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Abstract

In the contemporary context of a burgeoning energy crisis, the accurate and dependable

prediction of Solar Radiation (SR) has emerged as an indispensable component within ther-

mal systems to facilitate renewable energy generation. Machine Learning (ML) models have

gained widespread recognition for their precision and computational efficiency in addressing

SR prediction challenges. Consequently, this paper introduces an innovative SR prediction

model, denoted as the Cheetah Optimizer-Random Forest (CO-RF) model. The CO compo-

nent plays a pivotal role in selecting the most informative features for hourly SR forecasting,

subsequently serving as inputs to the RF model. The efficacy of the developed CO-RF

model is rigorously assessed using two publicly available SR datasets. Evaluation metrics

encompassing Mean Absolute Error (MAE), Mean Squared Error (MSE), and coefficient of

determination (R2) are employed to validate its performance. Quantitative analysis demon-

strates that the CO-RF model surpasses other techniques, Logistic Regression (LR), Sup-

port Vector Machine (SVM), Artificial Neural Network, and standalone Random Forest (RF),

both in the training and testing phases of SR prediction. The proposed CO-RF model outper-

forms others, achieving a low MAE of 0.0365, MSE of 0.0074, and an R2 of 0.9251 on the

first dataset, and an MAE of 0.0469, MSE of 0.0032, and R2 of 0.9868 on the second data-

set, demonstrating significant error reduction.

Introduction

Over the decade, industrial modernization has constantly increased the energy demand of our

economy, while the energy supply amount is limited. The continually diminishing conven-

tional resources like fossil fuels, petroleum, coal, and natural gas have further increased the

demand-supply gap, commonly known as the energy crisis. In search of green and sustainable

energy, efforts are encouraged to use renewable resources like solar, wind, water, biomass, and

geothermal. These renewable resources reduce environmental pollution and stress on conven-

tional resources [1–4].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0314391 December 20, 2024 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Al-Shourbaji I, Kachare PH, Jabbari A,

Kirner R, Puri D, Mehanawi M, et al. (2024)

Improving prediction of solar radiation using

Cheetah Optimizer and Random Forest. PLoS ONE

19(12): e0314391. https://doi.org/10.1371/journal.

pone.0314391

Editor: Mohamad Abou Houran, Xi’an Jiaotong

University, CHINA

Received: July 2, 2024

Accepted: November 9, 2024

Published: December 20, 2024

Copyright: © 2024 Al-Shourbaji et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: The article processing charge for this

paper was funded by the University of

Hertfordshire.

Competing interests: NO authors have competing

interests

https://orcid.org/0000-0002-6485-8415
https://orcid.org/0000-0002-8638-7044
https://doi.org/10.1371/journal.pone.0314391
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314391&domain=pdf&date_stamp=2024-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314391&domain=pdf&date_stamp=2024-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314391&domain=pdf&date_stamp=2024-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314391&domain=pdf&date_stamp=2024-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314391&domain=pdf&date_stamp=2024-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314391&domain=pdf&date_stamp=2024-12-20
https://doi.org/10.1371/journal.pone.0314391
https://doi.org/10.1371/journal.pone.0314391
http://creativecommons.org/licenses/by/4.0/


Solar Radiation (SR) is a readily and abundantly available renewable resource in most parts

of the world. In recent years, SR prediction has received significant attention in academia

[5–8]. Several ML models have been reported to predict SR [9]. Compared support vector

machine (SVM) and Extreme Gradient Boosting (XGBoost) for SR prediction. Comparative

evaluation using prediction accuracy, stability, and computational time showed that XGBoost

outperformed SVM for estimating SR. In [10] work, the authors assessed the ability of kernel-

based nonlinear extension of Arps decline and Gradient Boosting (GB) models with categori-

cal features to support daily global SR prediction. Both models were reported to be suitable for

SR. In another work [11], bagging and boosting ensemble models improve the performance of

SVM, decision trees, and artificial neaural network (ANN) models for hourly SR prediction.

The results demonstrated that decision trees improved SR prediction than the other used

models.

RF technique is also widely applied for energy systems and SR prediction [12–15], used

Firefly (FF) algorithm to choose the best number of leaves per tree for the RF. The outcomes

showed that the combined model outperformed the conventional Random Forest (RF), and

ANN. Also, optimizing the ANN regarding the accuracy and execution speed also enhances

the overall performance [16, 17]. In another work [18], Particle Swarm Optimization (PSO)

was utilized to optimize RF parameters for SR prediction. The results showed that PSO-RF

achieved better SR prediction than the decision trees, RF, and ANN. In [19] work, RF, random

tree, reduced error pruning trees, and hybrid random tree reduce model are compared for

daily SR prediction using four locations located in Burkina Faso. The results confirmed that

RF is a promising approach for predicting SR accurately. In another comparison study [20],

RF and three other tree-based machine learning (ML) models for SR prediction in India are

compared. The results indicated that RF outperformed the other models used in their study.

Benali et al. [21], smart persistence, ANN, and RF are compared to predict global horizontal,

diffuse horizontal, and beam normal components and SR in France. The results showed that

RF predicted all components more effectively than other methods. In another recent work,

[22], the authors compared seven ML models for SR prediction. The obtained results showed

that RF performed better than the other compared methods.

A hybrid ML technique is proposed for hour global SR prediction [23]. The developed

approach relied on a Convolutional Neural Network, Non-parametric Gaussian Process

Regression (GPR), Least square SVM (LS-SVM), and Extreme Learning Machine (ELM).

Experimental results showed that the proposed approach attained better accuracy than other

popular ML models. In another work, Kuhe et al. [24], the authors attempt to improve the pre-

diction accuracy of SR using ANN’s ensemble. They used Makurdi city in Nigeria data as a

case study to evaluate the model. The results showed that the proposed model achieves great

accuracy. Pang et al. [25], showed that the Recurrent Neural Network (RNN) can achieve

higher accuracy for SR than the ANN model. In [26] work, a system to predict SR using Neural

Networks is proposed. The authors used meteorological data from five different cities in Ban-

gladesh. They used RNN, long short term memory (LSTM), and Gated Recurrent Unit (GRU)

models to train the meteorological data. Among the used models, the GRU performed the

best. Geshnigani et al. [27], improved conventional Multiple Llinear Regression, Multilayer

Perceptron Neural Network, and Adaptive Neuro-Fuzzy Inference System (ANFIS) using

optimization algorithms. They confirmed that the ANFIS model is effectively enhanced when

optimization methods are used. Although deep learning-based models have shown success in

a variety of areas over the past few years, these models require large datasets or need optimiza-

tion of model parameters and latency to achieve generalization [28–30].

The metaheuristic models have shown good performance in variation applications [31, 32].

Wu et al. [33], used Ant Colony Optimization (ACO), Cuckoo Search (CS) and Grey Wolf
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Optimization (GWO) algorithms to optimize the SVM model for SR prediction. Among the

hybrid models, GWO-SVM had the best results. In the work of Goliatt and Yaseen [34], a com-

putation intelligent model based on the hybridization of Covariance Matrix Adaptive Evolu-

tion Strategies (CMAES) with XGBoost and Multi-Adaptive Regression Splines (MARS)

models for building robust predictive models for daily SR prediction is developed. Results

showed that the developed approach improves prediction accuracy. Gupta et al. [35], merged

Variance Inflation Factor with Mutual Information (VIFMI) as a feature selection method and

then the most important features are used as inputs to a Stack Ensemble Extra Tress (SEET)

model for estimating SR. Results showed that the developed ensemble model effectively

reduced prediction error.

Due to the rapid deployment of solar energy techniques, SR has become common in recent

years, and several ML models are widely used to predict SR. However, ML techniques can

encounter challenges regarding input data, which can affect the efficacy of these models

Banadkooki et al. [36], choosing relevant features is critical for building a learning model, as

the input feature set influences it. This plays a pivotal role in maintaining high classification

accuracy and reducing the dimensionality of datasets. According to the author’s best knowl-

edge, well-known methods like PSO, ACO, GWO and FF perform well either in local or global

searches, and they have poor performance in balancing between local and global searches. CO

is a new population-based algorithm introduced in 2022 by Akbari [37] as a powerful method

for mimicking specific cheetahs’ hunting strategies. CO shows a better balance between local

and global search ability. Hence, in the present work. A new hybridization approach has been

developed for more reliable and accurate SR predictions. For this purpose, the hybrid of CO

and RF (CO-RF) is employed for predicting SR. The key contributions of this paper can be

summarised as follows:

• Proposing an efficient prediction model, CO-RF, for SR by integrating optimization algo-

rithm rather than the use of existing ML models alone.

• Evaluating the developed CO-RF model on two publicly available datasets and three evalua-

tion metrics: mean absolute error (MAE), mean square error (MSE), and R2.

• Investigating CO-RF’s effectiveness in performing SR prediction during training and testing

phases and comparing its efficiency to other models before and after using optimization

algorithms.

The rest of this paper is structured as follows: Section 2 describes the datasets and methods

used and the developed CO-RF model for SR prediction. The statistical metrics to evaluate the

ML models are presented in section 3. Comparative analysis of the models is presented in sec-

tion 4, and section 5 concludes the paper.

Materials and methods

Worldwide, solar energy is an increasingly important renewable energy source. Accurate pre-

diction of SR is crucial for the efficient design and operation of solar power systems. A publicly

available SR dataset for measurements is necessary to address this need. In this work, two such

datasets are used for experimental evaluations.

Dataset-1

HI-SEAS weather station collected the SR dataset and made it accessible to the scientific

community as part of the NASA hackathon task NASA (2023) [38]. The dataset
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encompasses various meteorological attributes, enabling researchers to examine the intri-

cate relationships between various environmental factors and SR. It comprises eleven dis-

tinct features that provide a comprehensive insight into the environmental conditions that

influence SR patterns. In preparation for analysis, the UNIX time, a timestamp format, is

transformed to facilitate the sorting and organization of recorded measurements. Two crit-

ical columns are derived from UNIX time: ‘Month’ and ‘Year,’ enabling temporal analysis

of SR trends. A ‘Sun availability’ feature is generated as a difference between sunrise and

sunset times, shedding light on the temporal dynamics of sunlight exposure. SR values are

scaled to kilo-watts per square meter (kW/m2) to mitigate the impact of large variations in

SR values, ultimately enhancing the performance of ML models. The processed dataset

comprises 32,686 records and nine distinct features that encapsulate vital meteorological

and temporal parameters. A comprehensive statistical analysis of the dataset is given in

Table 1.

Dataset-2

This dataset is collected and maintained by the King Abdullah City for Atomic and Renewable

Energy in Saudi Arabia, provided by the OpenData platform, a government-based repository

for open data, for all experimental evaluations [39]. The dataset comprises 1265 records, each

characterized by 26 distinct features. These features encapsulate various aspects of solar power

generation and meteorological conditions. The data is collected from 41 solar power facilities

in Saudi Arabia, as described in Table 2.

Preliminary data analysis revealed that the feature ‘Wind Speed at 3m (SD) Uncertainty

(m/s)’ has missing values for all site locations. Hence, this feature is dropped. Also, four rec-

ords are dropped due to missing solar radiation values. To enhance the utility of the dataset,

several preprocessing steps are undertaken. The average values of the corresponding feature

impute the missing values in all remaining records. After processing the missing values, each

feature is normalized independently to have zero mean and unity standard deviation. The

solar radiation values represented by the Global Horizontal Irradiance (GHI), is normalized

within the range [-1, +1]. This normalization accounts for variations in power production

among different solar stations, ensuring that the dataset maintains consistency and is suitable

for machine-learning applications. The processed dataset has 1262 records and 22 features.

The GHI features have a mean value of 0.117 and a Standard Deviation (SD) of 0.492. A com-

prehensive statistics of the dataset is described in Table 3.

Table 1. Statistical summary of dataset1.

Feature Unit Mean SD Min 25% 50% 75% Max

Recording time UNIX time 1.48E+9 3.00E+6 1.47E+9 1.47E+9 1.48E+9 1.48E+9 1.48E+9

Temperature Fahrenheit 51.103 6.201 34.000 46.000 50.000 55.000 71.000

Pressure Hg 30.423 0.055 30.190 30.400 30.430 30.460 30.560

Humidity % 75.016 25.990 8.000 56.000 85.000 97.000 103.000

Wind direction Degrees 143.490 83.168 0.090 82.228 147.700 179.310 359.950

Wind speed m/hr 6.244 3.490 0.000 3.370 5.620 7.870 40.500

Hour 24 hr 11.557 6.912 0.000 6.000 12.000 18.000 23.000

Month - 10.489 1.235 1.000 10.000 11.000 11.000 12.000

Sun availability 0-12 hr 11.348 0.476 11.000 11.000 11.000 12.000 12.000

https://doi.org/10.1371/journal.pone.0314391.t001
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Table 2. Distribution of solar radiation records across Saudi Arabia.

Location No. of records Location No. of records

Al-Aflaaj Technical Institute 37 Najran University 31

Al-Baha University 20 Prince Sattam Bin Abdulaziz University 36

Al-Dawadmi College of Technology 36 Princess Norah University 6

Al-Hanakiyah Technical Institute 35 Qassim University 38

Al-Jouf College of Technology 20 Rania Technical Institute 20

Al-Qunfudhah Technical Institute 35 Royal-Commission of Jubail & Yanbu 20

Al-Uyaynah Research Station 42 Saline Water Conversion Corp., Al-Khafji 20

Al-Wajh Technical Institute 34 Saline Water Conversion Corp., Farasan 23

Arar Technical Institute 20 Saline Water Conversion Corp., Hagl 36

Duba Technical Institute 36 Saline Water Conversion Corp., Jubail 35

Hafar Al-Batin Technical College 34 Saline Water Conversion Corp., Umluj 35

Hail College of Technology 19 Shaqra University 36

Jazan University 21 Sharurah Technical Institute 35

K.A.CARE, Olaya 42 Tabuk University 34

K.A.CARE, City Site 42 Taibah University 17

King Abdulaziz University, Osfan 34 Taif University 38

KAU of Science & Technology 38 Timaa Technical Institute 36

King Fahd University of Petroleum Minerals 38 Umm Al-Qura University 17

King Faisal University 38 University of Dammam 38

King Saud University 21 Wadi Addawasir College of Technology 36

Majmaah University 36 Total 1265

https://doi.org/10.1371/journal.pone.0314391.t002

Table 3. Statistical summary of dataset2.

Feature Unit Min 25% 50% 75% Max

Air Temperature Celsius -2.546 -0.798 0.133 0.838 1.810

Air Temperature Uncertainty Celsius -0.040 -0.040 -0.040 -0.040 25.100

Wind Direction at 3m Degree -1.542 -0.948 0.000 1.023 1.447

Wind Direction at 3m Uncertainty Degree -13.497 0.164 0.164 0.164 2.896

Wind Speed at 3m. m/s -3.271 -0.676 -0.028 0.405 5.054

Wind Speed at 3m Uncertainty. m/s -1.549 -1.549 0.678 0.678 0.678

Wind Speed at 3m. m/s -3.469 -0.731 -0.099 0.532 4.955

Diffuse Horizontal Irradiance (DHI) Wh/m2 -1.864 -0.867 -0.055 0.735 2.692

DHI Uncertainty Wh/m2 -1.629 -0.804 -0.118 0.688 8.167

DHI Standard Deviation Wh/m2 -2.396 -0.626 0.000 0.507 4.263

Direct Normal Irradiation (DNI) Wh/m2 -2.900 -0.715 -0.015 0.588 3.089

DNI Uncertainty Wh/m2 -1.767 -0.871 0.139 0.525 6.931

DNI Standard Deviation Wh/m2 -2.659 -0.613 0.000 0.566 3.003

Global Horizontal Irradiance (GHI) Wh/m2 -1.000 -0.272 0.154 0.540 1.000

GHI Uncertainty Wh/m2 -0.729 -0.368 -0.032 0.186 19.933

Standard Deviation GHI Wh/m2 -1.790 -0.725 0.000 0.432 4.114

Peak Wind Speed at 3m. m/s -3.978 -0.731 -0.123 0.486 4.746

Peak Wind Speed at 3m Uncertainty m/s -5.274 0.117 0.117 0.117 5.507

Relative Humidity % -1.494 -0.964 -0.072 0.773 2.269

Relative Humidity Uncertainty % -8.375 -0.049 -0.049 -0.049 20.765

Barometric Pressure hPa -2.657 -0.675 -0.258 1.043 1.431

Barometric Pressure Uncertainty hPa -2.459 -0.783 -0.364 0.892 4.662

https://doi.org/10.1371/journal.pone.0314391.t003
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Cheetah Optimizer (CO)

The CO is a recent metaheuristic method proposed by [37]. This method mimics the behav-

iours of a cheetah. In this algorithm. a cheetah starts the hunting process by scanning its envi-

ronment (defined as search space) to detect probable prey. Depending on the distance

between the cheetah and the prey, the cheetah may hold the position and wait for the prey to

get closer. The rushing and capturing are two stages of the cheetah’s attack. The hunt may be

terminated due to reduced energy limits, fast prey feeling, etc. After termination, the cheetah

returns home to rest before the next hunt. The pseudo-code of the CO is provided in [37]. The

CO chooses one of the following strategies depending on the prey, their condition, search area

and distance of the prey:

• Search strategy:

Cheetahs find the probable prey in the environment by scanning the area while sitting/stand-

ing or patrolling the area actively. The scanning mode is suitable while walking on the plains

for dense and grazing prey. On the other hand, scattered and active prey demand more

energy-consuming active mode. The cheetah selects a sequence of these modes during the

hunt depending on its own condition, the condition of prey, and area coverage. For ith chee-

tah in jth arrangement, the new position Xðtþ1Þ

ði;jÞ is calculated based on their current position

Xt
i as follows:

Xðtþ1Þ

ði;jÞ ¼ Xt
i þ rðD� 1Þ

ði;jÞ � atði;jÞ ð1Þ

Where, t is the hunting time with maximum limit T, rðD� 1Þ

ði;jÞ is the random number, and at
ði;jÞ is

step size.

• Sit and wait strategy:

When the prey is in the cheetah’s vision field, any movement may reveal the cheetah’s pres-

ence to the prey and allow the prey to escape. To avoid the prey’s escape, the cheetah gets

closer to the prey by hiding among the bushes or lying on the ground before the ambush.

Therefore, in this mode, the cheetah remains at their position and waits for the prey to come

nearer, and this behaviour can be represented as:

Xðtþ1Þ

ði;jÞ ¼ Xt
ði;jÞ ð2Þ

• Attack strategy
Speed and flexibility are two crucial factors in a cheetah’s attack. The cheetah starts the attack

by rushing towards the prey at full speed. When the prey starts to flee as soon as it realizes

the cheetah’s attack, the cheetah adjusts the path to intervene in the prey. For the current

prey position Xt
ðP;jÞ in jth arrangement, the cheetah’s position according to this attack strategy

is mathematically defined as:

Xðtþ1Þ

ði;jÞ ¼ Xt
ðP;jÞ þ g

ðD� 1Þ

ði;jÞ :bt
ði;jÞ ð3Þ

where, g
ðD� 1Þ

ði;jÞ and bt
ði;jÞ are turning and interaction factors of ith cheetah in jth arrangement.

The Cheetah Optimizer operates through the following steps:

• Initialization: The algorithm starts by initializing parameters and setting hyper-parameters

such as learning rates and momentum terms.
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• Gradient Computation: At each iteration, the gradient of the objective function with respect

to the parameters is computed.

• Update Step: The optimizer uses a specific update rule, which is influenced by the computed

gradient and hyper-parameters, to adjust the parameters.

• Convergence Check: The optimizer checks whether the changes in the objective function or

parameters are below a certain threshold to determine if convergence has been reached.

• Parameter Update: If the convergence criteria are not met, the algorithm updates the param-

eters and repeats the process.

Random Forest (RF)

Random Forest [40] is a machine learning model that builds an ensemble of decision trees,

with each tree trained using a subset of randomly selected examples and features. This diver-

sity in data for each tree reduces overfitting and improves robustness [41]. The final predic-

tion is typically the pooling of predictions from trees in the forest. The ensemble approach

generalizes well to new data, making RF popular for various ML problems [42]. RF builds

trees in parallel and, hence, is less prone to overfitting, leading to faster training times. RF

does not require extensive tuning of hyperparameters due to built-in overfitting controlling

mechanisms, like random subsampling of records and features. The primary hyperpara-

meters for tuning in RF include the number of trees in the ensemble and the maximum

depth of each tree. In practice, it uses deep trees, and the number of trees is selected based on

model performance [43].

The proposed system for SR prediction uses CO for selecting optimum features and RF for

evaluating performance using these optimized features, as shown in system flow in Fig 1. The

hyper-parameters model with the number of trees and a maximum depth determined through

cross-validation.

Experiments and results

Experimental setup

All the ML models are implemented using the Python-based Scikit-Learn library, capitalizing

on its robust model development and evaluation capabilities. The experimentation environ-

ment employed was a Windows 10 operating system on an Intel i7 processor clocked at 3.13

GHz and 64 GB of RAM. Lower fitness values indicate better feature selection, enhancing the

SR prediction models. These methods are: Particle Swarm Optimization (PSO) [44], ACO

[45], Reptile Search Algorithm (RSA) [46], Snake Optimizer (SO) [47], and CO, [37]. The stan-

dard parameters of these methods are selected empirically and are set: Population size = 20,

number of iterations = 100, and each of them is executed indecently run ten times mitigate

biases towards local minima. The settings of these methods are defined based on their imple-

mentations in original works, and they are listed in Table 4.

Evaluation metrics

To assess prediction results, three different statistical measures are used for the evaluation of

the developed CO-RF and the other ML models. These metrics are selected due to their
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Fig 1. System flow of CO-RF model for SR prediction.

https://doi.org/10.1371/journal.pone.0314391.g001

Table 4. Parameters settings.

Algorithm Parameters

PSO c1 = c2 = 2; wmin = 0.1 and Wmax = 0.9

ACO τ0 = 1; p = 0.95; α = 1.2; β = 0.5.

RSA γ = 0.9; θ = 0.5.

SO c1 = 0.5; c2 = 0.05; c3 = 2

CO n = 6; m = 2.

LR Regression type = Lasso (L1); Regression coefficient = 1.

SVM Regularization = 10; kernel = radial basic function; gamma = 0.01.

ANN Hidden layers = (20, 2); activation = ReLU; solver = Adam, batch_size = 200.

RF No. of Trees = 200; impurity = gini, max_features = 14; min_samples_split = 5.

CO-RF Uses the parameters of the CO and RF

https://doi.org/10.1371/journal.pone.0314391.t004
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suitability for SR prediction in previous works [22, 33, 48, 49], and they are defined as follows:

MAE ¼
1

N

XN

i¼1

jmi � pij ð4Þ

MSE ¼
1

N

XN

i¼1

ðmi � piÞ
2

ð5Þ

R2 ¼ 1 �

P
iðmi � piÞ

2

P
iðmi � �mÞ2

ð6Þ

where, N is the number of observations, mi is the ith measured SR value, pi is the ith SR value

predicted by the model and μim is the mean of the measured SR values.

Results and discussion

The performance of the models in predicting SR is rigorously evaluated and provided in this

section. The average convergence behavior of these algorithms is presented in Fig 2. In Fig 2a,

the CO algorithm achieves a minimum convergence fitness of 0.0029. PSO and ACO also dem-

onstrated strong feature selection capabilities with fitness values of 0.0052 and 0.0041, respec-

tively. CO stood out as the top-performing algorithm for dataset-1. These results provide

valuable insights for researchers and practitioners looking to optimize feature selection for SR

prediction tasks in similar datasets. As shown in Fig 2b, CO converges at a fitness value of

0.0027 for dataset-2. The fitness values represent the quality of feature selection for enhancing

SR prediction. SO also demonstrated strong feature selection abilities, yielding a fitness value

of 0.0029. ACO and RSA reported the same fitness value of 0.0035. PSO achieved the worst

performance with a 0.0040 fitness value. The marginally higher convergence value in dataset-1

may be attributed to the larger number of records than in dataset-2.

Fig 2. Convergence behavior of different optimization algorithms as feature selectors for SR prediction for (a) dataset-1 and (b) dataset-2.

https://doi.org/10.1371/journal.pone.0314391.g002
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CO reported the smallest fitness values for both datasets, indicating the best performance

compared to the other optimization algorithms. Hence, further analysis uses only CO as a fea-

ture selection method. CO chooses five salient features from the original nine features in data-

set-1 and fourteen out of the original twenty-one features in dataset-2. The selected salient

features from both datasets are subsequently employed as inputs for various ML algorithms to

assess their capabilities for SR prediction.

The computation time required for either dataset is important to justify the model’s scal-

ability. The overall computation time required by the hybrid model can be divided into three

parts: time for feature selection by CO, time for training the ML model using the selected fea-

tures, and time for performance evaluation. Most of the time required was for feature selection

due to the iterative nature of the process. The ML model training time varied over different

folds depending upon the number of selected features. The testing performance time had

almost insignificant variations across different folds. The overall time for dataset-1 was

30.125 ± 2.536 and for dataset-2 was 10.983 ± 0.843. It was observed that almost 90-93% of the

overall time was for feature selection, and approximately 1% of the overall time was for perfor-

mance evaluation. It must be noted that the feature selection process is required only during

the model training. In the testing phase, the most important feature already indicated by the

training process can only be calculated further to reduce the solar radiation prediction time

than the models using the complete feature set.

Predictive performance. The selected features are assessed using MAE, MSE, and R2

measures. Table 5 compares the predictive performance of the ML models using a complete

feature set and with a CO-based selected feature set across both datasets. The models depicted

with the prefix ‘CO-’ use features optimized with CO. Each model is validated using 10-fold

cross-validation and resulting metric in terms of both mean and SD.

In the evaluation of dataset-1, a distinct performance variation is observed among SR pre-

diction models. LR exhibited MAE of 0.1523, indicating a reasonable prediction accuracy.

However, introducing CO hybridization (CO-LR) slightly improved prediction, and the R2

value increased to 0.6208. On the other hand, SVM demonstrated superior performance than

LR, with MAE of 0.0826, a lower MSE of 0.0226, and a higher R2 of 0.8163. Applying CO

Table 5. Comparative performance of ML models with and without CO for SR prediction.

Dataset Model MAE MSE R2

Dataset-1 LR 0.1523 ± 0.0037 0.0389 ± 0.0036 0.6162 ± 0.0167

SVM 0.0826 ± 0.0115 0.0226 ± 0.0050 0.8163 ± 0.0565

ANN 0.0593 ± 0.0023 0.0128 ± 0.0015 0.9023 ± 0.0129

RF 0.0412 ± 0.0016 0.0095 ± 0.0007 0.9165 ± 0.0071

CO-LR 0.1475 ± 0.0035 0.0382 ± 0.0018 0.6208 ± 0.0176

CO-SVM 0.0729 ± 0.0118 0.0176 ± 0.0051 0.8337 ± 0.0576

CO-ANN 0.0439 ± 0.0023 0.0106 ± 0.0015 0.9175 ± 0.0126

CO-RF 0.0365 ± 0.0015 0.0074 ± 0.0007 0.9251 ± 0.0073

Dataset-2 LR 0.1105 ± 0.0072 0.0102 ± 0.0056 0.8936 ± 0.0165

SVM 0.0762 ± 0.0069 0.0119 ± 0.0045 0.9510 ± 0.0163

ANN 0.0745 ± 0.0059 0.0103 ± 0.0017 0.9571 ±0.0080

RF 0.0469 ± 0.0031 0.0032 ± 0.0004 0.9868 ± 0.0018

CO-LR 0.0927 ± 0.0069 0.0089 ± 0.0045 0.9093 ± 0.0163

CO-SVM 0.0737 ± 0.0069 0.0119 ± 0.0045 0.9510 ± 0.0163

CO-ANN 0.0745 ± 0.0059 0.0103 ± 0.0017 0.9571 ±0.0080

CO-RF 0.0469 ± 0.0031 0.0032 ± 0.0004 0.9868 ± 0.0018

https://doi.org/10.1371/journal.pone.0314391.t005
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hybridization to SVM (CO-SVM) enhanced its predictive power, resulting in an R2 of 0.8337.

ANN and RF models also exhibited commendable performance. The hybridization of CO

(CO-ANN and CO-RF) leads to significant improvements.

In dataset-2, LR achieved an MAE of 0.1105, showing a competitive predictive capability.

The CO hybridization (CO-LR) slightly decreased the MAE, and the R2 value elevated to

0.9093. SVM continued to excel on this dataset, with a mean MAE of 0.0762 and an impressive

R2 of 0.9510. The application of CO hybridization (CO-SVM) maintained high-performance

levels, reaffirming its effectiveness. Additionally, ANN and RF models displayed high perfor-

mance, and the inclusion of CO (CO-ANN and CO-RF) significantly improved their

performance.

Dataset 1 showcased model variability, with RF emerging as a standout performer, notably

bolstered by CO hybridization. Similarly, dataset-2 demonstrated consistent accuracy across

models, with RF again excelling and CO hybridization reaffirming its efficacy. While LR and

ANN models showed competitive results, the introduction of CO had a significant impact. To

summarize, the dataset-dependent nature of SR prediction models, with CO hybridization

potentially enhancing ML-based approaches. Hence, if performed using CO-optimized fea-

tures, all further analysis is hybridized with four ML models.

Comparative performance of CO-optimized ML models. Visualizations are employed

to provide intuitive insights into the CO-based models’ predictive behavior. Fig 3 provides

eight scatter plots for essential insights into the performance of four ML models across training

data of both SR datasets. These scatter plots employ measured SR values, sourced from the

datasets, on the horizontal axis, while the SR estimated by the ML models is plotted on the ver-

tical axis. The ideal scenario in these scatter plots is a perfectly diagonal line where the esti-

mated SR values align precisely with the measured SR values. Such alignment represents

accurate predictions by the models. Consequently, the further the data points deviate from the

diagonal line, the less accurate the model’s predictions become.

In dataset-1, the SR values are measured in kilowatt-hours per square meter (kWh/m2).

CO-LR has a maximum deviation from the ideal diagonal arrangement, indicating the worst

performance among all models. CO-SVM exhibits a relatively higher spread of data points,

indicating a wider dispersion of predictions. Conversely, CO-ANN shows a more clustered

distribution of points, suggesting improved predictive consistency. However, the star per-

former in this dataset is CO-RF, which demonstrates the tightest clustering of points, signi-

fying highly accurate SR predictions. In dataset-2, the SR values are in watt-hours per square

meter (Wh/m2), and all three ML models exhibit commendable performance. The scatter

plots for CO-SVM, CO-ANN, and CO-RF showcase strong positive correlations between

predicted and actual SR values. In this case, CO-RF marginally outperforms the others, dem-

onstrating a slightly tighter clustering of points, reaffirming its effectiveness in SR prediction

even in datasets with different units. Fig 4 provides a set of scatter plots using testing data for

different ML models applied to both SR datasets. In dataset-1’s, CO-SVM displays a rela-

tively high spread of data points, suggesting some variability in its predictions. CO-ANN

exhibits a more clustered distribution, indicating better predictive consistency. However,

CO-RF outperforms both, showcasing the tightest clustering of points, signifying exception-

ally accurate SR predictions on the testing data. In dataset-2’s, all three models (CO-SVM,

CO-ANN, and CO-RF) continue to demonstrate strong positive correlations between their

predictions and the actual SR values. While all models perform well, CO-RF exhibits a

slightly tighter clustering of data points, reaffirming its effectiveness in SR prediction on the

testing data.

In summary, Figs 3 and 4 serve as a visual confirmation of the models’ performance. The

closer the data points align with the diagonal line, the more accurate the model’s predictions
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Fig 3. Convergence behavior of CO-optimized ML models using training data of dataset-1 (first row, (a)-(d)) and dataset-2 (second row, (e)-(h)): CO-LR ((a) & (e)),

CO-SVM ((b) & (f)), CO-ANN ((c) & (g)), and CO-RF ((d) & (h)).

https://doi.org/10.1371/journal.pone.0314391.g003
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Fig 4. Convergence behavior of CO-optimized ML models using testing data of dataset-1 (first row, (a)-(d)) and dataset-2 (second row, (e)-(h)): CO-LR ((a) & (e)),

CO-SVM ((b) & (f)), CO-ANN ((c) & (g)), and CO-RF ((d) & (h)).

https://doi.org/10.1371/journal.pone.0314391.g004
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on unseen data. While CO-SVM, CO-ANN, and CO-RF exhibit their strengths, CO-RF con-

sistently shines as a reliable choice for accurate SR prediction, particularly evident in the tight

clustering of data in both datasets.

CO-optimized ML model for temporal SR prediction

The SR prediction capability of different ML models is compared using training data and test-

ing data. In dataset-1, UNIX time is used to arrange the records chronologically. Records cor-

responding to the first 1000 minutes of the data are used for visualization. In dataset-2, each

record’s timestamp contains only the date; hence, no intraday temporal variation can be ana-

lysed. Instead, the first 100 records corresponding to different days in chronological order (not

always consecutive days) are visualized.

The time series visualizations provide insights into how these models perform over time,

aiding in assessing their suitability for SR prediction applications. Fig 5 uses a training subset

of the datasets. Each column corresponds to a different dataset, and each row represents a dif-

ferent CO-optimized ML model. In dataset-1, it can be seen that CO-LR and CO-SVM missed

several of the measured SR values. These models captured the basic periodic nature of the mea-

sured SR pattern but could not match the amplitude variation. CO-ANN, on the hand, per-

forms better than CO-SVM in tracking the periodicity and amplitude variation. Finally,

CO-RF almost exactly matches the measured SR values significantly better than the others.

Fig 6 depicts a similar temporal relationship in the testing data. A similar observation can

be noted in Fig 6. CO-LR and CO-SVM missed several SR values with higher amplitude cor-

rectly estimated by CO-ANN and CO-RF. Although CO-ANN and CO-RF visually miss

almost identical SR values, the estimated SR values using CO-RF are much closer to measured

SR values than the SR values estimated using CO-ANN. The CO-RF yielded better prediction

results, and the temporal and amplitude variations in SR values performed best among the

other examined models.

Comparative analysis with existing work

Building on the advancements in machine learning models, the comparative analysis illustrates

a clear trend toward increasing model complexity and predictive power. Table 6 compares

existing literature on solar radiation prediction in different regions arranged chronologically.

For instance, Marzo et al. [50] improved upon earlier methods with an artificial neural net-

work (R2 = 0.8396), while Sharafati et al. [19] and Hassan et al. [51] adopted random forest

and empirical predictive models, achieving impressive R2 values of 0.9312 and 0.9533, respec-

tively. More sophisticated approaches emerged post-2020, such as deep learning techniques

applied by Üstün et al. [52] and Ağbulut et al. [53], both of which demonstrated enhanced pre-

dictive accuracy (R2 = 0.9647 and 0.9378). The introduction of LSTM models, as seen in Ngoc-

Lan Huynh et al. [54] (R2 = 0.9612), and Narvaez et al. [55] with random forest (R2 = 0.9654),

showcased the potential of recurrent networks for time-series data.

Finally, the present work leverages a CO-based random forest model, achieving the high-

est R2 (0.9868) reported to date, demonstrating the superior predictive capability of combin-

ing RF with CO techniques in the context of Saudi Arabia. This underscores the evolution of

models towards increasing precision and adaptability across diverse geographical case

studies.

Conclusion and future work

SR prediction is well-studied for ML techniques to be utilized due to the capabilities of these

models in providing reliable and robust predictions for SR values. This work introduced an
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efficient hybridization of the optimization algorithm and ML model for SR prediction. Two

open-source datasets and three statistical metrics, MAE, MSE, and R2, are employed as evalua-

tion measurements. Comparative analysis of five state-of-the-art optimization algorithms

showed that CO is the most efficient for SR prediction. The LR, SVM, ANN, and RF

Fig 5. Measured and predicted solar radiation by CO-optimized ML models using training data of dataset-1 (first column) and dataset-2 (second column): CO-LR ((a)

& (b)), CO-SVM ((c) & (d)), CO-ANN ((e) & (f)), and CO-RF ((g) & (h)).

https://doi.org/10.1371/journal.pone.0314391.g005
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standalone models are compared with hybrid models using CO-based feature selection. The

experimental findings showed that CO-RF provides the best prediction performance com-

pared to the other competitive methods with MAE of 0.0365, MSE of 0.0074, and R2 of 0.9251

on dataset-1 and MAE of 0.0469 of MSE of 0.0032, and R2 of 0.9868 on dataset-2. In future

Fig 6. Measured and predicted solar radiation by CO-optimized ML models using testing data of dataset-1 (first column) and dataset-2 (second column): CO-LR ((a) &

(b)), CO-SVM ((c) & (d)), CO-ANN ((e) & (f)), and CO-RF ((g) & (h)).

https://doi.org/10.1371/journal.pone.0314391.g006
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research, CO-RF can be applied to a large-scale IoT-based online monitoring system to predict

SR based on real-time data from IoT sensors. Another possible research method is to use deep

learning and recurrent architecture for SR prediction while powered by optimization

algorithms.
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