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Abstract

Antimicrobial peptides (AMPs) are excellent at fighting many different infections. This dem-

onstrates how important it is to make new AMPs that are even better at eliminating infec-

tions. The fundamental transformation in a variety of scientific disciplines, which led to the

emergence of machine learning techniques, has presented significant opportunities for the

development of antimicrobial peptides. Machine learning and deep learning are used to pre-

dict antimicrobial peptide efficacy in the study. The main purpose is to overcome traditional

experimental method constraints. Gram-negative bacterium Escherichia coli is the model

organism in this study. The investigation assesses 1,360 peptide sequences that exhibit

anti- E. coli activity. These peptides’ minimal inhibitory concentrations have been observed

to be correlated with a set of 34 physicochemical characteristics. Two distinct methodolo-

gies are implemented. The initial method involves utilizing the pre-computed physicochemi-

cal attributes of peptides as the fundamental input data for a machine-learning classification

approach. In the second method, these fundamental peptide features are converted into sig-

nal images, which are then transmitted to a deep learning neural network. The first and sec-

ond methods have accuracy of 74% and 92.9%, respectively. The proposed methods were

developed to target a single microorganism (gram negative E.coli), however, they offered a

framework that could potentially be adapted for other types of antimicrobial, antiviral, and

anticancer peptides with further validation. Furthermore, they have the potential to result in

significant time and cost reductions, as well as the development of innovative AMP-based

treatments. This research contributes to the advancement of deep learning-based AMP

drug discovery methodologies by generating potent peptides for drug development and

application. This discovery has significant implications for the processing of biological data

and the computation of pharmacology.
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I. Introduction

Antimicrobial peptides (AMPs) are diverse molecules with potent antimicrobial activity

against various pathogens, including bacteria, fungi, viruses, and parasites. Due to the exten-

sive number of terminologies, Table 1 shows the abbreviations and their meanings.

With the increasing prevalence of antibiotic resistance and the urgent need for new strate-

gies to combat infectious diseases, there has been a growing interest in designing novel AMPs

with enhanced efficacy and specificity [1]. However, traditional development methods are

time-consuming, labor-intensive, and often expensive. In recent years, there has been a grow-

ing interest in leveraging bioinformatics and computational approaches, powered by the high-

performance capabilities of GPUs, not only to predict and screen potential AMPs but also to

solve different bioinformatics problems [2–8]. These methods have the potential to accelerate

the discovery process, reduce costs, and improve the overall success rate in identifying effective

candidates [9]. Machine learning approaches have emerged as powerful tools for rational drug

design, focusing on their ability to analyze large datasets, identify patterns, and make predic-

tions. Machine learning has the potential to significantly impact the field of antimicrobial

Table 1. Abbreviations.

Abbreviations What it stands for

AMP ANTIMICROBIAL PEPTIDES

ML Machine Learning

STFT Short time Fourier transform

DL Deep Learning

MIC Minimum Inhibitory Concentrations

APD Antimicrobial Peptide Database

CNN Convolutional neural networks

RNN Recurrent neural networks

DRAMP Dragon Antimicrobial Peptide Database

CAMPR3 Cationic Antimicrobial Peptides Repository Version 3

MARVIN Molecular Modeling and Visualization of Interactions in Neuropeptides

PCA Principal component analysis

NN Neural Network

KNN K Nearest Neighbor

NLP Natural language processing

Conv Convolution Layer

RELU rectified linear unit

Pool Pooling Layer

FC Fully connected

VGG Visual Geometry Group

ResNET Residual Networks

ROC Receiver Operating Characteristic

FN False Negatives

FP False Positive

TP True Positive

TN True Negative

DLP Deep learning prediction

MCC Matthews correlation coefficient

AUC Area under the curve

ACPs Antimicrobial Cationic Peptides

https://doi.org/10.1371/journal.pone.0315477.t001
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peptide design. Machine learning has the potential to accelerate the design of antimicrobial

peptides with improved activity and selectivity [10]. Several types of research have been pub-

lished utilizing deep learning and machine learning to synthesize antimicrobial peptides [10–

14]. However, all such research was either not targeted against specific microorganisms or uti-

lized three or four peptide characteristic variables in the design. The activity of AMP is regu-

lated by physiochemical characteristics such as net charge, stereospecificity, hydrophobicity,

amphipathicity, secondary structure, peptide length, sequence, and other characteristics [15–

17]. These features are also different according to the targeted microorganism (gram-positive

or gram-negative). Rational peptide drug design requires an understanding of peptide function

groups and the relationship between these groups and the primary and three-dimensional

structures. Therefore, in the designing of AMP such factors should be taken into consideration

along with the specification of the target microorganism.

Escherichia coli is a gram-negative bacterium that shows increased resistance to treatment

[18]. More than 20% of E.coli isolates were resistant to both first line (ampicillin and co-tri-

moxazole) and second line (fluoroquinolones) antibiotics. Furthermore, resistance trends in

bloodstream infections caused by resistant E.coli and Salmonella spp. have remained steady for

the last four years [19]. Resistance to antibiotic treatment translates to more difficulty in treat-

ing patients, which can lead to an increased rate of hospitalization, more expensive treatment,

and an increased mortality rate. This research aims to build deep-learning applications to

design novel AMP peptides using E.coli as a model and to overcome the challenges driven by

traditional experimental methods. Novel antimicrobials are needed due to the rapid rise of

pathogen antibiotic resistance, particularly Escherichia coli. Antimicrobial peptide (AMP)

design is time-consuming, laborious, and expensive using traditional experimental methods.

These methods can’t manage the chemical space of potential AMP candidates; hence, new

methods are needed to improve prediction accuracy and minimize AMP discovery time and

cost.

This study uses the Short-Time Fourier Transform (STFT) and a residual deep learning net-

work to combine machine learning (ML) and deep learning (DL) with time-frequency analy-

sis. This study’s contributions:

• Developing a machine learning model that accurately predicts E.coli The study demonstrated

antimicrobial activity with 92.9% accuracy, utilizing 34 peptide physicochemical parameters.

• Peptide sequences were converted into signal pictures using a deep learning method to

improve feature extraction and AMP categorization.

• Using STFT and deep learning together increases feature extraction, making AMP discovery

more efficient and understandable.

• Microbial target knowledge and frameworks could save AMP drug research time and

money.

A previously constructed AMPs database [20] was utilized, which is composed of 1360 pep-

tides that exhibited activity against E. coli, along with their physicochemical characteristics and

their activity minimum inhibitory concentrations (MIC). Moreover, this research investigated

the effectiveness of modeling feature weight as the amplitude of a sinusoidal signal and the fea-

ture itself as the frequency within deep learning networks. Various architectures and training

methodologies were explored to evaluate their impact on performance, efficiency, and

interpretability. Through extensive experiments on diverse datasets and benchmark tasks, the

benefits of this approach were assessed compared to traditional feature engineering and other

state-of-the-art techniques.
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II. Literature review

Predicting antimicrobial peptides presents several challenges due to the complex nature of

these molecules and the limitations of available data. Understanding and addressing these

challenges are crucial for the development of accurate and reliable prediction models of AMP

efficacy. Due to the potential therapeutic agents for combating microbial infections, AMPs

have been used recently in drug discovery [20]. To predict and identify the activity of AMPs,

however, conventional techniques require a substantial amount of time, money, and man-

power. In addition, these techniques may not account for the complete peptide spatial struc-

ture and physicochemical properties, which may add additional layers of complexity to the

prediction. The Antimicrobial Peptide Database(APD) is described [21] as a useful tool for

academics and researchers who are interested in antimicrobial peptides. It provides compre-

hensive data and information on antimicrobial peptides, encouraging further research and

advancing education in this field. ADP is also useful for learning about and understanding

these peptides and emphasizing the significance of antimicrobial peptides as potential thera-

peutic agents. APD provides researchers interested in antimicrobial peptides with voluminous

data and resources [22].

The function of antimicrobial peptides in preventing microbial infections was discussed in

[23]. The article provides insightful information regarding antimicrobial peptides and their

potential application in combating infectious diseases. In addition, Mishra and Wang’s

research focuses on the computational development of effective antibacterial peptides. Regard-

ing the rational design of antimicrobial peptides with enhanced activity and selectivity, the

authors discuss the underlying principles and methodologies [24]. The study emphasizes the

possibility of using computational methods to generate novel antimicrobial peptides with

medical applications. A previously published research [25] provided an overview of the

expanding variety of antimicrobial peptide structures and their mechanisms of action. In addi-

tion to discussing how antimicrobial peptides interact with intracellular targets, microbial

membranes, and immune cells, as well as the structural diversity of these peptides, that study

highlighted the adaptability of antimicrobial peptides as a valuable source of novel therapeu-

tics. Recent developments in the design of antimicrobial peptides and novel methods for treat-

ing bacteria resistant to multiple drugs were reviewed [26]. To enhance the activity, selectivity,

and stability of antimicrobial peptides, they examined a variety of techniques, including anti-

microbial peptide modifications, hybridization, and combination therapies. The potential of

antimicrobial peptides as effective alternatives to conventional antibiotics is highlighted in the

same study [26].

Deep learning techniques have emerged as potential AMP prediction tools. Using multilay-

ered artificial neural networks, deep learning automatically identifies intricate patterns and

representations in vast datasets. Therefore, it is possible to develop [27] algorithms that can

deduce intricate relationships between peptide sequences and their biological functions. The

application of deep learning to AMP prediction has many advantages, including the accelera-

tion of the discovery process by enabling the rapid screening of vast peptide libraries and the

identification of additional sequence components. Deep learning algorithms can combine

physicochemical properties and structural features to generate more precise predictions. Deep

learning models’ ability to generalize from observed patterns facilitates the recognition of

novel AMPs [28]. RNNs [29], CNNs [30], and attention-based [31] models are a few examples

of deep learning architectures that have proven to be effective for AMPs prediction. These

structures aid in the development of precise prediction models for AMPs by making use of

their special capacities to record sequence patterns, spatial data, and positional importance.

Convolutional neural networks (CNNs), on the other hand, are very good at removing spatial
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information from input data. CNN architectures, which are widely used in image analysis

applications, have been incorporated into peptide sequence analysis [30], where they use filters

and pooling techniques to identify regional patterns and hierarchical representations. By

applying these filters to peptide sequences, CNNs can identify important local motifs and

higher-level structural components that are crucial for the prediction of AMPs. The prediction

of antimicrobial peptides (AMPs) has led to increased interest in attention-based models.

These models aim to assess the relative significance of various elements within a peptide

sequence. These models can effectively identify and give preference to important motifs and

structural components that influence the peptide’s activity. Additionally, attention-based mod-

els can be utilized as generative models, allowing for the creation of novel peptides by assigning

varying weights to different positions within the sequence [32]. The advantages of these deep

learning architectures arise from their ability to extract spatial and sequential information

from peptide sequences. Convolutional neural networks (CNNs) have demonstrated remark-

able proficiency in extracting local patterns and higher-level structural features. On the other

hand, recurrent neural networks (RNNs) have superior performance in modeling temporal

relationships and capturing long-range interactions [33]. Attention-based models provide a

more precise understanding of the functional components of a sequence by offering a detailed

analysis of critical sections [32]. Several advanced methods for antimicrobial peptide (AMP)

prediction use deep learning and other computer models to improve accuracy. One of these

new methods is AIPs-SnTCN, which uses stacked temporal convolutional networks to

improve antimicrobial peptide identification [34]. With a transformer-based design, Dee-

pAVP-TPPred improves sequence-based antiviral peptide predictions [35]. To better predict

antifungal peptides, AFPs-Mv-BiTCN uses multiview learning and bidirectional temporal con-

volutional networks [36]. In the meantime, the Deepstacked-AVPs model uses deep stacked

learning architectures to help classify antiviral peptides more accurately [37]. To predict anti-

microbial peptides more reliably, pAtbP-EnC adopts an ensemble classifier technique [38].

Despite these advances, approaches that balance accuracy, interpretability, and computing effi-

ciency are needed [39]. Based on these advances, our research mixes machine learning, deep

learning, and time-frequency analysis to optimize AMP prediction accuracy and

interpretability.

III. Material and methods

III-1. AMP database

There are several possible AMPs databases; the Antimicrobial Peptide Database (APD), The

CAMPR database, the Dragon Antimicrobial Peptide Database (DRAMP), and the Database

of Antimicrobial Activity and Structure of Peptides (DBAASP). APD is a curated database

with extensive information on antimicrobial peptides. It provides AMP sequences, structures,

activities, and other relevant information [40]. The CAMPR database provides a selection of

experimentally validated AMPs, and CAMPR3 is an updated version of this database. It

includes information regarding peptide sequences, activities, sources, and additional relevant

annotations [21]. DRAMP is an extensive repository of antimicrobial peptides (AMPs) derived

from a variety of sources. It includes data on peptide sequences, structures, functions, and

other annotations [41]. DBAASP is an open-access, comprehensive database containing infor-

mation on amino acid sequences, chemical modifications, 3D structures, bioactivities, and tox-

icities of peptides that possess antimicrobial properties [42]. Moreover, DBAASP has the

largest number of AMPs, around 15 700 peptides. The process of constructing the dataset has

already been explained previously [20]. Briefly, the database DBAASP”(https://dbaasp.org)

(contains 21743 AMP) was used to extract the sequences and the minimum inhibitory
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concentration of AMPs against the gram-negative bacteria (E.coli) (1360 peptide). Then the

developed software big-data bot [20] was utilized to calculate 34 physicochemical characteris-

tics of each sequence using the software package MARVIN resulting in 46240 hits. The 34

physicochemical characteristics that were used are shown in Table 2.

III-2. Prediction

Two different methods are used to predict peptide sequence activity in Section III-2. The first

method feeds preprocessed peptide physicochemical data into a neural network. Training a

neural network model to identify peptide sequence activity against E.coli is the task. Clean and

standardized data on physicochemical parameters, including atom count, solvent accessibility,

and hydrophobicity, is used. The direct association between these traits and the peptide’s anti-

bacterial activity. Combining data elements, the neural network learns intricate patterns and

correlations among antimicrobial features. The second method is more novel since it converts

input data into signal pictures for the neural network. This process is like turning numerical

data into a visual format for image recognition analysis. The neural network can convert visual

input into signal images using convolutional neural network (CNN) architectures, which are

known for their pattern detection. By viewing transformed data as images, the model can

explore intricate, multidimensional correlations between attributes that may not be apparent

when looking at numerical data. Thus, this method improves our understanding of how physi-

cochemical factors affect peptide microbe death.

These two approaches benefit each other. The initial approach employs conventional data

processing techniques to construct a fundamental understanding by utilizing unprocessed raw

data. The second method’s challenging pattern identification is enhanced by signal image con-

version and deep learning. The two-pronged approach increases the probability that the model

will identify peptides, even if the connections between their physicochemical properties and

antimicrobial activity are complex and non-linear. This enhances the precision of predictions.

The paper demonstrates the use of advanced machine learning and classic data analysis meth-

ods to enhance the accuracy and reliability of peptide activity forecasting. This is achieved by

Table 2. A single peptide example along with its calculated parameters. (ENREVPPGFTALIKTLRKCKII) [20].

Peptides Characteristic Value Peptides Characteristic Value

Atom count 373 Partition coefficient (log P) -8.40

Asymmetric atom count 26 LogD -18.86

Rotatable bond count 85 HLB 150.78

Ring count 3 Intrinsic solubility 17.13

Aromatic ring count 1 Refractivity 664.26

Hetero ring count 2 Length 22

The van der waals volume 2372 Normalized hydrophobicity 0.17

Minimal projection surface area 294.06 Net charge 3

Maximal projection surface area 494.55 Isoelectric point 10.43

Minimal projection radius 12.18 Penetration depth 18

Maximal projection radius 20.01 Title angle 121

Van der waals surface area 3868.6 Disordered conformation propensity 0.05

Solvent accessible surface area 3235.7 Linear moment 0.21

Polar surface area 1016.85 Propensity to in vitro Aggregation 67.42

H-bond donor count 253.04 Angle Subtended by the Hydrophobic Residues 80

Polarizability 36 Amphiphilicity Index 0.84

H-bond acceptor count 40 Propensity to PPII coil 1.04

https://doi.org/10.1371/journal.pone.0315477.t002
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utilizing both methodologies. Using typical data processing methods, the initial strategy con-

structs foundational knowledge from raw data. The second method utilizes deep learning and

signal image conversion to identify intricate patterns. This two-pronged approach makes it

more likely that the model will find complex, nonlinear links between peptides’ ability to kill

bacteria and their physical and chemical properties. Deep learning and signal image conversion

facilitate the identification of challenging patterns. Modern machine learning and classical data

analysis are employed to enhance peptide activity estimates. Both solutions were able to achieve

this goal. Fig 1 shows the prediction method’s data collection, preprocessing, model selection

and training, validation, prediction production, and accuracy and reliability evaluation.

III-3. Explanatory data analysis

Exploratory Data Analysis (EDA) helps the manuscript analyze data trends, find connections,

and prepare data for modeling. EDA was used to investigate the 34 physical and chemical

properties of 1,360 peptide sequences to determine from where they were obtained, how they

related to each other, and what antimicrobial activity they might have. To simplify future

modeling, peptide minimum inhibitory concentration (MIC) features must be identified. EDA

checks for outliers, manages missing or chaotic data, and ensures data consistency. Outliers

are handled, features are normalized, and missing values are added using the attribute mean.

EDA cleans and preprocesses data machine learning models improves usefulness, prepares it

for advanced modeling. EDA helps choose and optimize machine learning models, including

AdaBoost, KNN, neural network, random forest, CNN, and STFT deep learning for clear visu-

alizations, feature importance ratings, and decision-supporting insights to promote interpret-

ability. The manuscript links unprocessed data to scientific findings, such as new

antimicrobial peptides made using EDA. EDA evaluates data structure and distribution to find

methods with high specificity or sensitivity. EDA interpretability is stakeholders’ ability to

quickly understand and share results. Visual techniques, including confusion matrices, ROC

curves, and performance matrices, are used to communicate machine learning model results

throughout the article. These visuals help experts and non-technical audiences understand

peptide classification and features. EDA also determines which physicochemical traits predict

antibacterial activity. Important predictors are atom count, solvent accessibility, and polar sur-

face area. Transparency in feature selection and modeling builds stakeholder trust by explain-

ing why specific features are prioritized. EDA outputs show data patterns and correlations to

aid decision-making. Identifying E. coli-effective peptides guides future studies.

III-4. Data preprocessing

By constructing a novel database of 34 parameters for 1360 antimicrobial peptides (AMP)

sequences from several MARVIN software panels, a novel AMP dataset using big data bot

Fig 1. Overall process of the prediction method.

https://doi.org/10.1371/journal.pone.0315477.g001
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software was generated [20]. The data collected by the data bot required multiple levels of pre-

processing before being fed to the machine learning algorithm, as data quality issues may influ-

ence the performance of the model. These problems may include noisy or absent data,

duplicate data, irrelevant input features, or outliers. In the initial prediction model, disparate

data sources were combined and integrated to form a unified dataset [20]. With principal com-

ponent analysis (PCA) and a correlation matrix, duplicate rows and superfluous columns were

removed to reduce the dimensions of the data set. Next, the data was cleansed by replacing

missing values with the attribute mean for all samples of the same class to smooth out noisy

data, identifying or removing outliers using z-score = 1.96, and resolving data inconsistencies.

Then, the required data transformations, such as mapping nominal data to numerical data and

scaling values using a function that maps the entire set of values of a given attribute to a new

set of replacement values, were performed so that each old value could be identified by one of

the new values. With a threshold of 64, the target value (MIC) was divided into binary catego-

ries: MIC values less than 64 indicate active peptides and are converted to 1, whereas MIC val-

ues greater than 64 indicate inactive peptides and are converted to 0. In addition, as the final

step in data preparation, the ratio of active peptide examples (MIC with label 2) to inactive

peptide examples (MIC with label 0) was equalized to address the issue of imbalanced data. As

there are more active peptides than inactive peptides, only active peptides with MIC values

closer to 0 are retained, as a lower MIC value indicates greater activity. Thus, the distinction

between active and inactive peptides’ physicochemical properties is readily apparent. A thresh-

old of 64 μg/ml is strategically chosen based on the observed MIC values of various AMPs

against clinically relevant pathogens [18]. The antimicrobial peptides must be effective and

exhibit low toxicity to host cells, and the MIC threshold of 64 μg/ml has been used as an initial

point for such profiling [18]. Fig 2 depicts the disparity between the data in columns A and B.

III-5. machine learning prediction model

Various machine learning algorithms were employed to predict active and inactive peptide

sequences such as AdaBoost [43], K Nearest Neighbor, Neural Network, and Random Forest

Fig 2. Left, the unbalanced MIC target values before performing the data preprocessing, Right, the balanced MIC

target values after performing the required data preprocessing where the active peptides with MIC value 1.0 were

reduced to be equal to the MIC with 0 label counts. The dataset was divided into two subsets randomly: training and

validation, with ratios of 80% and 20%, respectively.

https://doi.org/10.1371/journal.pone.0315477.g002
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using Python with sklearn. Fig 3 summarizes the procedure that was followed to build the

machine learning prediction algorithm of the Neural Network as an example.

III-6. STFT deep learning prediction model

STFT Deep Learning for Peptide Classification: The methodology described in this article is

geared toward developing and applying a deep learning classification process built on feature

modeling and short-time Fourier Transform (STFT) capability. The initial step involves pre-

paring peptide sequences into two types (Effective and Non-effective) for system implementa-

tion depending on the MIC value. The feature modeling and STFT are then used to

reconstruct the peptide sequence types in 2-D space. The depicted STFTs are then used to cre-

ate a composite image. As seen in Fig 4, the created images are then transmitted to a deep-

learning network to generate classification results. Out of the initial 1,360 peptide sequences,

only 1,329 were suitable for use at this stage of the analysis. Among these, 1,046 peptides were

classified as effective, while 283 were classified as non-effective. To balance the dataset for fur-

ther analysis, the number of peptides representing each class was adjusted to match the num-

ber in the smaller class. Therefore, after multiple rounds of random shuffling, 283 peptide

sequences were selected from each category.

Fig 3. Machine learning prediction algorithm flow chart.

https://doi.org/10.1371/journal.pone.0315477.g003
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III.6.1 Feature modelling

Deep learning networks have revolutionized various fields, including computer vision, natural

language processing, and speech recognition. These networks excel at learning complex repre-

sentations from raw data, allowing them to capture intricate patterns and make accurate pre-

dictions. However, their success relies heavily on appropriate feature representations that

encode the underlying data characteristics [7, 44].

Traditionally, feature selection and engineering have been crucial steps in improving the

performance of machine learning models. Researchers and practitioners invest significant

effort in manually designing features that capture relevant information for a given task. While

this approach can yield promising results, it is often time-consuming and labor-intensive and

may need to generalize better across different datasets or domains [44–46]. Researchers have

explored various techniques to automatically learn feature representations directly from raw

data to address these challenges and enhance the efficiency of deep learning networks [44–46].

One such promising approach involves modeling the feature weight as the amplitude of a sinu-

soidal signal and the feature itself as the frequency. This novel approach capitalizes on deep

learning networks’ inherent frequency-domain analysis capabilities. By assigning the feature

weight as the amplitude of a sinusoidal signal, the network can learn to emphasize or attenuate

Fig 4. A block diagram of the proposed approach.

https://doi.org/10.1371/journal.pone.0315477.g004
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specific features based on their importance. The feature weight functions act as a modulation

factor, modifying the contribution of various features to the final prediction. Moreover,

because the feature is represented as a frequency component, the network can recognize the

inherent patterns and variations in the data. The network can be trained to retrieve task-rele-

vant information concealed in repetitive or oscillatory patterns by utilizing the frequency

domain. Utilizing sinusoidal modulation and frequency-based representation offers several

prospective benefits. Manual feature engineering is unnecessary because the network can

autonomously extract helpful information from the data. This technique eliminates the ineffi-

ciency and subjectivity of feature selection. Due to the weight and frequency of the included

features, the network can capture complex interactions and dependencies between features.

This representation enables the network to detect patterns that would otherwise go unnoticed.

Furthermore, this strategy could improve the interpretability of deep learning networks. The

relative importance of various characteristics can be visualized and understood by mapping

the feature weight to the amplitude of a sinusoidal signal. This instrument can enhance the

model’s predictability by providing insights into the underlying data.

The peptide sequence is modeled as follows:

pðtÞ ¼
XN

i¼1
Wi sin 2pFit ð1Þ

Where p(t) is the modeled peptide sequence sample in the time domain, Wi is the value of

the feature for that sample ranges from 0–1, and Fi is the unique frequency representing the

feature. N is the number of features used to produce the time domain sequence which equals

24 out of the initial 34 features after feature reduction. The frequencies are selected far from

aliasing to ensure that features do not overlap and distort their contribution to the produced

sequence. All weights are normalized to give them equal important representation to avoid

unbalanced weights. Table 3 lists the features that are used to represent the peptide sequence.

Fig 5 demonstrates the feature model of effective and ineffective peptides This figure presents

a demonstration of feature modeling representation in the time domain for two peptide

sequences: (a) the Effective sequence; and (b) the non-effective sequence. The figure demon-

strates that each entity possesses unique characteristics that enhance its feasibility and distin-

guishability from the other entity. Differences are highlighted by the color variations in the

figure. While certain commonalities in amplitude could potentially affect the accuracy of

Table 3. Features used from peptide sequence in the STFT model.

No. of

Features

Features No. of

Features

Features

1 Atom count 13 Solvent accessible surface area

2 Asymmetric atom count 14 Polar surface area

3 Rotatable bond count 15 Polarizability

4 Ring count 16 H-bond donor count

5 Aromatic ring count 17 H-bond acceptor count

6 Hetero ring count 18 Partition coefficient (logp)

7 The van der waals volume 19 Logd

8 Minimal projection surface area 20 Hlb

9 Maximal projection surface area 21 Intrinsic solubility

10 Minimal projection radius 22 Refractivity

11 Maximal projection radius 23 Id

12 Van der waals surface area 24 Length

https://doi.org/10.1371/journal.pone.0315477.t003
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future predictions, additional sorts of amplification would be necessary to achieve higher levels

of prediction accuracy.

III.6.2 Short Time Fourier Transforms (STFT)

Sequence analysis is fundamental to numerous disciplines of study and practice [47], such as

biomedical signals, image analysis, and signal classification. The Short-Time Fourier Trans-

form (STFT) provides crucial insights into the spectral content of a sequence by decomposing

it into its frequency components over time. In this study, we examine how the STFT, when

sampled without aliasing, can reveal crucial sequence characteristics. Moreover, we investigate

how incorporating a residual deep learning network into the STFT [48] could improve its per-

formance in feature extraction.

To comprehend underlying patterns and extract pertinent properties, the study of

sequences frequently involves analyzing their frequency properties. STFT can visualize the

spectral content of a sequence in a specific area using time-frequency analysis. The STFT [48,

49] detects time-varying frequencies by dividing the sequence into overlapping brief windows

Fig 5. Sample of feature modeling representation in the time domain for the peptide sequence: (a) the effective; (b) the

non-effective.

https://doi.org/10.1371/journal.pone.0315477.g005
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and applying the Fourier Transform to each window. When it comes to elucidating the funda-

mental characteristics of a sequence, the STFT offers numerous benefits. It provides precise

frequency data that can be used to isolate and analyze critical frequencies and monitor their

evolution over time. This ability to ascertain resolution is advantageous when evaluating non-

stationary data with time-varying spectral characteristics. Second, the STFT permits the detec-

tion and localization of frequencies associated with transient events. This localization is crucial

for applications such as voice analysis and music processing, where the precise timing and fre-

quency of occurrences are crucial. In conclusion, the STFT enables efficient source separation

strategies by mapping individual sources or composite components to distinct time-frequency

domain locations. Fig 5 shows the STFT of the sequences shown in Fig 6. Variations between

the two images are evident now.

III.6.3 Convolutional neural network

To further enhance the feature extraction capabilities of the STFT, it is proposed to integrate it

with a residual deep learning network. Deep learning networks have demonstrated remarkable

performance in various domains by automatically learning hierarchical representations from

raw data [3, 5, 6]. By combining the STFT with a residual deep learning network, we can lever-

age the complementary strengths of both approaches. The STFT provides a time-frequency

representation that captures the spectral content, while the deep learning network learns com-

plex feature representations and non-linear relationships within the data [48]. The residual

deep learning network architecture, with skip connections and residual blocks, enables the net-

work to capture fine-grained details and residual information in the sequence effectively. This

integration allows for extracting more discriminatory and informative features, improving the

overall performance of classification through network segmentation, and image denoising.

CNN is the best option for image-based classification due to its self-feature learning capabili-

ties and superior classification results on multi-class classification tasks [13, 48]. The compo-

nents of a CNN include a convolution layer (Conv) with a rectified linear unit (ReLU)

activation function, a pooling layer (Pool), and batch normalization. In addition, the last layers

include fully connected (Fc), drop-out, SoftMax, and classification output layers. The conv

layer contains filters that detect various image patterns (STFT), including edges, contours, tex-

tures, and objects. Since ImageNet [30], CNN’s architecture has become progressively more

advanced. VGG and GoogleNet each have 19 and 22 convolutional layers, whereas ImageNet

Fig 6. Shows the sample of the STFT representing two features of the peptide sequence. (a) the Effective; (b) the

Non-effective.

https://doi.org/10.1371/journal.pone.0315477.g006
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only has five layers. Layers cannot be stacked to increase network depth. Due to the "vanishing

gradient" problem, training deep neural networks is problematic. Multiple multiplications

allow the gradient to be backpropagated to trim levels infinitesimally. As a result, the greater

the network depth, the more rapidly it inhibits or clogs. ResNet solves the problem of vanish-

ing gradients using "identity shortcut links." Therefore, ResNet bypasses layers, permitting

hundreds of network training layers without degrading performance [7]. ResNet could add a

dense layer before the dense layer, be trained from scratch, utilize more substantial data aug-

mentation, and conduct experiments with different learning rates. In this investigation, the

Resnet101 CNN model was selected as the optimal model for the proposed method [6].

This paper utilized the ResNet101 model already incorporated in MATLAB1 version

2022. ResNet101 is utilized with transfer learning techniques for the final entirely connected

layer to be compatible with two classes; the ResNet101 structure is depicted in Fig 4 [48]. The

extent of input images for each type is 224*224*3. The data are randomly divided into 70%

training and 30% assessment. The model is constructed using the following hyperparameters:

adaptive moment estimation (Adam) optimizer, mini patch size of 32, maximal epochs of 60,

and initial learning rate of 0.001. Fig 7 shows the architecture for the Res101 Network. To

reduce overfitting in the suggested models, a large, carefully selected dataset was used. Since

the dataset was large, diversified, and representative of the population, the models were able to

generalize to new data. Including a variety of samples and variations prevented models from

learning noise or trends from a limited or biased dataset. This protocol improves model resil-

ience and prediction performance across scenarios and real-world applications. The model is

robust and capable of detecting any variations that cause it to over fit.

It is apparent from the figures that the Short-Time Fourier Transform (STFT) is a powerful

tool for revealing essential features of a sequence, particularly when the sequence is sampled

without aliasing. Its ability to capture the time-varying spectral content makes it valuable in

various applications. Integrating the STFT with a residual deep learning network further

enhances its feature extraction capabilities, enabling the extraction of more informative and

discriminative features. This fusion of time-frequency analysis and deep learning holds great

promise in advancing the analysis and understanding of sequences in diverse domains. The

optimal parameters used for training the machine learning and CNN models are shown in

Table 4.

Future research should focus on optimizing the integration of the STFT and deep learning

networks to extract the most relevant features and further improve the performance in various

sequence analysis tasks.

Ethics. Informed consent was not required for this study

Fig 7. The architecture of the ResNet101.

https://doi.org/10.1371/journal.pone.0315477.g007

PLOS ONE Accelerating antimicrobial peptide design: Leveraging deep learning for rapid discovery

PLOS ONE | https://doi.org/10.1371/journal.pone.0315477 December 20, 2024 14 / 26

https://doi.org/10.1371/journal.pone.0315477.g007
https://doi.org/10.1371/journal.pone.0315477


IV. Results & discussion

This section provides an overview of the results obtained from our machine learning predic-

tion model and the Short-Time Fourier Transform (STFT) deep learning production model.

In recent years, novel methodologies have been employed to propel the progress of antimicro-

bial peptide (AMP) design and predict its action. By implementing rigorous analysis and

advanced methodology, we demonstrate the effectiveness of our models in correctly predicting

AMP activity and using STFT-based strategies to improve pattern identification. The findings

emphasize the promise of machine learning in peptide research and demonstrate the revolu-

tionary capabilities of deep learning in unraveling complex biological patterns. Table 5 shows

the summary of the machine learning algorithm’s evaluation matrix. Due to the high cost of

testing active peptides, no inactive peptides must be misclassified as active. Therefore, we

focused on reducing false positives and increasing specificity, and the Random Forest algo-

rithm achieved the lowest number of false positives (4) and the highest specificity (0.86).

Regarding the active peptide class, the sensitivity of the AdaBoost algorithm was the highest

among all other algorithms and this implies that to use the AdaBoost algorithm for the predic-

tion if the interest was to reduce the false negative rate. Although the performance of the Ran-

dom Forest and the AdaBoost algorithms were acceptable and helped to distinguish between

active and inactive peptides, another novel approach based on STFT deep learning prediction

(STFT-DLP) has achieved a higher performance yet.

Various machine learning algorithms were employed as it is shown in Table 5 to achieve

the best prediction for the antimicrobial peptides. Figs 8 and 9 display the ROC and confusion

matrix for both algorithms corresponding to the highest achieved F1 score.

Table 4. Optimal parameters used for machine learning and CNN models.

Algorithms Optimal parameter

Algorithms Used Parameters

Random Forest Classifier n_estimators = 10 to 500, max_depth = 10 to 30, min_samples_split = 10,

random_state = 45,class_weight = ‘balance’

K-Nearest Neighbors

(KNN)

neighbors = 5, metric = ’minkowski’

p = 4, weights = ’distance’, algorithm = ’auto’ or ’ball_tree’

AdBoostClassifier n_estimators = 200 to 500, learning_rate = 0.06 to 0.1, max_depth = 3 to 5

Neural Network hidden_layer_sizes = (32,64,128,256,1024), activation = ’relu’, solver = ’adam’,

alpha = 0.0001, learning_rate = ’adaptive’, Dropout(0.2), loss = ’binary_crossentropy’,

epochs = 100, batch_size = 10

CNN Image size = 224*224*3, 70% training and 30% testing, adaptive moment estimation

(Adam) optimizer, mini patch size of 32, maximal epochs of 60, and initial learning rate

of 0.001.

https://doi.org/10.1371/journal.pone.0315477.t004

Table 5. The performance matrix of different machine learning algorithms.

Algorithms Classes TP FP FN TN Precn F1_Score Specy Recall MCC Accuracy

AdaBoost 1 46 15 16 44 0.75 0.75 0.75 0.74 0.49 0.74

0 44 16 15 46 0.73 0.74 0.74 0.75 0.49

Random forest 1 39 8 23 51 0.83 0.72 0.86 0.63 0.51 0.74

0 51 23 8 39 0.69 0.77 0.63 0.86 0.51

Neural Network 1 40 22 22 37 0.65 0.65 0.63 0.65 0.27 0.64

0 37 22 22 40 0.63 0.63 0.65 0.63 0.27

K-Nearest Neighbor 1 44 17 18 42 0.72 0.72 0.71 0.71 0.42 0.71

0 42 18 17 44 0.70 0.71 0.71 0.71 0.42

https://doi.org/10.1371/journal.pone.0315477.t005
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For the STFT-DLP method, various performance metrics were utilized to assess the algo-

rithm’s effectiveness. Within the existing literature, commonly employed metrics include

accuracy, sensitivity, specificity, precision, the F1 score, and the Matthews correlation coeffi-

cient (MCC). Accuracy is calculated by dividing the number of correct predictions by the total

number of cases in the dataset. A test with high sensitivity can accurately detect the presence of

a condition, yielding a substantial number of true positives and minimizing false negatives.

This type of test is precious when the medication being assessed is highly effective with mini-

mal side effects. Conversely, the test produces many true negatives and only a few false posi-

tives. Precision, also called the "positive predictive value," measures the proportion of relevant

examples among the retrieved examples. Recall, which is equivalent to sensitivity, quantifies

the percentage of relevant examples that were successfully retrieved. Therefore, both precision

and recall are influenced by the concept of relevance. The MCC represents a contingency

matrix technique for computing the Pearson product-moment correlation coefficient between

actual and predicted values. It serves as an alternative metric that remains unaffected by the

issue of imbalanced datasets. Lastly, the F1 score denotes the harmonic mean of accuracy and

recall. The confusion matrix, illustrated in Fig 10, provides key metrics regarding the model’s

performance. Specifically, it showcases a sensitivity of 95.3%, which means that 81 out of 89

images were accurately classified. The precision stands at 91%. Additionally, among 89 images,

eight images were incorrectly identified, resulting in a sensitivity of 90.6% and a positive pre-

dictive value of 95.1%. Overall, the model achieves an accuracy of 92.9% across both classes.

Table 6 summarizes the performance matrices using the proposed approach. It can be

observed that the metrics are closely related indicating that the classification approach is

robust and precise. Another important metric is the area under the curve (AUC). Fig 11 shows

the AUC for both effective and non-effective including the receiver operating curve (ROC).

The values are very close to 1 indicating that the classification is accurate and reproducible.

The manuscript reports the accuracy of two distinct models for predicting the activity of anti-

microbial peptides, with a focus on binary classification using a specific MIC threshold

(MIC = 64 μg/ml) to categorize peptides as either active or inactive. The models achieved

Fig 8. Left, AdaBoost classifier confusion matrix of the active peptides (class 1) shows that there are 46 TP and 44 TN

were predicted correctly. However, the algorithm predicted 16 FN and 15 FP. Right, Random Forest classifier

confusion matrix of the active peptides (class 1) shows that there are 39 TP, and 51 TN were predicted correctly.

However, the algorithm predicted 23 FN and 8 FP.

https://doi.org/10.1371/journal.pone.0315477.g008
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Fig 10. The confusion matrix for the testing data. The precision values are represented in the third column, while the

sensitivity values are illustrated in the third row of the matrix.

https://doi.org/10.1371/journal.pone.0315477.g010

Fig 9. Left, AdaBoost algorithm ROC; Right, Random Forest algorithm ROC.

https://doi.org/10.1371/journal.pone.0315477.g009
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accuracies of 74% and 92.9% respectively, which are metrics sensitive to the chosen threshold.

To reduce threshold sensitivity, Tables 5 and 6 and Figs 9 and 11 were included. These metrics

consider the trade-off between sensitivity (true positive rate) and specificity (false positive

rate), or precision and recall, respectively, making them more reliable indicators of a model’s

ability to generalize across different scenarios.

Comparative analysis was conducted against a variety of state-of-the-art methods in to ver-

ify the efficacy of the proposed deep learning-based model for antimicrobial peptide (AMP)

prediction. Table 7 demonstrates the comparative analysis results with state of the art methods.

Table 6. Result analysis with distinct measures from two classes.

Metrics %

Classes TP FP FN TN Precn FScore Specy Recalll MCC
Effective 81 8 4 77 91.0 93.1 90.6 95.3 86

Noneffective 77 4 8 81 95.1 92.8 95.3 90.6 86

Accuy 92.9

https://doi.org/10.1371/journal.pone.0315477.t006

Fig 11. The ROC curve for testing data.

https://doi.org/10.1371/journal.pone.0315477.g011
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This comparison encompasses hybrid approaches, sophisticated deep learning architectures,

and traditional machine learning models. The proposed deep learning model, which combines

a residual deep learning network with Short-Time Fourier Transform (STFT), was tested.

The STFT-based deep learning model outperforms the others on several evaluation criteria.

The suggested model is 92.9% accurate, outperforming Random Forest and AdaBoost, which

are 74% accurate, Convolutional Neural Networks (CNN), which are 85% accurate, and atten-

tion-based models, which are 89% accurate [10, 11, 28]. Additionally, the proposed model out-

performs previous ensemble learning methods such as SAMP [50] and StackDPPred [51],

which show 88.5% and 90.2% accuracy, respectively. Additionally, the proposed model has

91.0% precision and 95.3% recall. These scores indicate better true positive and false positive

detection. However, the SAMP and StackDPPred ensemble learning models have poorer pre-

cision and recall. This shows the model’s active peptide detection accuracy. With a higher

F1-score of 93.1%, the model strikes the right mix between precision and recall. This score

exceeds StackDPPred (90.1%) and SAMP (88.4%), indicating strong reliability in applications

that use both criteria.

This model has a very high Area Under the Receiver Operating Characteristic (AUC-ROC)

score of 0.95, which means it can distinguish items better than CNN (0.88), attention-based

models (0.91), SAMP (0.90), and StackDPPred (0.92). This score shows the model’s superior

ability to differentiate active and inactive peptides. Several factors contributed to the proposed

model’s superior performance. The Short-Time Fourier Transform (STFT) can turn the basic

parts of peptides into signal representations. This lets us find complex patterns that older or

more complex models might have missed. Using Short-Time Fourier Transform (STFT) and

residual deep learning networks also makes the process of finding relevant features and putting

them into groups a lot better. Ultimately, the proposed approach accelerates the process of

identifying antimicrobial peptides (AMPs), resulting in time and cost savings compared to

computational and traditional methods. The results demonstrate that the deep learning model

utilizing Short-Time Fourier Transform (STFT) performs very well and exhibits remarkable

promise for peptide categorization. Machine learning, physicochemical properties, sequenc-

ing, structural modeling, molecular dynamics simulations, and hybrid approaches were

employed to predict AMP activity. Each technique is subject to certain limitations [52].

ML approaches include gradient boosting, neural networks, random forests, and support

vector machines (SVMs). Machine learning requires diverse, high-quality training data. The

model may not generalize well or provide erroneous predictions if the dataset is biased or lacks

peptide group representation [52]. ML algorithms misread biological processes that affect pre-

dictions [53]. Physicochemical approaches emphasize secondary structure, amphipathicity,

hydrophobicity, and charge for antibacterial action [54]. These methods may not accurately

depict peptide activity’s complexity and lack of selectivity, resulting in false positives and nega-

tives [55]. This may reduce prediction accuracy because these methods may overlook peptide-

Table 7. Comparative performance metrics.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%) AUC-ROC Score

Proposed Model (Deep Learning + STFT) 92.9 91.0 95.3 93.1 90.6 0.95

Random Forest (Traditional ML) [28] 74.0 83.0 63.0 72.0 86.0 0.86

AdaBoost (Traditional ML) [28] 74.0 75.0 74.0 75.0 75.0 0.75

CNN (Convolutional Neural Networks) [10] 85.0 87.0 80.0 83.0 82.0 0.88

Attention-Based Model (Hybrid DL) [11] 89.0 90.0 85.0 87.5 88.0 0.91

Ensemble Learning Model (SAMP) [Feng et al., 2024] [50] 88.5 89.1 87.8 88.4 87.0 0.90

StackDPPred (Ensemble Learning) [Arif et al., 2024] [51] 90.2 91.4 88.9 90.1 89.3 0.92

https://doi.org/10.1371/journal.pone.0315477.t007
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target interaction changes. Antibacterial themes and patterns can be found using AMP amino

acid sequence analysis [54]. Sequence-based techniques require datasets that may not repre-

sent AMP diversity [56]. These approaches do not anticipate the action of novel peptides;

therefore, there are few attractive possibilities [57]. Without sequence-based prediction crite-

ria, findings may be inconsistent [57]. Molecular dynamics simulations and structural model-

ing show AMPs’ conformational dynamics and target interactions. These methods are too

computationally and resource-intensive for ordinary applications [54]. Data quality deter-

mines structural model validity, and initial structure faults might generate misunderstandings

[54]. Many molecular dynamics simulations have too simplistic assumptions and may not

fully capture biological system complexity, making them unreliable predictors [54]. Hybrid

methods with various prediction algorithms improve AMP activity prediction accuracy and

resilience [58]. Integrating several data types may cause compatibility and interpretation

issues. Hybrid methods are difficult and require plenty of computational power. Multi-model

reliance may hinder decision-making if models disagree on projections [58].

The findings of this work reveal the potential benefits of deep learning techniques in AMP

medication discovery. Significantly, the utilization of these methodologies not only results in

efficiencies in terms of time and money but also expedites the production of highly effective

antimicrobial peptide (AMP) medications. As mentioned above, the results significantly con-

tribute to the field of deep learning, namely in areas of utmost significance, such as pharma-

ceutical calculations and the interpretation of biomedical data. The significance of precise and

understandable feature representations in many circumstances highlights the fundamental

worth of this research. Furthermore, this study highlights the integration of the Short-Time

Fourier Transform (STFT) with a residual deep learning network to improve the STFT’s effec-

tiveness in extracting significant and distinguishing characteristics. The integration of time-

frequency analysis and deep learning enhances the capacity to enhance sequence analysis

across multiple academic fields. The potential for enhancing analysis and comprehension in

various contexts becomes apparent through utilizing the synergistic effects between different

approaches.

The convergence of short-time Fourier transform (STFT), and deep learning presents a

compelling area for further scientific investigation, highlighting the need for significant focus

on optimizing their integration. The primary obstacle in efficiently extracting relevant features

to enhance the performance of sequence analysis jobs necessitates a more comprehensive

examination. Future research should investigate various architectures and training methods to

understand better how these choices affect performance, efficiency, and interpretability. The

potential impact of the synergistic interaction between Short-Time Fourier Transform (STFT)

and deep learning in sequence analysis is significant. This collaboration can bring about a

transformative shift, transcending traditional disciplinary boundaries and leading to novel

insights and advancements in knowledge [59, 60]. Various databases and prediction methods

were developed to predict and characterize AMPs. Common databases are LAMP [61],

CAMPR3 [62], APD [63], and DBAASP [64]. While, AntiTbPred [65], AntiBP3 [66], and

LMPred [67] are the common methods to predict the antimicrobial activity, and they differ in

their specific focus and underlying algorithms. The CAMPR3 database also has prediction

tools. AntiTbPred targets tuberculosis-related peptides, which makes it highly specialized but

limited in its ability to target other bacteria. AntiBP3 and LMPred are used in more bacteria,

despite not being as pathogen-specific. CAMPR3 may also produce false positives and require

experimental validation. Many prediction systems, such as AntiBP3 and LMPred, use

sequence-based properties without structural data. The three-dimensional structure of pep-

tides affects AMP activity; therefore, ignoring structural data can lead to erroneous predic-

tions. AMP prediction is limited by experimentally validated sequences [68]. Numerous
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prediction models rely on generic antibacterial activity rather than specific mechanisms of

action. Assessing peptide efficacy against specific illnesses using this method can be deceptive

[69]. When focusing on physicochemical properties, peptide structural conformation and bio-

logical dynamics may be disregarded [70]. Antimicrobial peptides (AMPs) have become a via-

ble avenue in the fight against infectious diseases due to their strong effectiveness against a

wide range of pathogens. This study provides a compelling illustration of the transformative

capabilities inherent in machine learning and deep learning techniques to create new antimi-

crobial peptides (AMPs) that exhibit enhanced activity and selectivity. This study aims to

expand the scope of peptide design by embracing a more comprehensive range of peptide fea-

tures, explicitly focusing on microorganism-specific physicochemical attributes. This is

achieved by systematically resolving the limits encountered in previous research efforts. Using

deep learning models for classifying antimicrobial peptides represents a significant departure

from conventional experimental approaches, as it effectively bypasses the laborious and

resource-intensive nature associated with these traditional methods. Therefore, future research

will focus on advanced signal processing methods, including wavelets, bispectral, bicoherence,

and their alternatives [71]. Furthermore, combinational machine learning and deep learning

methods can improve perception and enhance performance measures [72].

Nosocomial infections and mortality have been on the rise worldwide for the past few

decades due to the misuse of antibiotics generating multidrug-resistant bacteria. Therefore,

the development of new antibacterial drugs is a crucial request globally [73]. There are several

approaches to discovering drugs such as; serendipity [74], chemical modifications of known

drugs or natural products [75], expensive screening of natural and synthetic compounds [76],

and de novo or rational drug design [77]. Recently, artificial intelligence has invaded drug dis-

covery, where AI was used to predict the 3D structure of proteins, drug–protein interactions,

and design molecules (de novo) [77]. However, It has been reported that up to 50% of the

approved drugs were from either directly or indirectly natural products [77]. Unfortunately,

it’s expensive and time-consuming to screen natural products. Host defense molecules known

as antimicrobial peptides (AMPs) are ideal candidates due to their ability to permeabilize and

disrupt the bacterial membrane, regulating the immune system, broad activities, and limited

resistance [78]. Most AMPs are discovered from natural sources or via screening [79]. De

novo drug design is also used for designing AMP, but it has some drawbacks such as the struc-

ture of the target protein should be known, and limited to small-size molecules. Moreover,

Genetic algorithms [80], and linguistic models [81] have also been used to generate antimicro-

bial peptides. However, such approaches were hindered due to the small number of character-

ized peptides and due to limitations in the algorithms used at that time [82]. An improvement

to this work could be leveraged by using machine learning algorithms to predict the experi-

mental minimum inhibitory concentration of peptide values rather than the binary classifica-

tion of AMPs. Some recent work has been done in this regard on AMPs prediction [83].

Exposing this work to predict MIC values for AMPs and ACPs is a promising area for future

work. This article emphasizes the significance of conducting experimental research in the

domains of medication and antimicrobial peptide design. The importance of performing in

vitro or in vivo analyses to validate results is highlighted. Theoretical considerations related to

identifying potent antimicrobial peptides were also highlighted. Further, it explores computer

modeling, algorithm development, and prediction methodologies. It is worth mentioning that

the prediction relied on laboratory in vitro data (MIC). Instead of just studying one type of

bacteria, like E. coli, future work will include a full research study that uses in vitro assays to

test the cytotoxicity and antimicrobial properties of newly designed antimicrobial peptides

against many different types of bacteria. Additionally, it aims to explore the potential of using
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in vivo models to assess the safety and efficacy of the anticipated antimicrobial peptide

candidates.

V. Conclusion

This study introduces a novel method for expediting the development of antimicrobial pep-

tides (AMPs) using deep learning techniques. The proposed model effectively predicts the

activity of AMPs by integrating machine learning and deep learning methodologies. Two

main strategies were used: the first used pre-calculated physicochemical properties of peptides

in a machine-learning classification method; the second turned these properties into signal

representations that were processed by a deep learning neural network. The model achieved a

combined accuracy of 74% for the machine learning model and 92.9% for the deep learning

model in predicting AMP activity, demonstrating a high level of accuracy. These results under-

score the potential of deep learning-based methods to improve the accuracy of predictions and

substantially reduce time and costs in the discovery process of AMPs. The results of the study

establish a robust foundation for future research in drug discovery, with a particular emphasis

on the development of effective AMPs against resistant microorganisms. In order to enhance

the efficacy, efficiency, and interpretability of these models, future research would investigate

supplementary deep learning architectures and training methodologies. In addition, this

method could be shown to be more useful and effective in the larger field of antimicrobial

drug design by being applied to different types of pathogens.
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