Table 5. The performance matrix of different machine learning algorithms.
Algorithms | Classes | TP | FP | FN | TN | Precn | F1_Score | Specy | Recall | MCC | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|
AdaBoost | 1 | 46 | 15 | 16 | 44 | 0.75 | 0.75 | 0.75 | 0.74 | 0.49 | 0.74 |
0 | 44 | 16 | 15 | 46 | 0.73 | 0.74 | 0.74 | 0.75 | 0.49 | ||
Random forest | 1 | 39 | 8 | 23 | 51 | 0.83 | 0.72 | 0.86 | 0.63 | 0.51 | 0.74 |
0 | 51 | 23 | 8 | 39 | 0.69 | 0.77 | 0.63 | 0.86 | 0.51 | ||
Neural Network | 1 | 40 | 22 | 22 | 37 | 0.65 | 0.65 | 0.63 | 0.65 | 0.27 | 0.64 |
0 | 37 | 22 | 22 | 40 | 0.63 | 0.63 | 0.65 | 0.63 | 0.27 | ||
K-Nearest Neighbor | 1 | 44 | 17 | 18 | 42 | 0.72 | 0.72 | 0.71 | 0.71 | 0.42 | 0.71 |
0 | 42 | 18 | 17 | 44 | 0.70 | 0.71 | 0.71 | 0.71 | 0.42 |