Skip to main content
. 2024 Dec 20;19(12):e0314391. doi: 10.1371/journal.pone.0314391

Table 5. Comparative performance of ML models with and without CO for SR prediction.

Dataset Model MAE MSE R 2
Dataset-1 LR 0.1523 ± 0.0037 0.0389 ± 0.0036 0.6162 ± 0.0167
SVM 0.0826 ± 0.0115 0.0226 ± 0.0050 0.8163 ± 0.0565
ANN 0.0593 ± 0.0023 0.0128 ± 0.0015 0.9023 ± 0.0129
RF 0.0412 ± 0.0016 0.0095 ± 0.0007 0.9165 ± 0.0071
CO-LR 0.1475 ± 0.0035 0.0382 ± 0.0018 0.6208 ± 0.0176
CO-SVM 0.0729 ± 0.0118 0.0176 ± 0.0051 0.8337 ± 0.0576
CO-ANN 0.0439 ± 0.0023 0.0106 ± 0.0015 0.9175 ± 0.0126
CO-RF 0.0365 ± 0.0015 0.0074 ± 0.0007 0.9251 ± 0.0073
Dataset-2 LR 0.1105 ± 0.0072 0.0102 ± 0.0056 0.8936 ± 0.0165
SVM 0.0762 ± 0.0069 0.0119 ± 0.0045 0.9510 ± 0.0163
ANN 0.0745 ± 0.0059 0.0103 ± 0.0017 0.9571 ±0.0080
RF 0.0469 ± 0.0031 0.0032 ± 0.0004 0.9868 ± 0.0018
CO-LR 0.0927 ± 0.0069 0.0089 ± 0.0045 0.9093 ± 0.0163
CO-SVM 0.0737 ± 0.0069 0.0119 ± 0.0045 0.9510 ± 0.0163
CO-ANN 0.0745 ± 0.0059 0.0103 ± 0.0017 0.9571 ±0.0080
CO-RF 0.0469 ± 0.0031 0.0032 ± 0.0004 0.9868 ± 0.0018