Skip to main content
. 2024 Dec 20;19(12):e0315477. doi: 10.1371/journal.pone.0315477

Table 7. Comparative performance metrics.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%) AUC-ROC Score
Proposed Model (Deep Learning + STFT) 92.9 91.0 95.3 93.1 90.6 0.95
Random Forest (Traditional ML) [28] 74.0 83.0 63.0 72.0 86.0 0.86
AdaBoost (Traditional ML) [28] 74.0 75.0 74.0 75.0 75.0 0.75
CNN (Convolutional Neural Networks) [10] 85.0 87.0 80.0 83.0 82.0 0.88
Attention-Based Model (Hybrid DL) [11] 89.0 90.0 85.0 87.5 88.0 0.91
Ensemble Learning Model (SAMP) [Feng et al., 2024] [50] 88.5 89.1 87.8 88.4 87.0 0.90
StackDPPred (Ensemble Learning) [Arif et al., 2024] [51] 90.2 91.4 88.9 90.1 89.3 0.92