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Abstract

The University of Kentucky's Drug Quality Task Force (DQTF) conducted a study to perform 

consumer-level quality assurance screening of vasopressin injections used in their healthcare 

pharmacies. The primary objective was to identify potential quality defects by examining intralot 

and interlot variability using Raman spectrometry and statistical analyses.

Raman spectra were collected noninvasively and nondestructively from vasopressin vials (n=51) 

using a Thermo Scientific Smartraman DXR3 Analyzer. Data processing techniques, including 

smoothing with cubic splines and Multiplicative Scatter Correction (MSC), were applied to 

prepare the spectra for analysis. Statistical analyses employed included the Bootstrap Error-

Adjusted Single-sample Technique (BEST), Principal Component Analysis (PCA), and subcluster 

detection to assess variability and detect unusual samples.

The study revealed significant intralot and interlot variability in the vasopressin samples. Analysis 

of Raman spectral graphs from vials in lot 22040L1C0 showed multiple subgroups within a single 

lot, indicating variability in chemical composition. Examination of the entire spectral library, 

which included vials from two different lot numbers, revealed four distinct groups that did not 

correspond to lot numbers. A subcluster detection test confirmed the presence of at least two 

distinct chemical compositions in samples from both lots, rejecting the null hypothesis that the 

groups have the same scale and location.

While these spectrometric results do not conclusively prove an excess level of impurities or 

adulteration, they suggest that the manufacturing process may have been operating outside of a 

state of process control. These findings highlight the need for further investigation into potential 
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process control issues to ensure consistent manufacturing processes and maintain drug quality and 

efficacy.

Introduction

The University of Kentucky’s (UK) Drug Quality Task Force (DQTF) was established 

in August of 2019 to engage in consumer-level quality assurance screening for drugs 

used within UK HealthCare’s pharmacies (Isaacs, 2024a). The DQTF currently screens 

medications using Fourier transform near-infrared spectrometry (FTNIR) and Raman 

spectrometry for potential quality defects indicated by variability in absorbance peak 

intensities and locations. Through years of continuous monitoring, DQTF has assembled 

a spectral library containing medications typically used in a health system setting. Statistical 

analyses using the DQTF spectral library are performed to identify potential intra-lot and 

inter-lot variability in medications under review. Using Medwatch and publications in 

the scientific literature, the DQTF reports its findings in an effort to hold manufacturers 

accountable for GMP requirements and to improve patient outcomes by providing 

information on quality to augment the information on price that is already available. The 

increasing transparency is designed to improve the pharmaceutical supply chain.

Drug Product

Vasopressin is a polypeptide hormone. Vasopressin injection is indicated to increase blood 

pressure in adults with vasodilatory shock who remain hypotensive despite fluids and 

catecholamines. The vasopressin injection is a sterile, aqueous solution containing synthetic 

arginine vasopressin intended for intravenous administration. Each 1 mL solution includes 

20 units of vasopressin, 5 mg of chlorobutanol, 9 mg of sodium chloride, water for injection, 

and acetic acid to adjust the pH to 3.5 (American Regent, 2020). Vasopressin injection, 

USP is a clear, practically colorless solution for intravenous administration available in 

single-dose vials.

The lot numbers making up the spectral library were 22040L1C0 and 22082L1C0 (see 

Figure 1).

Background

Recent Studies—A publication titled "The possible role of the vasopressin system 

in hematopoiesis" by Fredrika Schill and colleagues, explored the association between 

vasopressin, measured through its marker copeptin, and hematopoietic markers (Schill, 

2024). The study utilized data from 5312 participants in the Swedish CArdioPulmonary 

biolmage Study (SCAPIS) to examine the associations between copeptin levels and 

markers of erythropoiesis (like erythrocyte count and hemoglobin), leukocyte count, and 

thrombocyte count.

Key findings included:

1. Associations with Hematopoietic Markers: Increasing copeptin levels were 

positively associated with increases in erythrocyte count, red blood cell 

distribution width (RDW), erythrocyte volume fraction (EVF), hemoglobin (Hb), 

Isaacs et al. Page 2

Contact Context. Author manuscript; available in PMC 2024 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



leukocyte count, and neutrophil count, after adjusting for various covariates like 

age, sex, smoking status, and diabetes. However, no significant associations were 

found with mean corpuscular volume (MCV), lymphocyte count, or thrombocyte 

count.

2. Vasopressin's Role in Hematopoiesis: The results suggest that vasopressin might 

be involved in stimulating erythropoiesis and leukopoiesis. This is in line with 

some previous research indicating vasopressin's role in anemia and red blood cell 

precursor differentiation, although there are conflicting studies in the field.

3. Inflammation and Leukocytes: Copeptin was found to be associated with 

increased leukocyte and neutrophil counts, supporting the idea that vasopressin 

is involved in inflammation. However, the study did not find a significant 

association with lymphocyte count. This suggests a complex role of vasopressin 

in immune response modulation.

4. Study Limitations: The study is cross-sectional, meaning it can demonstrate 

associations but not causality. Also, serum osmolality was not measured, which 

could have provided insights into hydration status affecting copeptin levels.

5. Implications and Future Research: The findings warrant further investigation 

into the mechanistic role of vasopressin in hematopoiesis and inflammation. 

Understanding whether different vasopressin receptors mediate distinct effects on 

these processes could lead to new therapeutic strategies.

Overall, the publication highlights significant associations between vasopressin levels and 

various hematopoietic markers, emphasizing the hormone's potential involvement in these 

physiological processes and suggesting further research to explore these links.

Vasopressin remains the subject of active research. Monika Perisic et al. (Persic, 

2024) reviews the signaling mechanisms and therapeutic potential of oxytocin (OT) 

and vasopressin (VP) in health and disease. OT and VP, ancient and highly conserved 

neuropeptides, play critical roles in various physiological functions such as reproduction, 

social behaviors, and water homeostasis through their interaction with four G protein-

coupled receptors (GPCRs): the oxytocin receptor (OTR) and the three vasopressin receptors 

(V1aR, V1bR, and V2R).

The review highlights the complexity and therapeutic potential of the OT/VP signaling 

system, which has become an attractive drug target for treating a range of conditions, 

including neurological disorders, cancer, and cardiovascular diseases. Despite its promise, 

drug development is challenged by signaling complexity, selectivity issues, interspecies 

differences, and drug delivery difficulties.

Recent advances in medicinal chemistry, ligand-receptor structure elucidation, and the 

discovery of natural ligands have renewed interest in this field. The publication discusses 

the roles of OT and VP in various systems, including reproductive, cardiovascular, renal, and 

central nervous systems, and their implications in diseases like autism spectrum disorder, 

depression, and anxiety.
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The review also emphasizes the challenges in developing selective ligands due to receptor 

homology and the need for further research to fully understand the physiological and 

pathological roles of these receptors. It suggests that peptide-based drugs hold potential 

advantages in selectivity and efficacy over small molecules, which have often failed in 

clinical trials.

In conclusion, the authors claim the OT/VP signaling system is poised for significant 

advances in drug development, with wide-ranging implications across multiple medical 

fields. However, further research is needed to address the challenges in receptor selectivity, 

drug delivery, and understanding the system's roles in less-studied physiological processes 

and diseases.

Drug Recalls of American Regent Vasopressin

Voluntary Recalls Due to Potency Issues—American Regent has issued multiple 

voluntary recalls of its vasopressin injection products. The primary reason for these recalls 

was that some vials might not maintain their potency throughout their shelf-life, rendering 

the product less effective. This issue of sub-potency could potentially lead to reduced 

effectiveness when administered to patients, which is a significant concern in clinical 

settings. (FDANews, 2011)

Specific Recall Details—In 2011, American Regent conducted a nationwide voluntary 

recall of several lots of Vasopressin Injection, USP. This recall included 5 lots of 20 

units/mL (200 units/10 mL) 10 mL Multiple Dose Vials, 11 lots of 20 units/mL 1 mL 

Multiple Dose Vials, and 1 lot of 10 units/0.5 mL 0.5 mL Multiple Dose Vials. The products 

were distributed to wholesalers and distributors nationwide, and healthcare facilities were 

advised to quarantine and return the affected products.

No Reported Adverse Events—Despite the recall, American Regent reported that there 

were no adverse events related to the reduced effectiveness of the recalled vasopressin 

injection lots during the period from January 1, 2009, to July 27, 2011.

Recent Developments—As of 2024, there have been no new recalls reported for 

American Regent vasopressin. The company continues to market and distribute FDA-

approved vasopressin injection products.

Shortages

On August 12, 2024, Vasopressin injection, (American Regent, 20 units/mL, 10 mL 

vial, 1 count, NDC 00517-1030-01) went on the ASHP Drug Shortage List (ASHP, 

2024). American Regent did not provide a reason for the shortage. American Regent has 

vasopressin 20 units/mL 10 mL vials on back order and the company cannot estimate a 

release date.

FDA Medwatch—An FDA Form 3500 Medwatch describing the findings of this Rapid 

Communication was filed.
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Methods

Raman Spectrometry

Using nondestructive analytical techniques, Raman spectra were collected from inventory 

as part of routine medication quality screening. A representative sample of individual vials 

were selected for screening and noted to be stored under the conditions required by the 

manufacturer in their original packaging. Raman spectra were collected noninvasively and 

nondestructively through the vials using a Thermo Scientific Smartraman DXR3 Analyzer 

(Waltham, MA, USA)(Isaacs, 2024b).

Smoothing

Data smoothing is a technique used to remove noise from data. This can be done by fitting 

a smooth curve to the data, such as a cubic spline. Cubic splines are piecewise cubic 

polynomials that are continuous and have continuous first and second derivatives. This 

makes them very smooth and resistant to noise. Cubic splines can be easily fitted to data 

using least squares (Matlab, 2023)(Pollock, 1998).

Multiplicative Scatter Correction (MSC)

Multiplicative scatter correction (MSC) is a widely used spectrometric normalization 

technique. Its purpose is to correct spectra in such a way that they are as close as possible to 

a reference spectrum, generally the mean of the data set, by changing the scale and the offset 

of the spectra (Isaksson, 1988).

BEST (Bootstrap Error-Adjusted Single-sample Technique)

The BEST calculates distances in multidimensional, asymmetric, nonparametric central 

68% confidence intervals in spectral hyperspace (roughly equivalent to standard 

deviations(Dempsey, 1996). The BEST metric can be thought of as a "rubber yardstick" 

with a nail at the center (the mean). The stretch of the yardstick in one direction is therefore 

independent of the stretch in the other direction. This independence enables the BEST 

metric to describe odd shapes in spectral hyperspace (spectral point clusters that are not 

multivariate normal, such as the calibration spectra of many biological systems). BEST 

distances can be correlated to sample composition to produce a quantitative calibration, or 

simply used to identify similar regions in a spectral image. The BEST automatically detects 

samples and situations unlike any encountered in the original calibration, making it more 

accurate in chemical investigation than typical regression approaches to near-IR analysis. 

The BEST produces accurate distances even when the number of calibration samples is less 

than the number of wavelengths used in calibration, in contrast to other metrics that require 

matrix factorization. The BEST is much faster to calculate as well (O(n) instead of the O(n3) 

required by matrix factorization.)

Principal Components (PCs)

Principal component analysis is the process of computing the principal components of a 

dataset and using them to execute a change of basis (change of coordinate system) on the 

data, usually employing only the first few principal components and disregarding the rest 
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(Joliffe, 2016). PCA is used in exploratory data analysis and in constructing predictive 

models. PCA is commonly utilized for dimensionality reduction by projecting each data 

point onto only the first few principal components to obtain lower-dimensional data while 

preserving as much of the original variation in the data as possible. The first principal 

component is the direction that maximizes the variance of the projected data. The second 

principal component is the direction of the largest variance orthogonal to the first principal 

component. Decomposition of the variance typically continues orthogonally in this manner 

until some residual variance criterion is met. Plots of PC scores help reveal underlying 

structure in data.

Subcluster Detection

In typical near-infrared multivariate statistical analyses, samples with similar spectra 

produce points that cluster in a certain region of spectral hyperspace. These clusters can 

vary significantly in shape and size due to variation in sample packings, particle-size 

distributions, component concentrations, and drift with time. These factors, when combined 

with discriminant analysis using simple distance metrics, produce a test in which a result 

that places a particular point inside a particular cluster does not necessarily mean that the 

point is actually a member of the cluster. Instead, the point may be a member of a new, 

slightly different cluster that overlaps the first. A new cluster can be created by factors 

like low-level contamination, moisture uptake, or instrumental drift. An extension added 

to part of the BEST, called FSOB (Fast Son of BEST) can be used to set nonparametric 

probability-density contours inside spectral clusters as well as outside (Isaacs, 2023)(Lodder, 

1988) and when multiple points begin to appear in a certain region of cluster-hyperspace 

the perturbation of these density contours can be detected at an assigned significance level 

using r values, and visualized using quantile-quantile (QQ) plots. The detection of unusual 

samples both within and beyond 3 SDs of the center of the training set is possible with this 

method. Within the ordinary 3 SD limit, however, multiple instances are needed to detect 

unusual samples with statistical significance.

Artificial Intelligence Tools

Artificial intelligence (AI) tools, principally used for background information, include 

Gemini (Google LLC) and GPT-4 (OpenAI). AI can be used in a variety of ways, including 

to brainstorm, organize thoughts, develop arguments, and edit.

Results and Discussion

Intralot analysis

Raman spectral graphs—Smoothed spectral graphs of the vials in lot 22040L1C0 

appear in Figure 2. Some grouping of the spectra is visible to the eye in the regions around 

700 and 1100 cm−1.

Figure 3 is a principal component score plot that shows the analysis of 14 spectra obtained 

from vials in lot 20040L1C0. The figure shows three small groups within the single lot of 

vials, which indicates variability in the chemical composition of the vials.
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Figure 4 provides a different perspective on the principal component score plot of the 14 

spectra from vials in lot 20040l1C0, which was initially shown in Figure 3. This view is 

obtained by rotating the plot, allowing for a different visual interpretation of the data.

PC Plots—While Figure 3 seemingly presented three small groups within the lot, Figure 4 

suggests that there might only be two distinct groups of spectra. This observation highlights 

the importance of considering multiple perspectives when analyzing complex datasets.

It is important to note that both figures, along with Table 1, point towards significant 

variability in the chemical composition of the vials in this lot. This variability is further 

corroborated by the analysis of the entire spectral library, which includes vials from two 

different lots.

Variation accounted for by each of the PCs of Lot 20040L1C0—Table 1 shows 

the variation accounted for by each of the principal components of the 14 spectra obtained 

from vials in lot 20040L1C0. The first principal component (PC1) accounts for 58.62% of 

the variation in the data. The second principal component (PC2) accounts for 19.17% of the 

variation. The third principal component (PC3) accounts for 11.43% of the variation. The 

remaining principal components account for less than 10% of the variation.

Table 1, along with Figure 3, demonstrates that there is significant variation in the chemical 

composition of the vials in lot 20040L1C0. This is further supported by Figure 4, which 

is another view of the principal component score plot, obtained through rotation. From this 

view, it appears that there are only two groups of spectra in the lot.

Interlot analysis

Smoothed spectra graphs of library—Figure 5 presents the Raman spectra of all 51 

vials included in the spectral library, encompassing vials from two different lot numbers. 

This visualization allows for a direct comparison of the spectral profiles of all the samples, 

enabling the identification of potential variations in chemical composition across lots.

The figure is part of the interlot analysis, expanding upon the initial intralot analysis, which 

focused on lot 22040L1C0, as depicted in Figures 3 and 4 and Table 1. The interlot analysis 

aims to assess whether the observed variability extends beyond a single lot and if there are 

any patterns or trends associated with the different lot numbers.

This figure will be further explored and analyzed through principal component analysis 

(PCA) in subsequent figures and tables. PCA is a statistical technique that can be used 

to identify the main sources of variation in a dataset. This analysis will help determine if 

there are distinct groups within the spectral library and if these groups correspond to the lot 

numbers.

PC Plots—Figure 6 is a 3-D plot of the principal component scores of the spectral library, 

utilizing principal components (PCs) 1, 2, and 3. Despite the library containing vials from 

only two lot numbers, the spectra in this figure appear to cluster into four distinct groups. 

Furthermore, the observed groupings do not align with the lot numbers. This means that 
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vials from the same lot don't necessarily share the same spectral characteristics, and vials 

from different lots might exhibit similar spectral features.

This finding is significant because it suggests that the observed variability in chemical 

composition, initially identified within a single lot in Figure 3 and Figure 4, extends beyond 

a single batch of production. The presence of four groups instead of two (representing the 

two lots) indicates more complex factors are at play than just lot-to-lot variation.

Figure 6's insights contribute to the overall understanding of the potential process control 

issues during the manufacturing of vasopressin. The lack of correlation between spectral 

groupings and lot numbers suggests inconsistencies in the production process that might 

lead to variations in the final drug product's chemical composition. This observation is 

crucial for further investigation into the manufacturing process.

Figure 7 offers another perspective on the principal component scores of the spectral library, 

similar to Figure 6. However, this view is rotated, providing a different angle for visualizing 

the data and potentially revealing additional insights.

Just like in Figure 6, the spectra in Figure 7 form four distinct groups, labeled 1A, 1B, 2A, 

and 2B. Importantly, these group labels do not align with the two lot numbers present in the 

spectral library. This reinforces the observation that lot number does not determine group 

membership. The breakdown of the vials in each group and their corresponding lot numbers 

is:

• Vials 1-14 belong to Lot #22040L1C0, and vials 15-51 belong to 

Lot#22082L1C0.

– Group 1A consists of vials 15, 17, 18, 23, 26, 27, and 28.

– Group 1B comprises vials 13, 14, 16, 19, 20, 21, 22, 24, 25, 29, 30, and 

31.

– Group 2A includes vials 2, 3, 4, 7, 8, 9, 10, 11, 32, 34, 35, 38, 41, 43, 

44, 45, 47, 48, and 49.

– Group 2B consists of vials 1, 5, 6, 12, 33, 36, 37, 39, 40, 42, 46, 50, and 

51.

The 'A' groups (1A and 2A) exhibit significant variation in the peak at 1300 to 1600 cm−1. 

This detail further highlights the heterogeneity within the 'A' groups, suggesting potential 

inconsistencies in the chemical composition of those specific vials.

Figure 7, coupled with the breakdown of group memberships, strengthens the argument for 

potential process control issues during the manufacturing of vasopressin. The fact that vials 

from different lots are clustered together, while vials from the same lot are scattered across 

groups, indicates that the manufacturing process might not consistently produce a uniform 

product. This variability, as evidenced by the spectral analysis, could potentially impact the 

drug's efficacy and safety.
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Figure 8 presents a principal component (PC) scatterplot focusing on PCs 4, 5, and 6 of 

the spectral library. In contrast to Figure 6 and Figure 7, which highlighted four distinct 

groups when considering PCs 1, 2, and 3, Figure 8 demonstrates that these four groups are 

no longer discernible when examining PCs 4, 5, and 6.

This observation suggests that the variation captured by these higher-order principal 

components is not sufficient to differentiate the groups that were evident in the earlier PCs. 

This could imply that the chemical differences responsible for the four groups are primarily 

reflected in the variation captured by PCs 1, 2, and 3. The higher-order PCs might represent 

more subtle variations within the data that are not directly related to the factors separating 

the four main groups.

The diminishing separation of groups with higher-order PCs is a common phenomenon 

in principal component analysis. The first few principal components typically capture the 

most significant sources of variation in the data, while subsequent components represent 

progressively smaller and more nuanced differences.

Figure 9, similar to Figure 8, showcases a principal component (PC) scatterplot, but this time 

focusing on PCs 7, 8, and 9 of the spectral library. The key takeaway from Figure 9 is that, 

like in Figure 8, the four apparent groups identified in Figure 6 and Figure 7, are no longer 

visible when considering these higher-order principal components.

This observation reinforces the idea that the variations captured by these higher-order 

PCs are not the primary drivers of the separation between the four groups. The chemical 

differences that define those groups are mainly reflected in the variation captured by PCs 1, 

2, and 3.

This progressive decrease in group separation with higher-order PCs aligns with the typical 

behavior observed in principal component analysis. The initial PCs capture the most 

dominant variations in the data, while subsequent PCs represent increasingly subtle and less 

influential differences. These higher-order PCs might be associated with minor variations 

within the samples that do not contribute significantly to the differentiation of the main 

groups.

Figure 10 displays the Raman spectrum of Group 1A, which was initially identified in 

Figure 7 as one of the four distinct groups within the spectral library. The most notable 

distinction among the spectra within this group is the variation in the size of a broad peak 

located around 1400 cm−1. Recall that Figure 7 showed a rotated view of the principal 

component scores of the entire spectral library, revealing four groups (1A, 1B, 2A, and 

2B) that did not align with the two lot numbers present. This indicated that the chemical 

composition of the vials was not solely determined by the lot number.

Figure 10 focuses specifically on the spectral characteristics of Group 1A, highlighting a 

key area of variability within this group: the peak at 1400 cm−1. The differing sizes of 

this peak suggest variations in the concentration or chemical environment of the molecule 

responsible for this specific Raman signal. This observation further supports the notion that 

the manufacturing process may not be consistently producing a homogeneous product.
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Figure 11, Figure 12, and Figure 13 provide similar spectral visualizations for Groups 

1B, 2A, and 2B, respectively. These figures, along with Figure 10, allow for a detailed 

examination of the spectral features of each group, potentially aiding in identifying the 

specific chemical components responsible for the observed variations.

Raman Spectra of Each Group—Figure 14 displays the principal component (PC) 

loadings for PC 1 of the Raman spectra within the spectral library. PC loadings represent the 

contribution of each variable (in this case, the Raman intensity at each wavenumber) to the 

corresponding principal component. In essence, the PC loadings plot shows which spectral 

features are most influential in defining PC 1.

Recall that PC 1, as seen in Figure 6 and Figure 7, is the principal component that captures 

the largest amount of variation in the data. Therefore, the PC loadings for PC 1 highlight 

the spectral regions that are most responsible for the primary source of variability among the 

analyzed vasopressin vials.

Examining the shape of the PC loadings in Figure 14 can provide insights into the chemical 

differences contributing to the variability observed in the spectral library. Peaks and troughs 

in the PC loadings plot correspond to spectral regions where variations in Raman intensity 

are strongly associated with PC 1. By comparing these peaks and troughs to known Raman 

spectra of potential components in the vasopressin vials, researchers could potentially 

identify the specific chemical groups or molecules driving the observed variability.

PC Loadings of the Library—Figure 15, Figure 16, Figure 17, Figure 18, Figure 19, 

Figure 20, Figure 21, and Figure 22 showcase the PC loadings for the remaining principal 

components, PC 2 through PC 9. These figures provide a comprehensive picture of the 

spectral features contributing to each principal component, enabling a deeper understanding 

of the sources of variation within the spectral library.

Variation accounted for by each of the PCs in the Library—Table 2 displays the 

variation accounted for by each of the principal components of the spectra in the library of 

51 vials of vasopressin. The first three principal components (PC1, PC2, and PC3) account 

for the majority of the variation in the data, at 54.25%, 23.25%, and 14.19% respectively. 

This means that these three components capture most of the differences between the spectra 

of the different vials. The remaining principal components account for a much smaller 

proportion of the variation.

The fact that the first few principal components account for most of the variation suggests 

that there are a few underlying factors that are driving the differences between the spectra. 

This is consistent with the findings of the subcluster detection test, which showed that there 

are at least two distinct chemical compositions in the samples.

The information from Table 2 is similar to Table 1, which we discussed earlier. Table 1 

focused on one lot of vasopressin, 20040L1C0, while Table 2 focuses on both lots. This 

demonstrates that the significant variation in the chemical composition of the vials occurs 

across lots.
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Subcluster detection results—The subcluster detection test was run on the spectral 

library, training first on Group 1 and measuring to Group 2, and then training on Group 2, 

and measuring to Group 1. Training on Group 1 yielded a confidence limit on r of 0.9337 

(p=0.02). The measured r= 0.9125, so the null hypothesis that Group 2 has the same scale 

and location as Group 1 was rejected. Testing in the other direction gave a confidence limit 

on r=0.9466 (p=0.02), and r=0.9295, so the null hypothesis that Group 1 has the same 

scale and location as Group 2 was rejected. There appear to be at least 2 distinct chemical 

compositions in the samples and these two distinct compositions are in both different lots of 

the drug.

Conclusion

Vasopressin is a polypeptide hormone used via injection to raise blood pressure in adults 

with vasodilatory shock who remain hypotensive after fluids and catecholamines. This 

sterile, aqueous solution contains synthetic arginine vasopressin for intravenous use. Each 1 

mL includes 20 units of vasopressin, 5 mg of chlorobutanol, 9 mg of sodium chloride, water 

for injection, and acetic acid to adjust the pH to 3.5. It is a clear, nearly colorless solution 

available in single-dose vials.

Intralot variability and Interlot variability was detected in two different lots of vasopressin 

using Raman spectrometry noninvasively and nondestructively to examine the contents of 

the vials. Each lot contained at least two different chemical compositions using a subcluster 

detection test at p=0.02.

These spectrometric results do not prove an excess level of impurities or adulteration. 

However, they suggest that the manufacturing process may have been operating outside of a 

state of process control. Additional investigation is needed.
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Figure 1. 
Photo of vasopressin drug product from lot 22082L1C0
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Figure 2. 
Smoothed Raman spectral graphs of the vials in lot 22040L1C0 (vials 1-14 in the spectral 

library of 51 vials).
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Figure 3. 
Principal component score plot of the 14 spectra obtained from vials in lot 20040l1C0. It 

appears that there are three small groups ([13,14], [1,5,6,12] and [2,3,4,7,8,9,10] )in one lot 

of vials.
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Figure 4. 
Another view of the principal component score plot of the 14 spectra obtained from vials in 

lot 20040L1C0 obtained through rotation. From this view it appears that there are only two 

groups of spectra in one lot of vials.
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Figure 5. 
Raman spectra of every vial in the library (n = 51). These vials come from two lot numbers.

Isaacs et al. Page 17

Contact Context. Author manuscript; available in PMC 2024 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
A plot of the principal component scores of the spectral library on PCs 1, 2, and 3. The 

spectra appear to fall in four groups in spite of the fact that there are only two lots of 

material in the library. Moreover, the two lots do not appear to correspond to the groupings 

of spectra observed.
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Figure 7. 
Another rotated view of the spectra in Figure 6, For purposes of discussion, four group 

labels have been added (1A, 1B, 2A, and 2B). The group labels do not align with the 2 lot 

numbers.
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Figure 8. 
A PC scatterplot of PCs 4, 5, and 6 of the spectral library. The four nominal groups are no 

longer visible
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Figure 9. 
A PC scatterplot of PCs 7, 8, and 9 of the spectral library. The four apparent groups are not 

visible.
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Figure 10. 
The Raman spectrum of group 1A identified in Figure 7. The most obvious difference 

between the spectra is in the size of a broad peak at about 1400 cm−1.
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Figure. 11. 
Spectra of Group 1B of the Raman spectra identified in Figure 7.
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Figure 12. 
Spectra of Group 2A of the Raman spectra identified in Figure 7.
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Figure 13. 
Spectra of Group 2B of the Raman spectra identified in Figure 7.
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Figure 14. 
The principal component loadings of PC 1 of the Raman spectra in the library.
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Figure 15. 
The principal component loadings of PC 2 of the Raman spectra in the library.
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Figure 16. 
The principal component loadings of PC 3 of the Raman spectra in the library.
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Figure 17. 
The principal component loadings of PC 4 of the Raman spectra in the library.
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Figure 18. 
The principal component loadings of PC 5 of the Raman spectra in the library.
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Figure 19. 
The principal component loadings of PC 6 of the Raman spectra in the library.
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Figure 20. 
The principal component loadings of PC 7 of the Raman spectra in the library.
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Figure 21. 
The principal component loadings of PC 8 of the Raman spectra in the library.
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Figure 22. 
The principal component loadings of PC 9 of the Raman spectra in the library.
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Table 1:

Variation accounted for by each of the principal components of the spectra

PC Number Variation in this PC Cumulative PC Variation

1 0.5862 0.5862

2 0.1917 0.1917

3 0.1143 0.1143

4 0.0863 0.0863

5 0.0056 0.0056

6 0.0038 0.0038

7 0.0026 0.0026

8 0.0021 0.0021

9 0.0020 0.0020

10 0.0015 0.0015
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Table 2:

Variation accounted for by each of the principal components of the spectra in the library

PC Number Variation in this PC Cumulative PC Variation

1 0.5425 0.5425

2 0.2325 0.7750

3 0.1419 0.9169

4 0.0614 0.9783

5 0.0081 0.9864

6 0.0029 0.9893

7 0.0013 0.9905

8 0.0010 0.9915

9 0.0008 0.9923

10 0.0005 0.9928
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