Table 5. Comparative performance of ML models with and without CO for SR prediction.
Dataset | Model | MAE | MSE | R 2 |
---|---|---|---|---|
Dataset-1 | LR | 0.1523 ± 0.0037 | 0.0389 ± 0.0036 | 0.6162 ± 0.0167 |
SVM | 0.0826 ± 0.0115 | 0.0226 ± 0.0050 | 0.8163 ± 0.0565 | |
ANN | 0.0593 ± 0.0023 | 0.0128 ± 0.0015 | 0.9023 ± 0.0129 | |
RF | 0.0412 ± 0.0016 | 0.0095 ± 0.0007 | 0.9165 ± 0.0071 | |
CO-LR | 0.1475 ± 0.0035 | 0.0382 ± 0.0018 | 0.6208 ± 0.0176 | |
CO-SVM | 0.0729 ± 0.0118 | 0.0176 ± 0.0051 | 0.8337 ± 0.0576 | |
CO-ANN | 0.0439 ± 0.0023 | 0.0106 ± 0.0015 | 0.9175 ± 0.0126 | |
CO-RF | 0.0365 ± 0.0015 | 0.0074 ± 0.0007 | 0.9251 ± 0.0073 | |
Dataset-2 | LR | 0.1105 ± 0.0072 | 0.0102 ± 0.0056 | 0.8936 ± 0.0165 |
SVM | 0.0762 ± 0.0069 | 0.0119 ± 0.0045 | 0.9510 ± 0.0163 | |
ANN | 0.0745 ± 0.0059 | 0.0103 ± 0.0017 | 0.9571 ±0.0080 | |
RF | 0.0469 ± 0.0031 | 0.0032 ± 0.0004 | 0.9868 ± 0.0018 | |
CO-LR | 0.0927 ± 0.0069 | 0.0089 ± 0.0045 | 0.9093 ± 0.0163 | |
CO-SVM | 0.0737 ± 0.0069 | 0.0119 ± 0.0045 | 0.9510 ± 0.0163 | |
CO-ANN | 0.0745 ± 0.0059 | 0.0103 ± 0.0017 | 0.9571 ±0.0080 | |
CO-RF | 0.0469 ± 0.0031 | 0.0032 ± 0.0004 | 0.9868 ± 0.0018 |