟𝑠 is reduced from 0.5 to 0.25, indicating a shorter switching time, the magnitude of changes 260 

in powers and sample sizes increases (Table 4). Comparing the results at 𝑝𝑠 = 0.4 in Table 4 with 261 

those above, across the three distributions of switching time, when 𝑚2/𝑚1  = 1.1, the powers 262 

decrease to a range of 0.720 and 0.726, and when 𝑚2/𝑚1 = 0.9, the power increase to a range of 263 

0.915 and 0.929. The ratios of sample sizes rise to a range of 1.203 and 1.228 when 𝑚2/𝑚1 = 1.1 264 

and fall to a range of 0.671 and 0.698 when 𝑚2/𝑚1 = 0.9. 265 

We also adjust the shape parameters in Weibull distributions to assess the impact of different event 266 

time distributions (Supplementary Figure s1). The changes in powers are similar and there is no 267 
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significant trend (Supplementary Tables s1, s2, and Table 3). The ratios of sample sizes slightly 268 

increase and decrease with the shape values when 𝑚2/𝑚1 = 1.1 and 0.9, respectively, except for 269 

s.dist = “indepExp”. However, the required sample sizes vary significantly, decreasing with the 270 

shape values. In addition, when we change the allocation ratio from 1 to 2, the change patterns are 271 

similar, but more total sample sizes (𝑛(𝑟 + 1)) are needed (Supplementary Table s3).   272 

4 Discussion 273 

Our simulation study shows that switching time and switching probability can decrease or increase 274 

power and sample sizes compared to those in the scenarios without treatment switching. A shorter 275 

switching time and a higher switching probability amplify the magnitude of these changes. 276 

Whether power and sample sizes decrease or increase depends on the relative effectiveness. When 277 𝑚2/𝑚1>1, powers decrease and sample sizes increase, while 𝑚2/𝑚1<1 leads to the opposite result. 278 

When 𝑚1 = 𝑚2, treatment switching does not impact power and sample sizes. The changes in 279 

powers and sample sizes are not sensitive to the choice of the distributions of switch time. To 280 

accelerate the computation of sample sizes, we employ a monotonic smoothing technique [16] to 281 

model the power trend as sample sizes increase. The powers at the sample size estimated by the 282 

power curve exhibit a bias of less than 2% from the expected power.  283 

nifts assumes the effects of the experimental treatment are the same (common treatment effect, 284 

made by RPSFTM [18]) for participants initially in the experimental group and those who switch 285 

from the control group to the experimental group. This assumption may be problematic, as 286 

participants who switch from the control group to the experimental group may have worse survival 287 

outcomes. Properly adjusting the accelerated factor 𝑚2/𝑚1  could help fit the scenario. 288 

Multiplying 𝑚2/𝑚1 by a constant less than 1 might be a solution, but determining this constant 289 

value before clinical trials is challenging, even with information from previous similar studies. 290 

In this study, we assume event times follow Weibull distributions rather more flexible distributions 291 

like generalized gamma distributions that can fit more real-world scenarios. This is because 292 

determining the three parameters for the latter can be challenging for investigators. Besides, 293 

median survival times and hazard ratios are still commonly used for power and sample size 294 

calculations, so we ultimately choose Weibull distributions that satisfy the proportional hazards 295 

assumption. nifts will help users calculate the scale and shape parameters required for Weibull 296 
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distributions when provided the median survivals of two treatment groups and a survival rate at a 297 

specific time in the control group. 298 

5 Conclusions 299 

We propose a simulation-based approach, nifts, for power and sample size calculation in NI trials 300 

with treatment switching when comparing the RMSTs of two treatment groups in ITT analysis. 301 

This approach offers a preview of how treatment switching can influence powers and sample sizes 302 

in NI trials, providing investigators with useful information before conducting the trials. 303 

 304 
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Table 1. Five options for the distributions of switching time are provided. 383 

 Options Property 𝑠 is correlated with 𝑇1 

Assume 𝑠 =  𝑋𝑇1 and 𝑋 
is independent of 𝑇1 

𝑋 ~ 𝑈(0,1) 𝑠 < 𝑇1 𝑋 ~ Beta(shape1 = 𝑎, shape2 = 𝑏) 𝑟𝑠 = 𝑎/(𝑎 + 𝑏) and  𝜌𝑠 = { 𝑎𝑎+𝑏 √𝑉𝑎𝑟(𝑇1)} / {( 𝑎𝑎+𝑏)2 𝑉𝑎𝑟(𝑇1) + 𝑎𝑏(𝑎+𝑏)2(𝑎+𝑏+1) 𝐸(𝑇12)}1/2
  

𝑠 < 𝑇1 

𝑋 ~ Gamma(shape = 𝑎, rate = 𝑏) 𝑟𝑠 = 𝑎/𝑏 and 𝜌𝑠 = {𝑎𝑏 √𝑉𝑎𝑟(𝑇1)} / {(𝑎𝑏)2 𝑉𝑎𝑟(𝑇1) + 𝑎𝑏2 𝐸(𝑇12)}1/2
 

 

𝑠 is not correlated with 𝑇1 𝑠 ~ Exponential(rate = 𝑏) 𝑏 = (𝑟𝑠 𝐸(𝑇1))−1
 

 

𝑠 is a specific time.  
e.g., 𝑠 = 0 denotes the switch occurs at the start of the study  

 

 384 

 385 

Table 2. Powers and required sample sizes in a NI trial allowing treatment switching with a switch 386 

probability of 𝑝𝑠 = 0.89 when using DRMST in ITT analysis. 387 

 s.dist = “gamma” s.dist = “indepExp” 𝜌𝑠 0.1 0.3 0.5 0.7 0.9 0 

Power at a one-sided significance 

level of 0.005 with 𝑛 = 232 and 𝑟 = 1 
0.775 0.807 0.808 0.815 0.808 0.833 

Required sample sizes (𝑛) to achieve 

the power of 0.9 at the one-sided 

significance level of 0.005 

308 299 293 290 292 284 

  388 
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Table 3. Required sample sizes (𝑛) and powers at 𝑛𝑛𝑠 with 𝑟𝑠 = 0.5, shape = 1, and 𝑟 = 1, where 389 𝑛𝑛𝑠 denotes the sample size under no treatment switching, given a power of 0.8 and a one-sided 390 

significance level of 0.025. E1 and E2 are the expected number of events in the control and 391 

experimental groups.  392 𝑚2/𝑚1 = 1.1 𝑛𝑛𝑠 = 158; E1 = 126.4; E2 = 122.5 
s.dist 

  unif beta gamma indepExp 𝑝𝑠 = 0.2 𝑛 165 171 161 170 

 E1 131.6 136.4 128.4 135.4 

 E2 127.9 132.6 124.8 131.8 

 𝑛/𝑛𝑛𝑠 1.044 1.082 1.019 1.076 

 Power at 𝑛𝑛𝑠 0.776 0.783 0.775 0.764 

 Power at 𝑛 0.790 0.813 0.782 0.795 𝑝𝑠 = 0.4 𝑛 178 179 179 187 

 E1 141.5 142.3 142.2 148.3 

 E2 138.1 138.9 138.8 145.1 

 𝑛/𝑛𝑛𝑠 1.127 1.133 1.133 1.184 

 Power at 𝑛𝑛𝑠 0.757 0.753 0.745 0.739 

 Power at 𝑛 0.789 0.801 0.802 0.801 𝑚2/𝑚1 = 0.9 𝑛𝑛𝑠 = 656; E1 = 524.8; E2 = 541.0 
s.dist 

  unif beta gamma indepExp 𝑝𝑠 = 0.2 𝑛 581 581 578 557 

 E1 466.2 466.3 464.0 447.6 

 E2 479.4 479.3 476.8 459.5 

 𝑛/𝑛𝑛𝑠 0.886 0.886 0.881 0.849 

 Power at 𝑛𝑛𝑠 0.859 0.851 0.849 0.875 

 Power at 𝑛 0.807 0.801 0.810 0.799 𝑝𝑠 = 0.4 𝑛 513 517 508 463 

 E1 412.9 416.2 409.0 373.7 

 E2 423.2 426.5 419.1 381.9 

 𝑛/𝑛𝑛𝑠 0.782 0.788 0.774 0.706 

 Power at 𝑛𝑛𝑠 0.879 0.885 0.899 0.907 

 Power at 𝑛 0.806 0.805 0.796 0.782 

 393 

  394 
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Table 4. Required sample sizes (𝑛) and powers at 𝑛𝑛𝑠 with 𝑟𝑠 = 0.25, shape = 1 and 𝑟 = 1, where 395 𝑛𝑛𝑠 denotes the sample size under no treatment switching, given a power of 0.8 and a one-sided 396 

significance level of 0.025. E1 and E2 are the expected number of events in the control and 397 

experimental groups. 398 𝑚2/𝑚1 = 1.1 𝑛𝑛𝑠 = 158; E1 = 126.4; E2 = 122.5 
s.dist 

  unif beta gamma indepExp 𝑝𝑠 = 0.2 𝑛 - 178 167 172 

 E1 - 141.7 133.1 136.9 

 E2 - 138.2 129.4 133.4 

 𝑛/𝑛𝑛𝑠 - 1.127 1.057 1.089 

 Power at 𝑛𝑛𝑠 - 0.763 0.764 0.759 

 Power at 𝑛 - 0.804 0.788 0.802 𝑝𝑠 = 0.4 𝑛 - 193 190 194 

 E1 - 152.9 150.6 153.6 

 E2 - 149.8 147.3 150.5 

 𝑛/𝑛𝑛𝑠 - 1.222 1.203 1.228 

 Power at 𝑛𝑛𝑠 - 0.720 0.722 0.722 

 Power at 𝑛 - 0.800 0.806 0.797 𝑚2/𝑚1 = 0.9 𝑛𝑛𝑠 = 656; E1 = 524.8; E2 = 541.0 
s.dist 

  unif beta gamma indepExp 𝑝𝑠 = 0.2 𝑛 - 546 539 536 

 E1 - 438.8 433.3 431.1 

 E2 - 450.4 444.6 442.2 

 𝑛/𝑛𝑛𝑠 - 0.832 0.822 0.817 

 Power at 𝑛𝑛𝑠 - 0.860 0.865 0.878 

 Power at 𝑛 - 0.789 0.807 0.809 𝑝𝑠 = 0.4 𝑛 - 458 453 440 

 E1 - 370.0 365.9 355.7 

 E2 - 377.8 373.7 362.9 

 𝑛/𝑛𝑛𝑠 - 0.698 0.691 0.671 

 Power at 𝑛𝑛𝑠 - 0.915 0.929 0.924 

 Power at 𝑛 - 0.815 0.800 0.788 

- s.dist = “unif” does not satisfy 𝑟𝑠 = 0.25. 399 
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