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Abstract
Metastatic brain tumors, also called brain metastasis (BM), represent a challeng-
ing complication of advanced tumors. Tumors that commonlymetastasize to the
brain include lung cancer and breast cancer. In recent years, the prognosis for BM
patients has improved, and significant advancements have been made in both
clinical and preclinical research. This review focuses on BM originating from
lung cancer and breast cancer. We briefly overview the history and epidemiology
of BM, as well as the current diagnostic and treatment paradigms. Additionally,
we summarize multiomics evidence on the mechanisms of tumor occurrence
and development in the era of artificial intelligence and discuss the role of the
tumor microenvironment. Preclinically, we introduce the establishment of BM
models, detailed molecular mechanisms, and cutting-edge treatment methods.
BM is primarily treated with a comprehensive approach, including local treat-
ments such as surgery and radiotherapy. For lung cancer, targeted therapy and
immunotherapy have shown efficacy, while in breast cancer, monoclonal anti-
bodies, tyrosine kinase inhibitors, and antibody–drug conjugates are effective in
BM. Multiomics approaches assist in clinical diagnosis and treatment, reveal-
ing the complex mechanisms of BM. Moreover, preclinical agents often need to
cross the blood–brain barrier to achieve high intracranial concentrations, includ-
ing small-molecule inhibitors, nanoparticles, and peptide drugs. Addressing BM
is imperative.
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1 INTRODUCTION

Metastatic brain tumors, also called brain metastases
(BM), are a common complication of advanced tumors
with a poor prognosis, representing a major clinical chal-
lenge in tumor treatment.1 With advancements in primary
tumor therapies and imaging technology, the survival
of patients has been prolonged, leading to an increase
in the number of patients diagnosed with BM. Primary
tumors that commonly metastasize to the brain include
lung cancer (LC), breast cancer (BC), andmelanoma. Data
from the National Cancer Database reveal that among
patients with newly diagnosed BMs, the proportions for
non-small cell lung cancer (NSCLC), small cell lung can-
cer (SCLC), melanoma, and BC are 16.0, 10.3, 1.5, and 0.3%,
respectively.2
LC is the second most common and the leading malig-

nant tumor in terms of morbidity and mortality, respec-
tively. It can be classified into SCLC and NSCLC, with
NSCLC accounting for about 85% of cases.3 Distant metas-
tasis is a leading cause of death in advanced NSCLC
patients while the brain is the most common site. Approx-
imately 30% of NSCLC patients present with BM at initial
diagnosis, and as the disease progresses, about 60% of
patients will eventually develop BM.4 The median overall
survival (OS) of untreated NSCLC BM patients is only 4–9
months. In contrast, BC patients, due to their long survival
withmedianOS up to 28 years, have nearly a 50% chance of
developing BM in the later stages of the disease.5 The inci-
dence of BC brainmetastasis (BCBM) ranks second among
various primary tumors. However, the proportion of newly
diagnosed BMpatients is relatively low.6 Data from 10-year
follow-ups indicate that triple-negative, HER2-positive
(HER2+), and HR+/HER2-negative (HER2−) BC sub-
types are more likely to develop BM.6–8 The prognosis
becomes extremely poor once BM occurs, with a median
survival of approximately 10 months.6,9 Metachronous
BMs are the most common, occurring in approximately
60% of cases, usually within 2 years of the primary tumor
diagnosis.10 In comparison, LC progresses more rapidly
than BC and tends to develop BMs in a shorter time.10 For
instance, the time from tumor diagnosis to the occurrence
of BMs varies significantly between primary tumors, with
LC showing a median interval of 5.3 months compared
with 44.4 months for BC.7,11
In the 1970s, studies on brain surgical specimens and

autopsies indicated that the incidence of BM ranged

from approximately 2.8 to 11.1 per 100,000 individuals.12–14
However, these estimates may have been an underrepre-
sentation due to limitations in medical technology at that
time.15 In 1978, Posner and Chernik16 conducted autopsies
on 2375 cases and found that 24% of tumor patients had
intracranial metastases. Additionally, about two-thirds of
patients diagnosedwith BM through biopsy exhibited neu-
rological symptoms. With the decline in autopsy rates and
advancements in medical technology, noninvasive meth-
ods for detecting BM have become increasingly prevalent.
Lokich17 highlighted the importance of computed tomog-
raphy (CT) as a noninvasive diagnostic tool for central
nervous system metastases. CT can provide detailed infor-
mation on the ventricular system, accurately depict the
number and size of lesions, assess the extent of secondary
cerebral edema.17,18 Despite these capabilities, the sensi-
tivity of CT for detecting small lesions remains relatively
low, even with the use of iodine-based contrast agents.19
In the 1980s, magnetic resonance imaging (MRI) began
to replace CT as the preferred imaging modality for diag-
nosing BM and evaluating treatment efficacy.20 According
to Suh et al.,21 MRI has become the cornerstone of radio-
logic evaluation due to its superior ability to visualize small
parenchymal metastases and leptomeningeal involvement
compared with CT. Larkin et al.22 further demonstrated
that multimodal MRI, particularly gadolinium-enhanced
T1-weighted images, offers the highest sensitivity and
accuracy for detecting smaller metastatic lesions. Despite
the advantages of MRI, CT remains relevant due to its
availability, cost-effectiveness, and efficiency in screen-
ing for various conditions. Positron emission tomography
(PET), introduced in the 1970s, complements MRI and CT
by providing metabolic information about BM and other
abnormalities.23,24 Brooks et al.25 utilized technetium Tc
99 m radionuclide scanning in the 1970s to identify 75%
of intracranial metastatic lesions accurately and to differ-
entiate vascular lesions through sequential examinations.
However, the sensitivity and specificity of fludeoxyglu-
cose (FDG) PET for detecting BM are lower than those
of MRI. Amino acid PET tracers, which do not rely
on the disruption of the blood–brain barrier (BBB) for
absorption, have shown superior diagnostic performance
compared with FDG PET and MRI-based perfusion and
diffusion-weighted imaging.26–28
In recent years, the prognosis of LCBM and BCBM

has improved significantly, and related research has made
great achievements both clinically and preclinically. In
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this review, we briefly trace the history and epidemiol-
ogy of BM. Next, we summarize the current diagnostic
and treatment paradigms for BM arising from LC and
BC. In the era of artificial intelligence (AI), technologies
such as imaging omics and machine learning have sig-
nificantly advanced the diagnosis and treatment of BM,
prompting us to focus on the progress of these technologies
and research directions. The treatment of BM is currently
comprehensive.29 We emphasize the latest progress in var-
ious treatment methods including surgery, radiotherapy
(RT), chemotherapy, immunotherapy, antibody–drug con-
jugates (ADCs), and targeted therapy. We also address
the challenges encountered in comprehensive treatment
and look forward to the development of new technolo-
gies. The occurrence of BM is extremely complex, and
its mechanisms have not yet been fully clarified.1 With
the development of biological science and technology,
multiomics has become an important method. The appli-
cation of genomics, transcriptomics (including bulk RNA
transcriptome, single-cell transcriptome, and spatial tran-
scriptome), and proteomics has provided insights into the
biological characteristics of BM.30–32 BM is a multistage,
multistep pathological process, including local invasion
of tumor cells from the primary site, intravasation into
the blood or lymphatic vessels, survival in the circulation,
penetration, and extravasation of the BBB, and intracra-
nial colonization and regrowth.33,34 Most importantly, we
present the latest findings on the entire process of BM.
We examine the tumor microenvironment (TME) of BM
and focus on therapeutic targets based on the developmen-
tal process of BM and the TME. This review highlights
the latest progress in LCBM and BCBM (mainly brain
parenchymal metastasis), summarizing the developmen-
tal mechanisms and cutting-edge treatments, aiming to
provide researchers with comprehensive and in-depth
insights.

2 DIAGNOSIS OFMETASTATIC BRAIN
TUMORS

With the advancement of medical technology, the diag-
nosis and treatment of BM have made great progress
(Figure 1). The diagnosis of BM includesmolecular pathol-
ogy and imaging examinations. The gold standard for
diagnosis is obtaining tissue samples through surgery or
biopsy for molecular pathology testing. When combined
with immunohistochemistry and genetic testing, the pri-
mary tumors of BM can be identified. Common indicators
for the origin of SCLC include: proGRP, Syn, NSE, CgA,
CD56, CEA, and TTF-1. For NSCLC, common indica-
tors include: TTF-1, Napsin A, CK5/6, P63, and P40. In
BC, common indicators are E-cad, P120, P63, CK5/6, ER,

PR, HER-2, TOPO2A, and androgen receptor (AR).34,35
Additionally, driver gene mutations and PD-(L)1 levels
are assessed in NSCLC patients. Serum tumor markers
also assist in the diagnosis and treatment of BM.36 For
patients suspected of leptomeningeal metastasis, cere-
brospinal fluid (CSF) testing can be performed through
lumbar puncture.37,38
MRI is a commonly used screening and treatment

assessment method for BM patients. CT can serve as
an adjunct for patients who are not suitable for MRI.39
Patients with large BM lesions often experience symp-
toms such as intracranial hypertension (headache, nausea
or vomiting, epilepsy, or neurological deficits) and are
referred to neurosurgery for treatment, after undergoing
diagnosis by MRI, CT, and other examinations. Asymp-
tomatic BM patients are often discovered during follow-up
examinations. After primary tumor is diagnosed, brain
MRI is routinely performed every 3–6 months.40,41 MRI is
highly sensitive for lesions smaller than 5 mm.
BMs from different primary tumors exhibit distinct

intracranial distributions.42 Bonert et al.43 employed deep
learning models to compare the BMs from various pri-
mary tumors and discovered significant differences in the
anatomical distribution of BMs between BC, LC or kid-
ney cancer. Conversely, the distribution patterns of LC,
kidney cancer and melanoma, were found to be similar.44
BC, LC, and colorectal cancer commonly metastasize to
more posterior/caudal neuroanatomical regions, particu-
larly the cerebellum.42 LCBM are mainly found in the
white matter, cerebellar hemispheres, and middle frontal
gyrus, but are less common in the inferior frontal gyrus and
temporal pole of the frontal lobe.45 Shi et al.45 described
the differences in the spatial distribution of BM from
SCLC and NSCLC. The precentral gyrus, middle frontal
gyrus, paracentral lobule, and cerebellar hemispheres are
high-risk areas for BM fromNSCLC.45 Similarly, atlas anal-
ysis indicated that the low-risk area for BM from SCLC
is the inferior frontal gyrus of the frontal lobe, and the
high-risk area is the cerebellar hemisphere.45,46 Lung ade-
nocarcinoma (LUAD) predominantly affects the frontal
lobe, whereas squamous cell carcinoma of the lung is
more likely to be found in the cerebellum.42 By integrat-
ing MRI with AI, Han et al.47 investigated the anatomical
distribution of intracranial lesions in BCBM patients and
identified the cerebellum, occipital lobe, and thalamus as
higher-risk areas for BCBM.Notably, triple-negative breast
cancer (TNBC) patientswere at increased risk for lesions in
the hippocampus and brainstem.47 More precisely, Neman
et al.48 analyzed the distribution of lesions in 2106 patients
with BMs and found that LC, BC, and melanoma were
prone to metastasize to the bilateral temporal lobes, the
right cerebellar hemisphere, and the left temporal lobe,
respectively.
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F IGURE 1 Diagnosis and treatment of metastatic brain tumors. (A) Brain metastasis from lung cancer and breast cancer can manifest as
clinical symptoms, distant metastasis, and intracranial hypertension; laboratory tests such as blood tumor markers and imaging examinations
can be used for auxiliary diagnosis and characterization of metastatic lesions. (B) The diagnostic approach for brain metastasis includes
surgery, fiberoptic bronchoscopy, and puncture biopsy. (C) HE staining and IHC are often used to confirm the primary tumor source and
classify brain metastasis. For brain metastasis from NSCLC, genomic sequencing and PD-L1 testing guide the treatment. (D) Advances in the
diagnosis of brain metastasis have been driven by technologies such as 7T-MRI, 18-FACBC PET, imaging genomics, artificial intelligence,
tertiary lymphoid structures, and liquid biopsy like ctDNA/cfDNA. (E) Treatments of brain metastasis typically involve a combination of
surgical treatment, immunotherapy, antiangiogenic therapy, radiotherapy, chemotherapy, and targeted therapy. (F) Advances in the
treatments include inhibitors, TTFields, antibody–drug conjugates for lung cancer brain metastasis and immunotherapy, strategies like
targeting the BBB or tumor metabolism for breast cancer brain metastasis.

Different MRI techniques exhibit different sensitivi-
ties and specificities.49 With the advancement of MRI
technology, the advantages of a commercial 7-T MRI
scanner, such as improved spatial resolution, increased
signal-to-noise ratio, and increased contrast-to-noise ratio,
have assisted in the diagnosis and treatment evalua-
tion of brain tumors.50,51 Longitudinal GRASP dynamic
contrast-enhanced MRI can distinguish BM progres-
sion from radiation effects after stereotactic radiosurgery
(SRS).52 Radiomics and AI can not only distinguish LCBM
from primary intracranial tumors, but also differenti-
ate BM originating from different primary tumors and
predict LC driver gene mutations.53 Conventional PET–
CT is relatively insensitive to brain tumors, but more
advanced imaging techniques may have added value.39,54
Although 18F-FACBCPET/MRI cannot improve the detec-

tion rate of BM, it has some ability to distinguish the BM
source of primary tumors.55 Furthermore, PET–CT was
employed to assess HER2 expression in BCBM patients.
The maximum standardized uptake values (SUVmax) of
18F-fluorodeoxyglucose PET were significantly higher in
HER2+ patients compared with HER2− patients.56
Liquid biopsy is crucial for the diagnosis, prognostic

stratification, prediction of treatment response, and detec-
tion of tumor progression in BM patients.57,58 With the
advancement of liquid biopsy, cell-free DNA (cfDNA)and
circulating tumor DNA (ctDNA) have been used in the
diagnosis and treatment of primary tumors.59,60 CfDNA
is released by normal cells and cells exhibiting patholog-
ical processes (e.g., inflammation and tumors). ctDNA is a
subset of cfDNA released by tumor cells through a com-
bination of apoptosis, necrosis, and secretion.36,61 Chen
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et al.59 used ctDNA for postoperative monitoring of LC.
Patients with colorectal cancer BMhave higher cfDNA lev-
els than healthy people.62 In detecting the genome, the
results show that CSF ctDNA can more comprehensively
reflect the mutation status of BM than plasma ctDNA.
Minor allele frequency is highly correlated with BM tumor
size (R = 0.95), and CSF circulating tumor cells (CTC)
has a faithful mutation allele frequency correlation and is
much higher than the mutation detection rate of plasma
CTC (83.33 vs. 27.78%).63,64 A machine learning model
for early diagnosis of BM based on CSF ctDNA has been
developed.65 In BM, the detection rate of CSF cfDNA is
significantly higher than that of plasma cfDNA, and the
abundance of cfDNA is significantly reduced after RT, but
there is no significant change in CSF TMB.66 The com-
bination of ctDNA and T cell repertoire can predict the
efficacy of RT for BM.61 Prospective clinical studies have
also demonstrated the bright future of CSF CTCs.67 In
HER2+BCpatients, detecting FGFR aberrations in ctDNA
often indicates an increased risk of BM.68 The advance-
ment of liquid biopsy has been significantly driven by the
detection of genomic alterations through ctDNA. Alder
et al.69 analyzed serum ctDNA from 253 patients with
BM, finding that ESR1 and BRCA2 mutations were more
prevalent in BCBM patients. Although sequencing of eight
brain tissues and corresponding ctDNA revealed a high
mutation consistency (seven out of eight), the larger and
prospective studies are needed to validate the diagnostic
feasibility of ctDNA.69 Similarly, Curtaz et al.70 identified
miR-576-3p andmiR-130a-3p in exosomes from blood sam-
ples, achieving area under curve (AUC) values of 0.705 and
0.699, respectively, for predicting BM occurrence.
Tertiary lymphoid structures (TLS) are organized

immune cell aggregates within the TME that resem-
ble secondary lymphoid organs. These structures are
closely associated with immunotherapy responses and
prognosis across various cancers.71 Notably, Zhao et al.72
assessed TLS in BCBM patients and found that high
TLS density was present in about half of the patients,
correlating with longer OS and progression-free survival
(PFS). Additionally, they integrated factors such as age,
systemic chemoradiotherapy, tumor molecular subtype,
and Karnofsky Performance Status with the TLS score
to develop a nomogram for predicting the clinical prog-
nosis of BCBM patients, thereby facilitating the clinical
application of TLS.72

2.1 The application of new technologies
in the era of AI

With the development of science and technology, the
integration of medicine and engineering has become a
prominent trend, significantly advancing the diagnosis

and treatment of tumors.73,74 The successful application
of AI in medical imaging has enabled AI-based cancer
imaging analysis technologies to address complex clinical
needs, such as predicting the cancer prognosis, predicting
treatment responses, distinguishing between benign and
malignant lesions, identifying abnormal tumor responses,
and predicting mutations and molecular features.75,76 In
the field of LCBM, AI and imaging omics have proven
effective in distinguishing BM from different primary
tumors.77 Gao et al.78 developed a deep learning model for
the automatic identification and classification of 18 types
of brain tumors. This model, using T1-weighted gradient-
echo MRI scans, can detect nearly all BM that are 6 mm
or larger with a low false positive rate.79 A systematic
review and meta-analysis conducted by Wang et al.,80
which included 42 studies demonstrated that deep learn-
ing models, particularly U-Net and its variants, excel in
segmentation accuracy.81 Yun applied these deep learn-
ing models in prospective studies, noting improvements
in detection performance, though challenges remain for
small BM. Enhancing the detection sensitivity for small
metastatic lesions,may require larger training datasets and
refined network designs.79,82,83
Deep learning also plays a crucial role in identifying

the primary sources of BM. Jiao’s retrospective study,
which included BM patients from various tumors (100
SCLC patients, 125 NSCLC patients, 116 BC patients, and
108 gastrointestinal cancer patients), utilized a three-
dimensional residual network (3D-ResNet) to identify the
tumor origin. The model could distinguish between LC
and non-LC, SCLC, and NSCLC, BC and gastrointestinal
cancer using MRI sequences like T1WI, DWI, and CE-
T1WI. However, combining MRI sequences such as CE-
T1WI + T2WI + DWI improved differentiation between
BC and gastrointestinal cancer. but did not accurately
distinguish LC from non-LC.84
To predict the incidence of LCBM, enable early detection

and accurate classification, clinical, pathological, imaging,
and other omics data are integrated. A deep learning algo-
rithm has achieved an 87% accuracy rate in predicting
BM development, significantly outperforming the aver-
age accuracy of four pathologists (57.3%).85 Jeong et al.86
found that sensitivity for detecting high-risk patients was
95%.87 Targeted therapy for LCBMoften relies on patholog-
ical information from the LC. However, the discrepancies
between BM and primary LC histology have led to the use
of multitask deep learning networks to predict molecular
classifications such as epidermal growth factor recep-
tor (EGFR) wild-type and mutant types.88,89 Additionally,
deep learning models for EGFR 19Del/21L858R muta-
tions and wild type have achieved AUC values above
0.97, though precautions are needed to address poten-
tial issues such as deceptive strategies and overfitting
in AI.86
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Combining clinical information with MRI-based deep
learning facilitates the segmentation of BM gross tumor
volume and predicts RT efficacy.88,90–94 Deep learning
radiomics and EGFR status are used to predict survival
after SRS for LCBM. Combining deep learning with imag-
ing data before and after whole-brain radiation therapy
(WBRT), Rammohan et al.95 demonstrated that the aging
rate of the brain and changes in brain substructure acceler-
ated afterWBRT,which are associatedwith neurocognitive
function and could guide clinical treatment. Beyond RT,
AI is also employed to predict the efficacy of targeted ther-
apy, immunotherapy, and other treatments.96–98 Recent
advancements include the use of deep learning for intra-
operative brain tumor identification and near-real-time
diagnosis using simulated Raman histology and deep neu-
ral networks.99,100 Radiogenomics, which examines the
relationship between genomics and imaging phenotypes,
has been instrumental in addressing tumor heterogene-
ity and predicting immune responses and progression.101
However, unveiling the “black box” of radiomics imaging
will contribute to the development of precision medicine
research.102
In BCBM, AI primarily focuses on predicting the occur-

rence of BM, identifying the primary lesions, and predict-
ing molecular subtypes. A multivariate logistic regression
model using clinical variables at diagnosis achieved AUC
values of 0.95, 0.94, 0.77, and 0.61 for BC, melanoma,
and NSCLC/SCLC, respectively.2,103 Deep learning mod-
els have been used to identify the primary lesions of BM
by analyzing anatomical distribution differences.44 HER2
status has been predicted with high accuracy based on
relative cerebral blood volume, achieving a model accu-
racy of 0.98.104 Preoperative brain MRI combined with
deep learning has predicted ER, PR, and HER2 status with
accuracies of 0.89, 0.88, and 0.87, respectively.105,106 How-
ever, Strotzer et al.107 noted limitations in predicting BM
histology based on MRI. Additionally, AI also aids in fore-
casting prognosis and guiding treatment for BM patients,
with the XGBoost model predicting the 6-month to 3-year
prognosis for BCpatients, achievingAUCvalues exceeding
0.8.108 Pandey et al.109 developed a deep learning frame-
work to optimize SRS dose planning for BCBM patients
using multiparametric MRI images.
Despite promising prospects, machine learning and

radiomics may not always be reliable. Deep learning
exhibits limitations such as deceptive predictions and
overfitting.110 The auxiliary role of AI is powerful, but
whether it can be independently applied to the diagno-
sis and treatment of BM remains an open question.86
Future development will focus on creating more practical
and accurate algorithms, adopting refined imaging tech-
niques, and continuing the integration of medicine and
engineering.80

In general, diagnosing BM remains relatively straight-
forward, whether during the initial treatment or through-
out the course of the primary tumor. In the era of AI,
machine learning is primarily used to predict the occur-
rence and prognosis of BM, locate primary lesions, and
assess treatment responses. However, prediction models’
accuracy can be limited by small sample sizes and nonin-
novative algorithms. Additionally, the lack of explainabil-
ity in AI restricts their further application.

3 TREATMENTS OFMETASTATIC
BRAIN TUMORS

3.1 LCBM

The treatment of LCBM mainly include surgery, RT,
chemotherapy, targeted therapy, and immunotherapy.29,111
Here, we briefly describe the treatment strategies.

3.1.1 Surgical treatment

Surgery is often necessary for BM, particularly when they
cause significant intracranial hypertension.112 Neurosur-
geons evaluate the need for surgery, which can quickly
relieve symptoms, potentially achieve local cure by com-
pletely removing the tumor and provide tumor tissue
for pathological diagnosis.113 Postoperative adjuvant ther-
apy, specifically RT combined with immunotherapy, have
shown improved OS compared with chemoradiotherapy
(23.0 vs. 11.8 months).114 However, patients without sur-
gical indications typically receive nonsurgical treatments
following supportive care.

3.1.2 Targeted therapy

For asymptomatic BM, targeted therapy is a primary treat-
ment based on driver gene status.115,116 The prognosis
of patients with EGFR mutations (e.g., exon 19 deletion
and exon 21 mutation) and ALK rearrangement have
improved with targeted therapy.116,117 Targeted therapy
has reduced the need for local treatment for BM.118,119
Recent advancements also benefit patients with raremuta-
tions like KRAS G12 mutations, MET ex14 and EGFR
20ins.120,121 Patients unable to receive targeted therapy
may consider further treatments such as chemotherapy,
immunotherapy, RT, antiangiogenesis. Additionally, for
patients receiving targeted therapy, short-term intracranial
progression is mainly attributed to residual lesions, which
may be addressed with local treatments like surgery, SRS,
or WBRT.122 Additionally, issues such as drug resistance
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after targeted therapy, the lack of available drugs for the
target, or poor efficacy can also arise.123

3.1.3 Radiotherapy

RT is a crucial local treatment for LCBM.124 It is primarily
categorized into SRS and WBRT. SRS is typically utilized
for oligo BM (usually fewer than four lesions), whereas
WBRT is preferred for more extensive metastases. Both
SRS andWBRT have limitations such as radiation-induced
brain necrosis, neurocognitive impairment, and posttreat-
ment progression.125,126 However, given that SCLC tends
to progress and metastasize widely, current clinical guide-
lines recommend routine MRI or prophylactic cranial
irradiation.127
In recent years, there has been increasing scrutiny

regarding the application of SRS for multiple BM, with
the introduction of hippocampal avoidance radiotherapy
(HA–WBRT) helping to mitigate damage to neurocog-
nitive function.128 The therapeutic benefits of SRS have
prompted researchers to explore its expanded indications.
However, Bodensohn et al.’s129 study confirmed that apply-
ing SRS to patients with 4–10 BM lesions did not effectively
improve OS. Moreover, there is insufficient high-quality
evidence regarding the separation and combination of SRS
and WBRT. Compared with WBRT combined with SRS,
WBRT with simultaneous integrated boost did not signifi-
cantly alter median OS and objective response rate (ORR)
but did extend median intracranial PFS (iPFS).130 The
debate between SRS and WBRT remains ongoing. Com-
paredwith SRS,WBRTwith simultaneous integrated boost
did not significantly prolong OS, but the median iPFS was
longer.131 Ni et al.132 retrospectively analyzed that WBRT
plus focal radiation boost resulted in prolonged OS and
iPFS compared with WBRT or SRS alone.
RT represents an important local treatment that can

prolong the survival of patients.133,134 Whether prophy-
lactic brain irradiation can replace WBRT and reduce
neurocognitive impairment remains unknown. Current
research is also investigating the use of prophylactic
brain irradiation in patients with stage III or patholog-
ically node-positive NSCLC, as exemplified by studies
such as NCT02448992. As an important component of
BM treatment, local therapies like physical therapies
such as TTFields (NCT02831959) and focused ultrasound
(NCT05317858) have also garnered attention. The METIS
study, which is announced at the 2024 ASCO meet-
ing, focuses on the combined application of SRS and
TTFields. METIS study indicated that TTFields following
SRS can significantly delay median intracranial survival
time (SRS + TTFields vs. SRS + best supportive care:
21.9 vs. 11.3 months). Furthermore, patients treated with

TTFields tolerated the therapy well, experiencing signifi-
cant improvements in quality of life and PFS.

3.1.4 Chemotherapy

Despite the challenges with penetrating the BBB,
chemotherapy remains vital for treating LCBM.135 Agents
like pemetrexed and temozolomide are pivotal, and
antiangiogenic drugs such as bevacizumab have shown
superior ORR and disease control rate (DCR) for intracra-
nial lesions compared with extracranial lesions, without
increasing the risk of bleeding in BM patients.136–138
Recent trials support combining platinum–pemetrexed
with osimertinib can effectively manage the progression
of EGFR + LCBM (NCT04035486), positioning it as a
viable first-line treatment option. Moreover, phase III
clinical trial (NCT01951469) support gefitinib combined
with chemotherapy as a first-line treatment for untreated
EGFR + LCBM.139

3.1.5 Immunotherapy

Immunotherapy has significantly advanced treatment
landscape of LC in recent years, leveraging the immune
system to target tumor cells.140,141 Immune checkpoint
inhibitors (ICIs) have particularly revolutionized theman-
agement of nononcogene-driven NSCLC.142 However,
comprehensive treatment remains pivotal for managing
LCBM. The multicenter ESCKEYP GFPC study demon-
strated that there was no significant difference in ICI
response rates or PFS between patients with and with-
out BM at baseline, highlighting the robust therapeutic
efficacy of ICIs.143,144
Optimizing therapeutic effect through combinations of

immunotherapy, chemotherapy, and RT remains ongoing.
Meta-analyses and SEER database analysis by Abdul-
haleem et al.145 have confirmed that immunotherapy
extends OS.145,146 Furthermore, combining dual ICIs or
single ICI with chemotherapy has shown superior OS
extension, along with higher incidence of treatment-
related adverse events.147 Prospective studies have vali-
dated that dual ICI regimens, such as nivolumab plus ipili-
mumab, significantly prolong 5-year systemic and intracra-
nial PFS following immunotherapy.148 In the context of
local BM treatment, numerous studies support RT is piv-
otal in overcoming the BBB and enhancing immunother-
apy efficacy. Compared with WBRT, simultaneous SRS
with ICI demonstrates enhanced effectiveness.149,150 Meta-
analyses by Yu et al.151 corroborate that synchronized
ICI and RT achieve optimal outcomes without signifi-
cantly increasing adverse events. However, Li et al.’s152
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retrospective analysis indicates that ICI may elevate the
risk of radiation necrosis, particularly within 3 months
post-RT. Augmenting efficacy through the addition of G-
CSF in radioimmunoassay further enhances treatment
outcomes.153,154 Another strategy for advanced NSCLC
treatment involves dual ICI combinations (anti-PD1/anti-
PD-L1 and anti-CTLA4), which synergistically optimize
cell-mediated immune responses against tumor cells.154
Phase I/II clinical trials have validated the safety of dual
ICIs (nivolumab and ipilimumab) in conjunctionwith SRS
for LCBM.
The role of immunotherapy in treating BM from SCLC

remains a subject of ongoing exploration and debate.155
Retrospective studies have yielded conflicting results
regarding the efficacy of combining RT with ICI in SCLC.
Some findings suggest that RT combined with ICI does
not confer significant survival or local control benefits
for SCLC BM.156 For instance, CASPIAN, IMpower133,
and ASTRUM-005 did not demonstrate a clear OS advan-
tage in SCLC patients with BM.157–160 Specifically, meta-
analyses by Zhou et al.161 indicated that the addition of
ICI to chemotherapy did not improve OS compared with
chemotherapy alone (HR = 1.23), although it did prolong
PFS (HR = 0.81). The ORR were similar between the two
treatment groups (RR = 1.04).161 ASTRUM-005 similarly
showed no significant OS benefit irrespective of BM status
at baseline (HR = 0.62 vs. 0.61).160 Retrospective studies
have also produced conflicting data on the combination
of RT and ICI for SCLC BM. While some suggest no sur-
vival benefit or increased neurotoxicity, others indicate
potential survival improvements, especially when WBRT
precedes ICI treatment.156,162 Additionally, Lu et al.163
found that ICI therapy did not delay brain progression or
reduce the risk of intracranial metastasis in SCLC. Despite
these challenges, the combination of chemoradiotherapy
and immunotherapy remains a viable treatment option
for SCLC.164 Further prospective studies and clinical tri-
als are needed to clarify the optimal treatment strategies
and patient selection criteria for immunotherapy in SCLC
BM.142
The landscape of clinical trials focusing on LCBM

reflects ongoing efforts to refine diagnosis and treat-
ment approaches, though challenges persist, particularly
in addressing active or untreated BM. Currently, approxi-
mately 250 clinical studies registered on ClinicalTrials.gov
are dedicated to exploring the treatments of LCBM. These
trials encompass both diagnostic innovations, such as new
PET–CT methodologies (NCT00253461, NCT05452005,
NCT00040560, NCT04752267, NCT00445965, etc.), and
therapeutic strategies centered around targeted therapy,
RT, chemotherapy, and physical treatments. The majority
of these trials fall within the phase I–II, which primarily
aims to assess safety, dosage, and initial efficacy. In con-

trast, phase III–IV trials that provide robust evidence for
clinical applications are relatively less common (Table 1).
Phase III trials predominantly evaluate local treatments
and targeted therapies, while immunotherapy trials are
comparatively rare. Some studies are also investigating
innovative approaches like vaccine therapies involving
dendritic cells and macrophages, reflecting a broader
therapeutic strategy (NCT01782287). The identification of
specific targets, such as HER3, has further spurred the
development of novel ADCs. Phase III trial HERTHENA-
Lung01 demonstrated ADC’s efficacy in EGFR-resistant
or postchemoimmunotherapy scenarios.165 Despite these
advancements, the complex anatomical considerations
and unique microenvironment of BM pose significant
treatment challenges. Recent developments in single-
cell/spatial transcriptomics have shed light on the under-
lying mechanisms and microenvironmental nuances of
BM. However, treatment strategies directly targeting these
insights remain limited. Moving forward, bridging the gap
between retrospective findings and prospective clinical
trials will be crucial.
BM is mainly treated with comprehensive approaches.

After utilizing targeted therapy, immunotherapy, RT, and
other modalities, the prognosis of LCBM has significantly
improved. Local treatments primarily include surgery and
RT,while systemic treatments such as targeted therapy and
immunotherapyhave largely supplanted chemotherapy. In
addition to considering the dose and fractionation of RT,
the focus has shifted to employing HA–WBRT and SRS
to mitigate neurocognitive dysfunction. The integration of
targeted therapy, immunotherapy, and RT is a prominent
topic in BM. Factors such as optimal dosing, treatment
sequencing, and timing all influence efficacy.185 The lat-
est studies have highlighted the therapeutic potential of
TTFields and have also directed attention toward physical
therapy.

3.2 BCBM

3.2.1 Surgical treatment

Surgery significantly reduces intracranial pressure in
patients with multiple BMs while also allowing for
tumor tissue acquisition.186 Labeling BCBM with 5-
aminolevulinic acid enhances surgical resection and
prolongs survival.187 However, perioperative stress and
inflammatory signals may promote tumor metastasis
and impact surgical effectiveness. Hanalis-Miller et al.188
demonstrated that personalized psychological interven-
tions for perioperative patients can reduce the expression
of tumor metastasis-related molecules. Combining sys-
temic therapy with local therapy remains crucial for
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effective treatment. Hijazi et al.189 analyzed data from
9005 BCBM patients using the National Cancer Database
and found that patients who received only local treat-
ment without systemic therapy had more than double the
risk of death compared with those who received systemic
treatment.

3.2.2 Systemic therapy

For BCBM patients, determining the molecular subtype is
essential for guiding treatments. HER2+BC and TNBC are
known to frequently metastasize to the brain. Recent stud-
ies have highlighted the importance of identifying patients
with low or no HER2 expression. Onder and Karacin
et al.190 retrospectively analyzed 201 BC patients and found
that the median BM-free survival was 43.7 months for
patients with low HER2 expression and 30.1 months for
those with no HER2 expression. Interestingly, the survival
period after the occurrence of BM was similar in both
groups.190 This underscores the importance of accurate
molecular subtypes identification for tailoring treatment
strategies for BCBM.
Anti-HER2 therapy plays a crucial role in managing

HER2+ BCBM patients. After trastuzumab deruxtecan
treatment, the mPFS for patients with active BMs and lep-
tomeningeal metastases was 13.2 months and 17.5 months,
respectively, while the survival for patients with stable
BM had not yet reached 20 months of follow-up.191,192
Meta-analysis further supports the efficacy of trastuzumab
deruxtecan, showing an intracranial ORR of 61%. Specif-
ically, the ORR for patients with stable BM was 68%,
while it was 60% for patients with active BM.193,194 The
phase III DESTINY-Breast03 trial also demonstrated that
trastuzumab deruxtecan significantly improved PFS for
HER2+ BCBM patients.195
Tyrosine kinase inhibitors (TKIs) are effective targeted

therapies forHER2+BC, as they inhibit the tyrosine kinase
activity of both the EGFR and HER2. TKIs, including ner-
atinib, lapatinib, and pyrotinib, have demonstrated the
ability to prolong the prognosis of BMs. Recent phase II
clinical trials highlight the significant efficacy of neratinib,
showing its effectiveness in treating newly diagnosed or
previously treated BCBM patients.196 Similarly, pyrotinib
combined with trastuzumab has been shown to extend the
mPFS of HER2+ BCBM patients to 17.9 months.197
Combining TKIs with chemotherapy significantly

improves the intracranial ORR. Wang et al.11 demon-
strated that the combination of pyrotinib and capecitabine
in BCBM patients (who had not received/had received
prior RT, or who had progressed after RT) achieved
intracranial ORRs of 72.73, 55, and 42.86%, respectively.
Prospective studies have shown that the intracranial ORR

of pyrotinib combinedwith capecitabine in HER2+ BCBM
patients who had not received treatment was 74.6%, while
the intracranial ORR of patients who had previously
received trastuzumab was 42.1%.198 However, Mikaeili
Namini et al.199 showed that there was no significant
difference in the intracranial ORR of HER2+ BCBM
patients with pyrotinib combined with nab-paclitaxel,
capecitabine, or vinorelbine, although the peripheral ORR
was relatively better with nab-paclitaxel, suggesting it may
be a preferred option.
Clinical trials exploring multidrug combinations are

currently underway. In BCBM, systemic treatment with
TKIs such as tucatinib, lapatinib, and pyrotinib has
been shown to prolong PFS.200 A phase II prospective
study by Chen et al.201 demonstrated that a combi-
nation of palbociclib, trastuzumab, pyrotinib, and ful-
vestrant may offer a new treatment option for HR+
HER2+ BCBM patients. Additionally, tucatinib combined
with trastuzumab and capecitabine may effectively treat
HER2+ BCBM patients.202 Huo et al.203 demonstrated
through a network meta-analysis that the ORR of the
trastuzumab deruxtecan and pyrotinib combined with
capecitabine regimen was particularly significant (ORR
73.33%).

3.2.3 Radiotherapy

RT remains a crucial local treatment for BCBM, com-
monly including SRS and WBRT. The most frequently
used WBRT regimen is 30 Gy in 10 fractions. Among BM
patients from various primary tumors (BC, NSCLC, SCLC,
or melanoma) who received WBRT, those with BC had
the longest survival time, with a mOS of approximately
7.7 months.204 Further research indicates that combining
WBRT with simultaneous integrated boost enhance treat-
ment efficacy for BCBM.205 However, similar to LCBM
patients, WBRT can lead to cognitive and neurological
deficits.206 A retrospective analysis of 873 BCBM patients
at MD Anderson Cancer Center found that SRS, surgery,
or SRS followed by WBRT had comparable OS and local
control.207 For TNBC BM patients, the median OS after
SRS was 19.5 months.208 In patients treated with SRS,
the 1-year and 2-year OS rates were 43 and 20%, respec-
tively, with 76% of lesions showing regression.209 Low-dose
SRS (≤14 Gy) also contributes to effective local control.210
Recent meta-analysis has shown that neoadjuvant SRS
improves local control rates and reduces complication
incidence.211 However, only a few studies have compared
neoadjuvant and adjuvant SRS regimens directly, with
results indicating that while the OS rate remains low, it
is significantly improved.211 Combining RT with systemic
therapies, such as SRS with tucatinib, capecitabine, and
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trastuzumab, is both safe and feasible for treating HER2+
BCBM.212
While anti-HER2 therapy combined with RT enhances

treatment efficacy, it also inevitably increases the risk of
radiation necrosis. ForHER2+BCBMpatients, concurrent
treatment with pertuzumab and SRS has been associ-
ated with an increased risk of invasive lobular carcinoma.
Nevertheless, it significantly improves both OS and local
control rates.213 Further studies suggest that administer-
ing RT before anti-HER2 targeted therapy may result in
better intracranial PFS, although the sequence of these
treatments does not impact OS.214 It is important to note
that patients receiving SRS combined with HER2-targeted
drugs are also at higher risk for radiation necrosis.215,216
Pyrotinib has been shown to enhance radiosensitivity in
HER2+BCBMpatients.217 Recent clinical trial results indi-
cate that combining pyrotinib with RT can extend mPFS
(14.37 vs. 7.83 months, p = 0.375) and median OS (not
reached vs. 36.40 months, p = 0.034).218–221
For advanced TNBC patients, the primary treatment

remains single-agent chemotherapy or combination
chemotherapy. In contrast, CDK4/6 inhibitors are the
first-line treatment for HR+/HER2− metastatic BC
patients. Retrospective studies suggest that early usage of
CDK4/6 inhibitors (before BM occurs) may diminish their
effectiveness once BMs develop.222 Among 371 patients
treated with CDK4/6 inhibitors, the 6-month PFS and
local control rates were 76.5 and 80.2%, respectively,
while the 12-month PFS and local control rates were 49.7
and 68.8%, respectively.223 Combining RT with CDK4/6
inhibitors has been demonstrated as a feasible strategy for
treating BCBM.223 Preclinical models have shown that this
combination increases CD8+ effector T-cell infiltration in
BMs, while decreasing the proportion of regulatory T-cells
(Tregs) and levels of immunosuppressive cytokines.224
Compared with LCBM, the treatment progress for

BCBM is relatively slow. While anti-HER2 treatment is
effective for BM from HER2+ BC, including monoclonal
antibodies, TKIs, and ADC, combination therapy appears
to offer a better therapeutic effect. However, the increased
risk of radiation-induced brain necrosis must be consid-
ered. Immunotherapy remains relatively rare. For TNBC
patients, chemotherapy remains an important treatment
option.

3.3 Differences in efficacy and
mechanisms of primary tumor and BM

As a physical and biological barrier, the BBB creates a
unique microenvironment for the brain. The efficacy of
chemotherapy for BM is relatively poor compared with
that for primary tumors, which can be partly attributed to

the low intracranial drug concentration caused by the BBB.
While therapeutic antibodies were traditionally believed
to be unable to penetrate the BBB, but real-world evi-
dence shows that anti-PD-L1 and PD-1 antibodies have
therapeutic effects in LCBM.225 Although there is a mod-
erate consistency in HLA class 1 expression between LC
and BM, nearly a quarter of patients exhibit inconsistent
HLA expression. Antigen presentation loss may represent
one of the many potential mechanisms for inconsistent
responses to ICIs therapy.226 Furthermore, the heteroge-
neous microenvironment of tumors greatly reduces the
therapeutic efficacy of ICIs.227 Multiple immunofluores-
cence and spatial transcriptomics studies revealed that ICB
reduces a unique population of CD206+ macrophages in
the perivascular space, which may regulate T cell entry
into BM. Biomimetic codelivery strategies can potentially
reverse osimertinib resistance by inhibiting macrophage-
mediated innate immunity.228
LC cells travel long distances and grow within the

brain. Tumor cells in BM exhibit distinct characteristics,
including specific molecular expressions that influence
therapeutic outcomes. For example, cells with high expres-
sion of S100A9 may evade osimertinib-induced killing
and promote tumor recurrence. Mechanistically, S100A9
upregulates the expression of ALDH1A1 and activates
the retinoic acid (RA) signaling pathway.229 Similarly,
the S100A9/RAGE interaction also mediates radiation
resistance in LCBM.230
Metabolic abnormalities are a crucial mechanism

underlying chemotherapy resistance in BM. Tumor
metabolism, a hallmark of cancer, plays a pivotal role in
mediating various therapeutic resistances.231 For instance,
GPX4 activates the WNT/NR2F2 signaling pathway by
regulating GSTM1, leading to high glutathione consump-
tion and consequent resistance of BM to platinum-based
chemotherapy.232 Warburg originally observed that cancer
tissue sections in vitro utilize large amounts of glucose
to produce lactate even in the presence of oxygen, a
phenomenon known as aerobic glycolysis or the Warburg
effect.231 Aldo-keto reductase family 1 B10 (AKR1B10) in
BM promotes Warburg metabolism by regulating lactate
dehydrogenase, ultimately contributing to pemetrexed
resistance in BM.
The brain’s unique metabolic feature is the coupling

of neurons and astrocytes through glutamate, glutamine,
and lactate.233 Metabolic pathways, including glycoly-
sis, alanine, aspartate, and glutamate metabolism, as
well as arginine biosynthesis, are significantly altered
in BM patients.234 Additionally, there are notable differ-
ences in BMs depending on the primary lesion or the
timing of metastasis, such as synchronous, latent, and
metachronous metastases.235 More importantly, metabolic
disorders related to fat synthesis and decomposition
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are prevalent in BCBM. Fat synthesis enables tumor
cells to adapt to the brain’s low-lipid microenvironment,
facilitating their colonization and growth.236 Targeting
fat metabolism in BC cell has emerged as an effective
treatment strategy.236
The treatment of BM differs significantly from that of

primary tumors. One of the most significant differences
is the BBB. The BBB is dynamic during tumorigenesis,
and its conversion to the blood–tumor barrier (BTB) is
common. As a biophysical barrier, the BBB maintains the
relative stability of the intracranial microenvironment but
also limits drug penetration. Utilizing new drug carriers,
nanotechnology, and physical methods to overcome the
BBB may be effective treatment strategies. Additionally,
the differences between tumor cells in primary tumors
and BM are substantial. Variations in gene expression and
metabolismmight account for the differences in treatment
efficacy between primary lesions and BM. Employing
multiomics approaches and preclinical studies to explore
the mechanisms of BM will aid in developing potential
treatments.

4 MODELS’ ESTABLISHMENT FOR
METASTATIC BRAIN TUMOR

In clinical trials, the inclusion of BM patients marks a
significant milestone.237 Although BM are often analyzed
as a subgroup of primary tumors, many reliable results
have been obtained.238 However, BM,which originate from
primary tumors, exhibit distinct characteristics. that neces-
sitate their study as a distinct entity. The development
of traditional cell and animal models, as well as newer
models like spheroids, organoids, and tumor-on-a-chip, is
integral to preclinical research (Figure 2). Organoids are
believed to better reflect individualized tumor characteris-
tics and are anticipated to have a promising future.239,240
Despite this, determining the optimal model is challeng-
ing due to their varying advantages and disadvantages.
Therefore, selecting the most appropriate model based on
specific research needs and cost considerations is prudent.
Li et al.241 suggest that combiningmicrospheres/organoids
with microfluidic technology can enhance the simulation
of in vivo tumor environments.

4.1 Cell and animal models

Cell and animal models form the foundational framework
in BM research.242 Currently, in vitro studies often utilize
commercially available tumor cells, while animal models
enhance the credibility of findings in BM research.243,244
Recently, the development of BM cell lines has gained

prominence. Valiente et al.245 coordinated 19 laboratories
to establish a panel of cells with brain tropism, provid-
ing comprehensive insights into experimental models of
BM. This collaborative effort has significantly advanced
BM as a distinct research field.245 Animal models predom-
inantly involve mice, with additional utilization of rat and
zebrafishmodels.245–247 Commonmodels involve injecting
human cells into immunodeficient mice, utilizing species-
specificmouse-derived cells like LLCand 4T1,which facili-
tates robust platforms for studying BM immunotherapy.245
Orthotopic tumor models in animals typically encompass
BC, LC, and melanoma.245 Various inoculation methods
include systemic and local approaches.248 Local inocu-
lation, which directly injects tumor cells into the brain
parenchyma via a syringe, is straightforward for BM
modeling but lacks adequate interaction with the brain
microenvironment and fails to replicate the metastatic
cascade, diminishing its relevance in BM research.249 Sys-
temic inoculation, involving the introduction of tumor
cells via routes such as the tail vein, carotid artery, or
intracardiac injection, accuratelymimics tumor cells circu-
lation, BBB breach, and colonization in brain parenchyma.
Nonetheless, systemic inoculation presents challenges
like complexity, incomplete representation of tumor cells
escapes from primary sites, potential extracranial tumor
formation, and increased animal disease burden.248,250
Spontaneous BM models require tumor cells to inde-

pendently complete all metastatic cascade steps from
spontaneously arising or orthotopically implanted tumors,
faithfully reflecting BM progression.251 However, high
costs and lengthy timelines restrict their widespread
use in BM research. Patient-derived tumor xenograft
(PDX) models involve implanting tumor tissue or pri-
mary cells from patients into immunodeficient mice to
retain parental tumor histopathology,molecular traits, and
drug responses.252 Despite these advantages, PDX mod-
els face challenges such as low success rates, extended
experimental cycles, and species differences, limiting their
applicability in BM research.253
Most in vitro studies in BM employ tumor cell lines

derived from primary tumors, which somewhat under-
mines the robustness of conclusions in BM research.
Establishing a cell model of BM often relies on refined
animal models. The current research paradigm involves
continuously adapting tumor cells using animal models
to enhance their propensity for BM. Enhancing animal
model construction techniques and employing humanized
mice could potentially advance preclinical BM models.254
Systemic therapies like chemotherapy, targeted therapy,
and immunotherapy primarily rely on models of pri-
mary tumor, with scant exploration into their efficacy
against BM in preclinical settings. Local treatment param-
eters, such as specific RT parameters, play crucial roles in
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F IGURE 2 Common preclinical models in brain metastasis research. (A–E) Common models include animals (such as mice (most
common), rats, zebrafish), brain-tropism cells (often labeled with the end of Brm or BR), organoids, and microfluidic chips. (F and G) The
advantages and disadvantages of local and systemic inoculation are considered to construct animal models of brain metastasis. (H) Describes
the process of constructing brain-tropism cells (also called brain metastatic cells).

influencing the trajectory of BM research.248,255 Shi et al.248
summarized findings in BM cells and models concerning
RT, detailing advancements from model establishment to
therapeutic strategies integrating RT. Their work furnishes
comprehensive and meticulous data for refining RT-based
local treatments for BM.248 Nonetheless, variability in
specific RT parameters such as dosage and dose rate in
preclinical BM models warrants greater attention.248

4.2 Organoids

Organoids are tissue analogs with defined spatial struc-
tures formed by three-dimensional culture of adult or
pluripotent stem cells in vitro.76 They effectively pre-
serve molecular, cellular, and histological phenotypes
of original tumors, thereby maintaining patient-specific
tumor heterogeneity, which confers unique advantages
in disease modeling and precision tumor therapy.256
However, the complexity of brain tumor biology and the
unique brain microenvironment have somewhat hindered
the full development of organoid models. Bridging the gap
to realistically reflect nerve–tumor interactions observed
in patients remains a significant challenge for current

research using conventional cell and animal models.257
In 2018, Bian et al.258 pioneered the establishment of
an organoid model capable of simulating brain tumors,
marking a pivotal advancement. The utilization of fetal
tissue brain organoids combined with Crispr-Cas9 tech-
nology has further enabled sophisticated brain tumors
modeling.259 Despite several years of progress, organoids
remain predominantly employed in studying brain tumors
such as gliomas andmeningiomas.257,260 Recent studies by
Qu et al.244 have explored the interaction between SCLC
and astrocytes using assembloids composed of SCLC
aggregates and human cortical organoids. Fitzpatrick
et al.261 successfully developed organoids derived from BC
patients with leptomeningeal metastasis. Choe et al.262
established a three-dimensional in vitro model that more
accurately replicates BM using tumor cells and brain
organoids derived from human embryonic stem cells
(metastatic brain cancer brain organoids). Quaranta and
Linkous263 expanded on their primary brain tumormodels
to create an authentic in vitro model of brain develop-
ment for studying BM. Currently, organoid models are
increasingly employed as surrogate models for BM in vitro
experiments, drawing from insights gained in brain tumor
research, particularly gliomas.264 Understanding the
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biological underpinnings and the TME specific to LCBM
holds the key to further advancing organoid models in this
context.263,265
To simulate the interaction between BC and the brain

microenvironment, Wang et al.266 cocultured various BC
cells with brain organoids derived from human embryonic
stem cells to construct an organoidmodel. They discovered
that MDA-MB-231 and SUM159PT cells could form tumor
colonies within human brain tissue.266 Organoid model
have also facilitated the development of drug screening
platforms, advancing the new treatment strategies for
BM.261,267

4.3 Microphysiological systems

Microfluidic chips represent a powerful technical tool
offering advantages such as replicating the in vivo
microenvironment, low sample consumption, high
automation, and seamless integration.268 Their capability
to construct metastasis cascade models is pivotal in
cancer research.269,270 For instance, Kim’s team developed
a three-dimensional microfluidic platform integrating
astrocytes, brain endothelial cells (BECs), and patient-
derived NSCLC cells to simulate BM.271 Cancer metastasis
accounts for 90% of cancer-related deaths, underscoring
the importance of constructing metastasis cascade models
in microfluidic chips to study vascularization, tumor cells
invasion, and simulate processes like intravasation and
extravasation.261,272 CTCs play a critical role in mediating
tumor metastasis. CD44+CD74+ CTCs are prevalent in
BM patients and serve as effective indicators for diag-
nosing BM.273 Microfluidic technology facilitates the
enrichment of CTCs, enhancing our understanding of
their role in metastasis.274 Moreover, microfluidic chips
are frequently employed to simulate the BBB.271,275 For
instance, Lim et al.276 developed a choroid plexus-on-a-
chip utilizing oscillatory flow to mimic the human brain
choroid plexus, offering a novel model for studying BM.
Using microfluidic technology, Lim et al.276 integrated

features such as capillaries, epithelial layers, and secretory
components to accurately simulate the characteristics and
dynamics of the human brain choroid plexus.

4.4 Hydrogel model

The hydrogel model serves not only to study the interac-
tion between BC cells and the extracellular matrix (ECM)
but also to reversibly simulate the dormancy of BC cells
in the brain.277–281 Yakati et al.282 cultured BC cells on soft
hyaluronic acid (HA) hydrogels (0.4 kPa), whichmimicked
a dormant phenotype, and on stiff HA hydrogels (4.5 kPa),

which mimicked a proliferative phenotype. They found
that cells on soft HA hydrogels exhibited chemotherapy
resistance through the p38–SGK1 signaling pathway.282
Model construction of BM is complex and challeng-

ing, which hinders the progress of preclinical research
to some extent. Currently, the most widely used mod-
els in preclinical studies are cell and animal models.
Cell models are primarily derived from brain tropism
cells. The methods for establishing animal models are
diverse, with researchers often weighing the pros and
cons based on specific research goals. Additionally, the
organoid model, despite its difficulty and cost, is notewor-
thy because it closely resembles clinical reality and can
significantly enhance precise, individualized treatment.
Moreover, tumor dormancy is a distinctive feature of BM.
The use of hydrogel models to simulate BC dormancy
has also advanced preclinical research. Additionally, Li
et al.283 developed and validated a physiologically based
pharmacokinetic model to predict plasma and central ner-
vous system pharmacokinetics using a four-compartment
permeability finite brain model.

5 ADVANCES IN THE APPLICATION
OFMODERN TECHNOLOGY IN
METASTATIC BRAIN TUMOR

5.1 Bulk RNA transcriptome

Bulk RNA transcriptome analysis has been a powerful tool
in elucidating molecular mechanisms, past and present,
owing to its cost-effectiveness. Also, it assists in explor-
ing the TME of BM (Figure 3A). After animal models
simulate LC metastasis and obtain tissues or metastatic
cells of distant metastasis (such as lymph node metastasis,
bone metastasis, and BM, etc.), bulk RNA transcriptomics
revealed that miR-660-5p may be a key driver molecule
of NSCLC and distant metastasis.284 Similarly, the miR-17-
5p/HOXA7 axis may induce LCBM through ferroptosis.285
Finding key molecules that drive BM, such as miRNAs,
lncRNAs, and circRNA, is also a hot topic.199,286–288 TCR
sequencing by Zhou and Chen’s289 team showed a unique
pattern of stronger oligoclonal T cell expansion, weak-
ened CD8+TIL infiltration in BM, and CD8+TIL was an
independent positive indicator of OS.
Driver gene mutations represent a major characteris-

tic of NSCLC. Studies have consistently demonstrated
that patients harboring these mutations exhibit poorer
responses to immunotherapy. Consequently, gaining a
deeper understanding of the immune microenviron-
ment in NSCLC across different driver gene subtypes
has become a forefront research area. Zhou’s team
conducted a comprehensive analysis of the TME in
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F IGURE 3 The role and the latest progress of various omics in brain metastasis. Transcriptome (bulk RNA transcriptome, single-cell
transcriptome, and spatial transcriptome), genomics is the most common omics in brain metastasis. In addition, metabolomics revealed the
mechanism and timing of occurrence of breast cancer brain metastasis. Proteomics, DNAmethylation sequencing, microbiome, and glycomic
have also gradually developed. Although the functions of each omics are generally similar, they complement each other’s strengths and
weaknesses. Integrating multiple omics data are the current trend.

EGFR/ALK-positive/-negative LCBM.31 They observed a
decrease in CD8+ T cells and cytotoxic lymphocytes along-
side an increase in M2 macrophages, which collectively
contribute to an immunosuppressive TME.31 This disparity
underscores why patients with positive driver genes expe-
rience limited efficacy with immunotherapy. Moreover,
compared with EGFR wild-type malignant adenomas,
EGFR-mutated LCBM exhibit upregulation of multiple
immune-related pathways.287
Although obtaining paired paraffin-embedded sec-

tions of LC lesions and LCBM presents challenges,
such specimens are crucial for convincingly illustrating
the differences between primary tumors and metastatic
lesions.31,290,291 Chen et al.292 delved into this by analyz-
ing paired specimens from 43 patients, revealing signif-
icant immune heterogeneity between synchronous and

metachronous LCBM. The TME is more complex in the
metachronous group.292 Additionally, conflicting findings
regarding expressions and correlations of PD-L1 between
BM and LC exist.289,292,293 While PD-L1 expression is gen-
erally low in LCBM, its relationship with the time interval
of BM in NSCLC has been reported.290 Tsakonas et al.294
conducted a study using 25 paired pathological specimens
to identify differentially expressed miRNAs in LCBM,
aiming to uncover potential biomarkers and therapeutic
targets.
Similar to LC, one of the current research trends is to

discovermetastasis-related genes and predict the TME and
immune checkpoints through bulk RNA transcriptomics.
Xiao et al.295 confirmed that oxidative phosphorylation
(OXPHOS) utilization is increased in BCBM patients and
that the immune microenvironment is inhibitory. Based
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on the bulk RNA-seq, B7-H3 was identified as a check-
point for T cell immunosuppression. B7-H3 expressed in
90% of BCBMbut relatively low inBMs from colorectal and
renal cancers, indicating it may be a potential target for
immunotherapy.296 Zhang et al.297 used transcriptomics
to explore the mechanisms of organ-specific metastasis
and demonstrated that the neuroactive ligand–receptor
interaction pathway plays a significant role in BCBM.

5.2 Single-cell transcriptome

Single-cell transcriptome, in simple terms, is a technology
that sequences and analyzes the genome, transcriptome,
and proteome of individual cells. It addresses challenges
such as low sample quantity and cell variability, which
are particularly relevant in research areas like stem cells,
cancer, and immunity.298,299 In BM research, single-cell
transcriptome identifies specific LC cells driving metasta-
sis to the brain, offering potential therapeutic targets for
LCBM (Figure 3B). Wang et al.30 utilized 11 LUAD and
10 BM samples to identify S100A9+ BM-associated epithe-
lial cells through pseudotime trajectory analysis, predict-
ing BM risk with machine learning algorithms. Chen
et al.300 employed single-cell RNA sequencing (scRNA-
seq) on seven patients, highlighting changes in adhesion,
ECM, and VEGF pathways in RAC1-high LC cells which
maybe a promoter of BM and potential therapeutic tar-
gets. Liang et al.301 characterized the TME via single-cell
transcriptomics, revealing a higher presence of malignant
epithelial cells in LCBM, particularly those expressing high
levels of DDIT4, which are associated with increased inva-
siveness. Wu et al.302 demonstrated that BM-associated
epithelial cells expressing SPP1, SAA1, and CDKN2A
originate from aneuploid LC cells, mediating BM occur-
rence. Ongoing research continues to uncover additional
genes driving BM, such as CKAP4, SERPINA1, SDC2, and
GNG11, offering promising targets for treatment.297 Single-
cell transcriptomics uniquely enables pseudo-time-series
and cell-to-cell communication analyses, providing criti-
cal insights into how BM interacts with other cells in the
TME.266
ScRNA-seq can explore the developmental trajectory of

tumor metastasis, uncover gene functions, and provide a
comprehensive understanding of metastatic development
in BCBM.Xie et al.303 identified ILF2 as specifically related
to BCBMand a possible therapeutic target through scRNA-
seq. Zou et al.304 conducted scRNA-seq onmouse lesions of
BCBM, identifying microglia markers and demonstrating
the conservation of their proinflammatory response. Their
combination of scRNA-seq and multiple immunofluo-
rescences confirmed the presence of immunosuppressive
cells, such as FOXP3+ Tregs and LGALS1+ microglia, in

the BCBM microenvironment.304 Additionally, integrat-
ing single-cell and bulk RNA transcriptomics, previously
unrecognized immune regulatory subtypes enriched in
BMs were identified, representing potential targets for
new therapeutic strategies.304 They also found that the
PD-1 receptor and PD-L1/2 ligand may not be the pri-
mary immune checkpoint signaling pathways in liver and
brain metastases of BC.304 Interestingly, Bejarano et al.305
focused on endothelial cells and parietal cells in the
vascular system.

5.3 Spatial transcriptome

Spatial transcriptome analyzes gene expression data with
spatial resolution, providing simultaneous insights into
the spatial organization and transcriptional profiles of
cells. Named the “technology of the year” by Nature
Methods in 2020, this advanced technique has become
indispensable in fields such as tumor biology, immune
infiltration, pathology, and disease mechanisms.306 In
LCBM, spatial transcriptomics has enabled amore detailed
characterization of the TME.307 Zhang et al.32 utilized
spatial transcriptomics to identify regions of immuno-
suppression and fibrosis (Figure 3C). Specifically, they
observed decreased presence of antigen-presenting cells,
B cells, and T cells, along with increased numbers of
neutrophils, M2 macrophages, immature microglia, and
reactive astrocytes.32 These findings alignwith similar con-
clusions drawn by Liang et al.301 in their single-cell tran-
scriptome study, which highlighted increased myofibrob-
last cancer-associated fibroblasts (CAFs) and enhanced
angiogenic capabilities of endothelial cells.32,289,301

5.4 Genomics

Cancer genomics contribute to explore the molecu-
lar mechanisms underlying carcinogenesis, tumor het-
erogeneity, classification, and personalized treatment
strategies.308 Despite its critical role in understanding
metastatic progression, which is the primary cause of
cancer-related deaths, the genomic mechanisms driv-
ing metastasis remain poorly understood (Figure 3D).309
Nguyen et al.309 conducted a prospective genomic analysis
of 25,000 patients, revealing distinct genomic characteris-
tics in BM originating from different primary tumors such
as LC, prostate cancer, and BC. LUAD BM were found
to exhibit a higher frequency of TP53 mutations, TERT
amplification, and EGFRmutations, but a lower frequency
of RBM10 mutations.309 In LCBM, Huang and Smyth
confirmed frequent genomic alterations in EGFR, KRAS,
TP53, RB1, MYC, CDKN2A, CDKN2B, STK11, NKX2-1,
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KEAP1, MAPK, PI3K, mTOR, and cell cycle-related
pathways.310,311 A systematic review and meta-analysis
involving 9058 NSCLC patients identified ALK positiv-
ity and RET translocation as the most prevalent genomic
alterations, accounting for 34.9 and 32.2%, respectively.4
The genomic profile may indicate a predisposition for
tumor metastasis. For instance, KRAS/NRAS mutations
are particularly associatedwith brain and bonemetastases,
whereas PD-L1 expression and TP53 mutations may influ-
ence metastasis to other organs in NSCLC.287,312 Analysis
of 3600 cases of SCLC BM revealed frequent alterations in
PTEN.313
Chromosomal instability is closely associated with the

metastatic burden of LUAD and BC.309 Genome sequenc-
ing has revealed that most mutations are acquired before
metastasis.309 For instance, new copy number events in
the MCL1 gene were observed in 75% of cases, may
promote BM.314 Deletions of CDKN2A/B and alterations
in the cell cycle pathway were also enriched in BM.315
Recent evidence suggests that LCBM exhibit increased
genomic instability and complexity, potentially due to
deficiencies in homologous recombination or other mech-
anisms involving somatic copy number changes during
metastasis.316 However, whole exome sequencing has
shown that the overall mutational signature remains rel-
atively consistent between primary tumors and BM. Key
driver genes such as EGFR and TP53 appear to be largely
conserved across these tumor stages.317 Furthermore,
genome sequencing has delineated distinct mutational
signatures in synchronous versus metachronous LCBM,
underscoring the potential benefits of CSF biopsy where
alterations in EGFR and TP53 are frequently observed.318
Deng et al.319 also highlighted the significance of CSF
genomics.
During the progression of BC, primary tumors and BMs

often exhibit discordant genetic mutations.105,320–322 Com-
parisons between BMs and primary tumors have revealed
genes with increased mutation frequency in BMs, includ-
ing TP53, ATR, and APC (in LUAD); ARID1A and FGF10
(in SCLC); PIK3CG, NOTCH3, and TET2 (in lung squa-
mous cell carcinomas); ERBB2, BRCA2, and AXL1 (in
BC).323
Bhogal et al.324 analyzed 822 BCBM tissues and identi-

fied nine common structural rearrangement gene muta-
tions, with CDK12 being the most prevalent. Lu et al.’s325
genomic mutation analysis of the Chinese population
revealed that somatic mutations in TP53 (82%), PIK3CA
(35%), and MLL2 (22%) were the most common. The
most frequent copy number alterations were HER2 (64%),
RAD21 (36%), and CCND1 (32%).325 Genome detection by
ctDNA showed that ESR1 and BRCA2 were more com-
monly mutated in BCBM patients.69 Huang et al.326 con-
ducted ameta-analysis of genomic information from 37,218

BCBMpatients and confirmed that themutation incidence
of ESR1, ERBB2, EGFR, PTEN, BRCA2, and NOTCH1 in
BM patients was significantly higher compared with those
with extra-brain metastases.327
Mutated genes in BMs are primarily involved in reg-

ulating gene transcription, cell cycle, and DNA repair
processes.321 Genome sequencing of BMs from various
primary tumors revealed mutations in genes associated
with the cyclin-dependent kinase (CDK) pathway, includ-
ing CDKN2A, RB1, CCND2, and CCND3, as well as genes
related to the PI3K–AKT–mTOR and MAPK pathways,
such as BRAF, KRAS, and MAP2K1.328,329 Additionally,
potential targets for BCBM, such as PARP and ATM, also
offer new therapeutic prospects.321,329,330

5.5 Metabolomics

Metabolically flexible disseminated tumor cells utilize
nutrients from distant organs to sustain their survival and
growth (Figure 3E).331 This adaptability underscores the
complex metabolic alterations that occur during metasta-
sis. In a study examiningmetabolome changes in 88 BCBM
patients, significant alterationswere observed inmetabolic
pathways, including alanine, aspartate, and glutamate
metabolism, as well as arginine biosynthesis. A predictive
model for BM occurrence constructed using 15 metabo-
lites achieved a remarkable accuracy of 96.6%.234 Bulk
RNA-seq further revealed that genes related to metabolic
stress pathways, particularly those involved in glycoly-
sis and OXPHOS, were upregulated in BCBM and LCBM
compared with their primary cancers.295,332 This suggests
that these metabolic pathways play a crucial role in the
progression and sustenance of metastatic cells.
Metabolomics offers insights into the timing of

metastatic formation. HER2+ BC patients can present
with synchronous, latent, or metachronous BMs. Parida
et al.235 explored the metabolic differences among these
patterns. In synchronous BMs, lactate secreted by invasive
metastatic cells was found to hinder innate immune
surveillance and promote metastasis.235 Conversely, latent
or metachronous BMs exhibited metabolic adaptations
such as oxidizing glutamine, and maintaining cellular
redox homeostasis via the anionic amino acid transporter
xCT.235 Further experiments indicated that fragmented
mitochondrial puncta in latent BM cells oxidize fatty acids
to support cellular bioenergetics and redox homeostasis,
facilitating metabolic reprogramming for survival.331
Additionally, RA receptor responder 2, a multifunctional
adipokine and chemokine, is downregulated in TNBC
cells and regulates rapamycin levels and triglyceride
levels through the PTEN–mTOR–SREBP1 signaling
pathway.333
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Future research trends emphasize multiomics
approaches to unravel metastasis cascades and develop
therapeutic targets.334 Integrating whole exome/genome
sequencing with RNA sequencing to investigate the
immune microenvironment and immune checkpoint
composition of tumors is essential for advancing treatment
strategies.335

5.6 Proteomics

Proteomics has proven to be a valuable tool in identify-
ing biomarkers for predicting the development, prognosis
and therapeutic efficacy of BM (Figure 3F). Li et al.336 uti-
lized plasma exosome proteome sequencing to analyze the
protein composition of exosomes in LCBM and revealed
significant heterogeneity between SCLC BM and NSCLC
BM. They discovered that exosomal proteins in LCBM are
predominantly calcium-dependent/S100 proteins.336 Deng
et al.337 developed a proteomic-based predictive model for
BM occurrence in patients with EGFR mutations, achiev-
ing an impressive AUC of 0.9401. Integrating proteomics
with other datasets enhances our understanding of the
BMmicroenvironment. For instance, [64Cu] [Cu (ATSM)]
PET imaging combined with proteomic analysis revealed
changes in protein expression related to hypoxia and oxida-
tive stress in BM.338 High levels of proteins such as NES,
ALdh6a1, Cathepsin F, and Fibulin-1 were identified as
emerging diagnostic markers.339,340
Quantitative proteomic analysis based on high-

resolution mass spectrometry has revealed that tenascin
C levels are significantly elevated in young mice with
BM. This elevation promotes tumor cells proliferation and
migration, which may explain increased propensity for
BM observed in younger BC patients.341,342

5.7 DNAmethylation sequence

Epigenetics is believed to be closely linked to the onset,
progression, and treatment response of BM.343 DNA
methylation, a form of chemical modification that alters
gene expression without changing the DNA sequence,
plays a significant role in these processes (Figure 3G).
Distinct methylation patterns are observed in primary
LC tissues with and without BM. A comprehensive anal-
ysis of methylation profiles across normal lung tissue,
primary LC, and LCBM has revealed that methylation pat-
terns, such asH3k9me3 and bivalentmarks likeH3k27me3
and H3K4me1 may drive disease progression and worsen
prognosis in BM.344 Furthermore, a model utilizing DNA
methylation data achieved an impressive AUC value of
0.94 for predicting the risk of BM.345

Methylation array analysis revealed that hyperme-
thylation of RP11-713P17.4, MIR124-2, and NUS1P3, as
well as hypomethylation of MIR3193, CTD-2023M8.1, and
MTND6P4, may be linked to the BM metastasis of BC.346
Additionally, dysregulation of DNA methylation has been
observed in both primary tumors and BMs.346,347 More-
over, experiments have shown that the positive rate of the
m6A reader IGF2BP3 increases with BC progression and is
significantly associated with BCBM.348

5.8 Microbiomes

Microbiomes have emerged as novel tumor markers and
a focal point in cancer research over the past decade.
The microbiome, comprising intestinal microorganisms,
other mucosal organ microorganisms, and intratumoral
microorganisms, influences tumor progression through
modulation of tumor growth, inflammatory responses,
immune evasion, genomic stability, and resistance to
treatment.349 The concept of the gut–brain axis has
spurred investigation into the microbiome’s role in BM
(Figure 3H).350,351 Dong et al.352 investigated alterations
in intestinal and sputum microbiota in NSCLC with dis-
tant metastasis, revealing distinct microbial compositions
across different metastatic sites, notably elevated Pseu-
domonas aeruginosa levels in BM patients. Jiang et al.353
analyzed the intestinal microbiome and fecal short-chain
fatty acid levels in healthy individuals, early LC patients,
and those with LCBM. They identified reduced Firmi-
cutes and Actinobacteria associated with altered short-
chain fatty acid content, suggesting an impact on lipid
metabolismandpossibly influencing LCBMoccurrence.353
A model based on the microbiome for distinguishing BM
patients achieved an impressive AUC of 0.88.353 Nonethe-
less, the microbiome remains a cutting-edge and underex-
plored area in BM research. Most findings are presented
in microbiome maps, and the underlying mechanisms yet
to be fully elucidated. Robust evidence is still needed to
clarify the microbiome’s exact role in BM.

5.9 Glycomics

Glycomics is a discipline focused on studying the structure
and function of sugar chains. As a new field emerg-
ing after genomics and proteomics, glycomics offers
fresh insights into research areas such as diseases, can-
cer, and immunity.354 Alterations in glycosylation play a
crucial role in BC development (Figure 3I). Onigbinde
et al.355 reported that the isomers of the O-glycan struc-
ture HexNAc1Hex1NeuAc1 exhibited significant changes
across BC cell lines CRL-1620 and the BCBM cell line
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MDA-MB-231BR. These findings highlight the potential of
glycomics in understanding BC progression and BM.
The integration of various omics, leveraging their com-

plementary advantages, represents a significant avenue
to unravel the invasion patterns and immune landscapes
for BM.356–358 By elucidating the key molecules and
cell subpopulations driving BM, monitoring the dynam-
ics of metastatic tumor cells, and exploring interactions
between tumor cells and components within metastatic
lesions, we can gain insights into the mechanisms of
BM and advance clinical applications.266 Comparative
analyses between primary tumors and BM, different
metastatic sites, intracranial primary tumors, and syn-
chronous/metachronous BM provide multifaceted per-
spectives essential for unraveling the complexities of
BM. Currently, joint analyses of bulk RNA transcrip-
tomes and publicly available single-cell transcriptomes
are mainstream, facilitating comprehensive investiga-
tions. TP53 mutations were notably more prevalent in
BM from LUAD.309 Alvarez-Prado et al.335 employed
whole exome/genome sequencing and RNA sequencing
of immune cell populations to delineate the immune
genomic landscape in LCBM and BCBM. This study
highlighted the impact of TP53 mutations on immune pro-
files, including increased tumor mutational burden and
neoantigens, enhanced tumor proliferation, and altered
immune cell infiltration patterns.335 Moreover, despite a
modest overlap in differentially expressed genes between
BM cell models and patient tissues, validating the rele-
vance of these models remains essential for faithfully rep-
resenting BM patients’ realities in preclinical settings.359
Exploring solutions such as organoidmodelsmay enhance
fidelity and relevance in preclinical research. Ultimately,
enhancing interdisciplinary communication, fostering col-
laborations spanning preclinical to clinical data inte-
gration, and advancing understanding of the biological
underpinnings of BM are critical pursuits. These efforts
aim to leverage patient-derived transcriptomic, proteomic,
and metabolomic profiles to elucidate diverse prognostic
subtypes and inform personalized therapeutic strategies.

6 THEMECHANISM OF BM FROM LC
AND BC

6.1 Break away from the original tumor
and break through the ECM

Gene expression in primary tumors plays a crucial role
in the development of BM.359 Researchers are actively
identifying cell subtypes that drive LC metastasis.
High expression of RAC1 are pivotal in adhesion, ECM
interactions, and VEGF signaling pathways, ultimately

contributing to BM.300 Amplification of PMS2 influ-
ences thiamine, butyrate, and glutathione metabolism,
promoting the formation of LCBM.360 Conversely,
downregulation of CERS1 in LCBM enhances tumor
growth via the PI3K/AKT/mTOR pathway.361 Studies
have shown that MUC5AC is linked with increased
epithelial–mesenchymal transition (EMT), invasiveness,
and metastatic potential in tumors.362 Tumor cells with
heightened angiogenic capacity facilitate nutrient supply
to both primary LC and BM (Figure 4A①).363 Interestingly,
Levallet et al.333 proposed that hypoxia induces activa-
tion of the RASSF1A/kinases Hippo pathway, thereby
enhancing YAP and NDR2 in human bronchial epithelial
cells, which exacerbates BM formation (Figure 4A②).
Patients harboring EGFR mutations frequently develop
LCBM. Li et al.364 demonstrated that EGFR mutations
promote BM through the ERK1/2–E2F1–WNT5A axis
(Figure 4A③). LGALS8–AS1 targets miR-885-3p to regulate
the expression of fascin actin-binding protein 1 (FSCN1),
ultimately contributing to BM formation (Figure 4A④).365
BC cells facilitate tumor metastasis by regulating

EMT and ECM remodeling.366–368 Hyaluronidase Hyal-
1 contributes to tumor proliferation by forming HA
coating around the cells (Figure 4B①).369 The secre-
tory iron transporter Lipocalin-2 (LCN2) promotes
tumor growth and enhances ECM reorganization,
angiogenesis, and BBB disruption through interaction
with MMP9 (Figure 4B②).360,370 The loss of Kmt2c
or Kmt2d in BC cells results in reduced H3K27me3,
which upregulates MMP3 via KDM6A, thereby facil-
itating BM formation (Figure 4B③).371 Additionally,
the circRNA–miRNA–mRNA regulatory axes, such
as circ_0087558/miR-604/MMP2, circbcBM1/miR-
125a/BRD4, and circKIF4A–miR-637–STAT3, may
influence the development of BCBM.372–374
Tumor-initiating cells represent a rare but crucial sub-

population within tumors, characterized by stem-like
properties that drive tumor initiation, metastasis, and
resistance to chemotherapy.375 RNA sequencing have
revealed common transcriptomic features among BM-
initiating cells from lung, breast, and melanoma origins.
In paired specimens of primary LC and BM, elevated
HLA-G expression has been observed. HLA-G interacts
with adjacent tumor cells via SPAG9/STAT3 signaling
to enhance their self-renewal and growth capabilities
(Figure 4A⑤).291,376 Additionally, CD44+ LC stem cells
differentiate into vascular pericytes, facilitating the for-
mation of metastatic niches and transmigration across
endothelial barriers under the influence of G protein-
coupled receptor 124 (GPR124) (Figure 4A⑥).377 Smoking
has been identified as a significant risk factor for BM. Tyagi
et al.378 demonstrated that nicotine induces neutrophils
to release exosomal miR-4466, thereby enhancing the
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F IGURE 4 Mechanism of metastatic brain metastasis. (A-B) Break away from the original tumor and break through the extracellular
matrix. (A) Lung cancer. (A①) Genes such as RAC1, PMS2, MUC5AC regulate ECM, metabolism, tumorigenesis, and angiogenesis to promote
brain metastasis. (A②) Hypoxia stimulates the RASSF1A/kinase Hippo pathway, exacerbating the formation of brain metastasis. (A③) EGFR
mutation promotes brain metastasis through ERK1/2–E2F1–WNT5A. (A④) LGALS8–AS1 targets miR-885-3p to mediate the expression of
FSCN1, ultimately leading to the formation of brain metastasis. (A⑤) HLA-G expression is increased, and it acts on adjacent tumor cells
through SPAG9/STAT3 to promote their self-renewal ability and growth. (A⑥) CD44+ lung cancer stem cells derive vascular pericytes, form
metastatic niches, and migrate across the endothelium by mediated GPR124. (A⑦) Nicotine induces neutrophils to produce exosomal
miR-4466, promoting stemness and invasion properties of lung cancer cells. (B) Breast cancer. (B①) Hyal-1 produces hydrogel to wrap and
promote tumor cells growth. (B②) Lipocalin-2 regulates MMP9 and exerts various functions such as angiogenesis, ECM reconstruction, BBB
disruption, and tumorigenesis. (B③) The loss of Kmt2c/Kmt2d promotes tumor growth through the H3K27me3–KDM6A–MMP3 axis. (B④)
High expression of NDRG1 is associated with stemness and promotes tumor growth. (C) Extravasation through blood–brain barrier. (C①-②)
Lung cancer. (C①) MSLN-overexpressing cells achieve brain metastasis by enhancing the ability to penetrate the BBB. Mechanistically, MSLN
facilitates the expression and activation of MET through the c-Jun N-terminal kinase (JNK) signaling pathway. (C②) Exosomal LncRNA
LINC01356 and miR-375-3p derived from brain metastatic cells, as well as Lnc–MMP2-2-overexpressing or CXCR4+ tumor cells, promote the
occurrence of brain metastasis by inhibiting the tight junctions of the BBB (including Claudin-5, Occulin, and ZO-1). (C③-⑤) Breast cancer.
(C③-⑤) Tumor cells enhance BBB adhesion through RET, MUC1, VCAM1, VLA-4, ICAM1/2, and secretion of exosomes. Meanwhile, the
EGFR–DOCK4–RAC1 axis regulates cell morphology and facilitates their passage through the BBB. (C⑥) Tumor cells and pericytes promote
vascular leakage and metastasis by mimicking angiogenesis through PDGFRβ and PDGF–BB.
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stemness of LC cells and promoting their invasive proper-
ties in BM (Figure 4A⑦). Additionally, a high expression of
NDRG1 is associated with stemness and is linked to BCBM
(Figure 4B④).379
Although proteomics has identified ECM receptor inter-

actions and collagen-containing ECM as crucial in LCBM,
research into how tumors penetrate this ECM remains
limited.336,380 HA is a key component of the ECM and
plays a significant role in the metastasis of various tumors.
Tumor cells mediated by HSP47 deposit collagen in the
metastatic niche, which can inhibit the antitumor immune
response.381 Zhao et al.382 found that plasma HA levels are
associated with bone metastasis in LC. CAFs are generally
considered to promote tumor metastasis by influencing
the ECM. However, their role in BM appears contradic-
tory, and more robust evidence is needed to clarify their
impact.32,98,289,301,383 Nevertheless, due to challenges in
extracting and studying CAFs, mechanistic investigations
involving these cells remain relatively complex.

6.2 Transfer process

The process of LCmetastasis to the brain is diverse, involv-
ing a lengthy journey in terms of both time and distance. It
is widely accepted that the lungs, as highly vascularized
organs, facilitate the passage of tumor cells to the brain
through systemic circulation.384 In current research, there
is a predominant focus on understanding the mechanisms
underlying primary and metastatic lesions, whereas track-
ing changes specifically in BM throughout the metastatic
process remains challenging. In recent years, the advent
of liquid biopsies, particularly the detection of CTCs, has
not only proposed a diagnostic role for CSF CTCs in BM
but also enabled the tracking of the metastatic process and
prediction of treatment efficacy.385,386 Technologies like
single-cell sequencing have furthered our ability to identify
stage-specific markers in the malignant progression and
metastasis of LC, which could potentially aid in interven-
ing at various stages of metastasis to prevent or manage
BM.387

6.3 Interaction with the BBB and
colonization growth in brain

6.3.1 LCBM

Extravasation of tumor cells across the BBB represents a
critical step in the formation of BM.388 In the vasculature
of glioblastoma and BM, genes associated with cell pro-
liferation, angiogenesis, and ECM deposition are dysreg-
ulated, leading to significant disruptions in the integrity of

physical and biochemical barriers.389,390 CD44+ LC stem
cells differentiate into perivascular cells, form metastatic
niches, and traverse the endotheliummediated byGPR124.
Mesothelin (MSLN), a tumor-associated antigen expressed
in various solid tumors, has been linked to the progression
of multiple cancers. Xia et al.272 demonstrated that MSLN
enhance tumor cells to penetrate the BBB and promote
BM through activation of the MET pathway via the c-Jun
N-terminal kinase signaling pathway (Figure 4C①). Exo-
somal LINC01356, miR-375-3p, lnc-MMP2-2, or CXCR4+
tumor cells derived from LCBM suppress tight junc-
tion proteins of the BBB (claudin-5, occludin, and ZO-1),
thereby promoting BM (Figure 4C②).391–394
In contrast to the microenvironment of extracranial

metastases, the BM microenvironment contains distinct
cell types, primarily astrocytes, microglia, oligodendro-
cytes, and neurons.395 The interaction between tumor
cells and the brain microenvironment facilitates breaches
of the BBB, colonization, and growth. Reactive astro-
cytes and tumor-associated macrophages (TAMs) are piv-
otal in NSCLC BM, influencing tumor progression and
immune evasion. Gonzalez et al.396 proposed two func-
tional prototypes of BM: proliferative and inflammatory.
Proliferative BM archetypes are characterized by DNA
replication, G2/M phase transition, and pre-mRNA mat-
uration or spliceosome signatures, whereas inflammatory
BM archetypes are marked by inflammatory responses,
ECM remodeling, and stress responses (Figure 5C).396
Astrocytes, the predominant glial cells in brain, play

dual roles in different phases of BM. Initially, as inte-
gral components of the BBB, astrocytes act to impede
tumor cell invasion.397 However, once tumor cells breach
this barrier, astrocytes are exploited by tumor cells to
facilitate metastatic proliferation.398,399 Through mecha-
nisms involving gap junctions, exosomes, and other path-
ways, astrocytes upregulate tumor-related signaling, mod-
ulate the immune microenvironment, and enhance tumor
metabolism, angiogenesis, and growth, thereby promot-
ing BM.33,397,400,401 Studies have confirmed that STAT3+
astrocytes foster BM in LC, BC, and melanoma by influ-
encing both innate and adaptive immune responses.400
Recently, Dankner et al.400 demonstrated that aggressive
BM proliferation correlates with CHI3L1 released from p-
STAT3+ astrocytes (Figure 5A①). In SCLC, reelin secretion
stimulates astrocyte recruitment, prompting astrocytes
to secrete SERPINE1 and other proteins that enhance
SCLC growth in brain (Figure 5A②).244 Emerging research
indicates that tumor cells induce astrocytes to upregu-
late MUC5AC, thereby promoting enhanced colonization
(Figure 5A③).362
TAMs andmicroglia play crucial roles in BM.Microglia,

an integral part of the brain microenvironment, are partic-
ularly significant in LCBM compared with other forms of
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F IGURE 5 The colonization mechanism of tumor cells in the intracranial microenvironment. (A–C) Lung cancer. (A) Astrocytes–tumor
cells interactions. (A①) The aggressive proliferation of metastatic brain tumor is linked to the release of CHI3L1 from p-STAT3+ astrocytes.
(A②) In SCLC, reelin is secreted to stimulate the recruitment of astrocytes, which subsequently leads to the secretion of SERPINE1 and other
proteins by astrocytes, thereby promoting the growth of SCLC. (A③) Tumor cells interact with astrocytes, inducing an upregulation of
MUC5AC expression in tumor cells and enhancing brain colonization. (B) Interactions between tumor cells and microglia, macrophage,
fibroblast, and T cells. (B①) Increased IL6 regulates the JAK2/STAT3 signaling pathway to induce the anti-inflammatory effect of microglia,
thereby promoting the colonization of tumor cells. (B②) Low expression or loss of IFITM1 results in a decrease in complement component 3
and MHC I molecules, ultimately inhibiting the killing effect of CD8+ T cells. (B③) The HSP47–collagen axis achieves M2 polarization
through the α2β1 integrin/NF-κB pathway, leading to the upregulation of anti-inflammatory cytokines and inhibiting the antitumor response
of CD8+ T cell. (B④) High expression of cathepsins CTSB and CTSW in macrophages contributes to multiple tumor-promoting processes
including invasion and metastasis. (B⑤) Hypoxia mediates HIF-2α, leading to CAFs undergoing a unique lineage transition. The transformed
CAFs exhibit angiogenesis, trigger metabolic program rearrangement, and promote tumor cells growth. (C) Cellular architectures The
proliferative BM functional archetypes are prominent in DNA replication, G2/M, and pre-mRNA maturation as well as the spliceosome
signature while the inflammatory BM functional archetypes are prominent in inflammatory response, ECM remodeling, and stress response
ability. (D–F) Breast cancer. (D)Tumor cells adapt to the brain microenvironment. (D①) Tumor cells secrete vesicles rich in miR-199b-5p,
which act on SLC1A2/EAAT2 axis to activate astrocytes and alter neuronal metabolism through SLC38A2/SNAT2 or SLC16A7/MCT2 axis.
(D②) Tumor cells stimulate fibroblast secretion of type I collagen to reconstruct ECM and promote tumor growth. (D③) Tumor cells
overexpress SRRM4/EST4, promoting GABA production and leading to tumorigenesis. (E) Astrocytes–tumor cells interactions. (E①)
Astrocytes secrete Laminin-211 to promote tumor cell dormancy. (E②) Tumor cells secrete vesicles rich in miR-1290 to activate the
CNTF–FOXA2 axis. (E③) Meanwhile, tumor cells increase NLRP3 and IL-1β in astrocytes, which leads to the activation of astrocytes and
promotes tumor metastasis. (F) Microglia–macrophage–fibroblast-T cell-tumor cells. (F①) Microglia secrete CSF1, CCL5, CXCL9/10 to
activate CD8+T cells and kill tumor cells. (F②) Tumor cells overexpress Gal-3 and ANXA1 to activate the immunosuppressive phenotype of
microglia. (F③) Meanwhile, tumor cells expressing CD2/CD27 inhibit M2 type macrophage. (F④-⑤) Fibrocytes activate cell junctions actin
cytoskeleton signaling through PVR, and shape an immunosuppressive microenvironment by secreting periostin and biglycan through RGS5.
(F⑥) Fibrocytes promote tumor growth through FGF2/7–FGFR3/4 and IGF1-IGF1R signaling.
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cancer.356,402 These microglia exhibit distinct phenotypes:
M1-type microglia promote inflammation, tissue damage,
antigen presentation, and tumor cells killing, whereasM2-
type microglia support anti-inflammatory responses, tis-
sue repair, angiogenesis, immune suppression, and tumor
progression.402,403 Communication between tumor cells
and microglia involves pathways such as DLL4–NOTCH4
and MIF–CD74, yet the full spectrum of their interactions
in brain colonization remains elusive.356,404 IL6 emerges
as a pivotal mediator, with high serum levels correlating
with increased BM risk by enhancing JAK2/STAT3 sig-
naling in microglia to induce an anti-inflammatory state
conducive to tumor cells colonization (Figure 5B①).405
IL6 also impedes T cell function in BM and contributes
to ICIs resistance.358 Early BM cells expressing IFITM1
stimulate microglial activation, augmenting CD8+ T cell
cytolytic activity against tumor cells (Figure 5B②).406 Fur-
thermore, microglia express genes encoding ECM and
matrix proteins, influencing both pro- and antimetastatic
properties.358 Manipulating the M1/M2 microglia ratio
represents a promising strategy for BM treatment, given
that factors like extracellular vesicles and radiation can
induce microglial transformation toward the M2 pheno-
type, facilitating metastasis.407 The HSP47–collagen axis
contributes toM2 polarization via the α2β1 integrin/NF-κB
pathway, increasing anti-inflammatory cytokine produc-
tion and inhibiting CD8+ T cell responses (Figure 5B③).381
Additionally, Klemm et al.358 underscored the involve-
ment of cathepsins CTSB and CTSW in monocyte-
derived macrophages, promoting invasion and metastasis
in LCBM (Figure 5B④). Inhibiting the anti-inflammatory
macrophage phenotype has shown promise in reducing
tumor growth inmousemodels of BM.408 In primary brain
tumors like glioblastoma, macrophages exhibit a dual role
as both antitumor agents and promoters of tumor pro-
gression, highlighting the complexity of their function in
brain microenvironments.409–411 The precise roles and reg-
ulatory mechanisms of macrophages in LCBM warrant
further investigation.
In typical solid tumors, CAFs are often implicated

in promoting metastasis through their interactions with
the ECM. However, in LCBM, their role appears para-
doxical and requires further investigation to elucidate
their precise contributions. Studies by Wu et al.98 have
suggested a lack of inflammatory-like CAFs in LCBM,
contrasting with the enrichment of pericytes. This obser-
vation indicates a distinct composition of the stromal
cells within the BM microenvironment compared with
other tumors. Zhang et al.32 utilized spatial transcrip-
tomics to confirm fibrotic niches in LCBM, while Liang
et al.301 highlighted an increase inmyofibroblast-like CAFs
and enhanced angiogenic capacity of endothelial cells in
these settings.289 These findings underscore the hetero-

geneity and dynamic nature of CAF populations in BM.
Hypoxia has been identified as a key mediator inducing
a lineage transition in CAFs mediated by HIF-2α, lead-
ing to enhanced angiogenesis, metabolic reprogramming,
and promotion of tumor growth (Figure 5B⑤).383 Despite
these insights, the difficulty in extracting and studying
CAFs poses challenges for detailed mechanistic investi-
gations. Single-cell transcriptome analyses have further
illuminated the role of fibroblasts in BM, revealing their
high expression of type I collagen genes and significant
involvement in cell–cell interactions within the TME.383
This highlights their potential influence onECMdynamics
and cellular interactions critical for metastatic progres-
sion. In addition to CAFs, interactions between tumor
cells and brain-specific microenvironmental components
such as astrocytes and microglia play pivotal roles in
BM. For instance, melanoma-derived Aβ has been shown
to activate astrocytes, promoting a prometastatic, anti-
inflammatory phenotype that supports tumor survival by
inhibiting microglial phagocytosis.412
Overall, the complexity of the BM microenvironment

underscores the need for comprehensive studies to elu-
cidate the specific molecular mechanisms and key cell
populations involved in tumor cells interactions and adap-
tation within the brain. Clarifying these interactions holds
promise for developing targeted therapies that could
potentially disrupt metastatic processes specific to the
brain, improving outcomes for patients with metastatic
disease.

6.3.2 BCBM

Before metastatic cells can migrate through the BBB,
they must first establish strong adhesion with BECs.
MDA-BR cells, derived from MDA-MB-231 BC cells with
a brain-specific metastatic profile, exhibit larger adhe-
sion areas and densities, which facilitate their invasion
into the brain.413 These tumor cells overexpress adhe-
sion molecules such as MUC1, VCAM1, and VLA-4,
which assist them bind to vascular endothelial cells and
promote extravasation.414 Elevated RET levels in BCBM
patients enhance the expression of adhesion-related genes
in luminal BC cells.415 Additionally, ICAM2 on tumor
cells interacting with ICAM1 in choroid plexus epithelial
cells, aids adhesion in blood–CSF barrier (Figure 4C③).416
BC-derived exosomes can reduce the deadhesion strength
between tumor cells and BECs (Figure 4C④).417 Once they
cross endothelial cells, tumor cells also adhere strongly to
pericytes.418
Tumor cells employ various mechanisms to cross the

BBB, including manipulating tight junction proteins and
altering their ownmorphology. For instance, breast tumors
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secrete ENPP1, which disrupts BBB integrity by interfer-
ing with insulin signaling and the AKT/GSK3β/β-catenin
pathway.419 Estrogen receptor β promotes the expression
of the tight junction protein claudin-5, while its selective
agonist, diarylpropionitrile, can inhibit BBB crossing of
HER2+ BC and TNBC cells (Figure 4C⑤).420 Addition-
ally, endothelial cells activate the EGFR–DOCK4–RAC1
axis, which modifies their morphology and induces TNBC
cells to adopt a mesenchymal-like phenotype, facilitat-
ing extravasation.421 miRNAs and other proteins also
contribute to tumor cells adhesion and BBB traversal.422
Pericytes, along with endothelial cells, are crucial com-

ponents of the BBB and play a significant role in the
metastatic process. Tumor cells can recruit pericytes to
promote angiogenesis and disrupt their placement within
the vascular niche, leading to increased vascular leakage
and facilitating metastasis.423 The mechanisms through
which brain pericytes influence BBB invasion and the for-
mation of metastatic niches are still not fully understood,
but paracrine signaling involving PDGFRβ and PDGF-
BB may influence pericyte behavior and contribute to
metastatic progression (Figure 4C⑥).423
While many studies emphasize that crossing the BBB

is necessary for formation of BCBM, research suggests
alternative pathways. BC cells can bypass the BBB by
migrating through extracranial pathways, utilizing blood
vessels that connect the vertebral or skull bone marrow
with the meninges. This alternative route allows cells to
form leptomeningeal metastases without directly crossing
the BBB.424
Tumor cells adapt to the unique brain microenviron-

ment to support their growth and survival. In nutrient-
deficient CSF, BC cells often interact with macrophages
to enhance their survival. These tumor cells induce
macrophages to produce glial-derived neurotrophic fac-
tor, a prosurvival neurotrophin that helps them endure the
challenging environment.424 Additionally, BC cells release
extracellular vesicles containing miR-199b-5p, which dis-
rupts brain metabolism by interfering with astrocyte
through the SLC1A2/EAAT2 axis and affects neuronal
metabolism via the SLC38A2/SNAT2 or SLC16A7/MCT2
axis (Figure 5D①). Through thesemechanisms, tumor cells
effectively hijack and alter brain metabolism to support
growth.233 Furthermore, BC cells influence the ECM to
better adapt to the brain microenvironment, reshaping the
collagen-rich ECM through the secretion of type I collagen
by CAFs (Figure 5D②). This ECM remodeling facilitates
the adaptation and proliferation of metastatic cells within
the brain.425
BC cells also adapt to the brain microenvironment

by interacting closely with neurons. Upon contact with
neurons, tumor cells express genes related to neurotrans-
mitter receptors and neuronal synaptic mediators, evolv-

ing into GABAergic-responsive BMs. They become reliant
on paracrine signaling of GABA from nearby neurons
to survive and thrive in the intracranial environment.426
Increased expression of SRRM4/REST4 in BC cells
enhance neurotransmitter and synaptic signaling path-
ways, allowing metastatic cells to maintain growth and
function even in nutrient-deficient conditions in the brain
(Figure 5D③).427 This ability to utilize neurotransmitter
signals for survival underscores the complex interplay
between tumor cells and the neural components of the
brain microenvironment, facilitating the persistence and
expansion of BMs.427
Inflammatory activation of peritumoral astrocytes plays

a crucial role in the development of BCBM, influencing
tumor cells dormancy and progression.428 After invading
the brain, tumor cells often localize near astrocytes.429
Laminin-211, deposited by astrocytes, contributes to tumor
cells dormancy by promoting the binding of dystrogly-
can receptors to yes-associated protein (Figure 5E①).429
Additionally, extracellular vesicles released by BC cells
are abundant in miR-1290, which enhances the secretion
of the cytokine CNTF by inhibiting the FOXA2 tran-
scriptional repressor. This process activates astrocytes,
fosteringmammosphere formation and tumor progression
(Figure 5E②).430 Moreover, BC cells induce the upregu-
lation and activation of NLRP3 and IL-1β in astrocytes,
supporting tumor growth (Figure 5E③).428
Microglia exhibit a dual role in the development of

BCBM. In mouse models of BM, microglia can limit the
formation of BMs through their antitumor activity.254
Mechanistically, microglia upregulate and secrete proin-
flammatory cytokines, such as CSF1, CCL5, CXCL9, and
CXCL10. These cytokines activate natural killer cells and
T cells, promoting tumor killing (Figure 5F①).254 Con-
versely, Gal-3 and ANXA1 facilitate BC cell migration
and invasion by promoting an immunosuppressive pheno-
type in microglia. This phenotype impairs the proinflam-
matory response associated with the interferon-related
pathway, supporting tumor cells growth in the brain
(Figure 5F②).431,432 Targeting andmodulating the immune
phenotype of microglia with specific drugs or therapeu-
tic strategies holds potential for effective treatment of
BCBM.433
Preclinical models indicate that the reduced presence of

myeloid cells in the aged brain, including microglia and
infiltrating macrophages, is associated with a decreased
formation of BMs.341 This finding helps explain the
increased incidence of BMs observed in younger BC
patients.342 Additionally, the overexpression of CD2/CD27
has been shown to activate the nitrogen metabolism
pathway, inhibit M2 macrophage polarization, and con-
sequently reduce BCBM (Figure 5F③).434 Modulating
macrophage phenotype through advanced techniques
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such as nanotechnology represents a promising therapeu-
tic approach.435
Similar to LC, themicroenvironment of BCBM is charac-

terized by immunosuppressive and fibrotic properties.295
CAFs are a primary component of this environment
often exhibiting high expression of the poliovirus recep-
tor (PVR).436,437 HIF1α upregulates fucosyltransferase 11,
which fucosylates PVR, enhancing cell–cell junctions and
actin cytoskeleton signaling thereby promoting the inva-
siveness of BC cells (Figure 5F④).436 Additionally, RGS5+
CAFs contribute to an immunosuppressive environment
by secreting periostin and biglycan (Figure 5F⑤).304 Single-
cell transcriptome analysis reveals that tumor fibroblasts
facilitate tumor cells growth via the FGF2/7–FGFR3/4 and
IGF1–IGF1R signaling pathways (Figure 5F⑥).304
In BCBM, CCL2 can be spontaneously generated by BC

cells through NF-κB, TNFα, and other pathways and can
also be generated by tumor cells stimulated by microenvi-
ronment, or by stromal cells. Exosomal CCL2 secreted by
tumor cells primarily accumulates in the primary tumor,
with a small amount being taken up by CCR2+ myeloid-
derived suppressor cells and CCR2+ NK cells, promoting
tumor metastasis.438 Additionally, small extracellular vesi-
cles from brain organoids enhance the stemness and
mesenchymal phenotype of BC cells, encouraging them to
secrete MCP-1, IL-6, and IL-8 to better adapt to the brain
microenvironment.439
BMOR is a lncRNA abundant in BM cells and the brain

itself. It targets IRF3 and inhibits TNF-α signaling through
NF-κB, IFN-α, and IFN-γ pathways, facilitating immune
escape of tumor cells.78 Additionally, overexpression of C-
Met in tumor cells enhances the secretion of cytokines,
including CXCL1/2, G-CSF, and GM-CSF, which supports
the self-renewal of cancer stem cells by the secretion of
neutrophil LCN2.440

6.4 Metastatic niche and immune
regulation

After traversing a long journey, tumor cells arrive at distant
sites and integrate into new environments, establishing a
premetastatic niche.380,441 This process involves complex
interactions between tumor cells and various components
of the microenvironment, ultimately facilitating their sur-
vival and growth in brain. Tumor cell-derived exosomes
play a crucial role in orchestrating the formation of this
premetastatic niche. These exosomes can stimulate astro-
cytes to secrete cytokines such as IFN-γ, IL-3, IL-5, and
IL-15. These cytokines contribute to creating an inflamma-
tory microenvironment that supports tumor cells survival
and fosters an immunosuppressive milieu that evades

immune surveillance.442 Research by Gonzalez et al.396
has highlighted similarities in the metastatic niches orig-
inating from different primary tumors, suggesting that
common mechanisms may underpinning the adaptation
of tumor cells to the brain microenvironment, regard-
less of their tissue of origin. Furthermore, myeloid cells,
including metastasis-associated macrophages and den-
dritic cells, play pivotal roles in shaping the metastatic
niche.396,443 For instance, the loss of CSCL3 in myeloid
cells leads to increased expression in CXCL10, promoting
the recruitment of VISTA+ PD-L1+ CNS-native myeloid
cells to LCBM. This recruitment creates an immunosup-
pressive niche that facilitates tumor immune evasion and
growth.443 Additionally, CD44+ LC stem cells can differ-
entiate into perivascular cells within the brain microvas-
culature, contributing to the formation of a metastatic
niche and aiding tumor stem cells in crossing the endothe-
lial barrier and establishing themselves within brain
tissue.377 Overall, the formation of a premetastatic niche
involves intricate interactions between tumor cells, astro-
cytes, myeloid cells, and other components of the brain
microenvironment. Understanding these interactions at a
molecular and cellular level is critical for developing tar-
geted therapies aimed at disrupting the metastatic process
and improving outcomes for LCBM patients.
The interaction between tumor cells and brain cells con-

tributes to amicroenvironment that supports BCgrowth by
secreting factors such as ERH, RPA2, S100A9, and nerve
growth factor inducible (VGF). Ahuja and Lazar444 inves-
tigated these secreted factors in vitro and confirmed that
brain cells release factors that create an inflammatory envi-
ronment. Concurrently, BC cells secrete factors like ERH,
RPA2, and S100A9, which are not normally present in the
brain, thereby enhancing tumor proliferation.444 Addition-
ally, VGF is linked to HER2 overexpression and TNBC
characteristics, which are associated with poor prognosis
in BCBM patients. BC cells secrete VGF to disrupt the BBB
and activate microglia.445 Turker et al.446 examined the
interaction between BC cells and the ECM of brain cells
using hydrogels of thiohyaluronan. Their results demon-
strated that BC cells form multicellular aggregates within
the ECM, which helps sustain their activity.446
Immune escape may be influenced by intratumor

genetic heterogeneity.316 For instance, EGFR-mutated
NSCLC is more prone to BM, potentially due to immune
escape mechanisms. Compared with EGFR/ALK-negative
LCBM, the immune microenvironment of EGFR/ALK−
LCBM is more suppressive.31 Furthermore, Tang et al.401
demonstrated that EGFR-mutated LC cells induce reac-
tive astrocytes to secrete IL-11, which leads to tumor cells
PD-L1 expression and CD8+ T lymphocyte apoptosis.401
Meanwhile, IL-11 also acts on GP130 to assist tumor cells
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in immune escape.401 High expression of IFITM1 can pro-
mote CD8+ T cell killing of tumors by inducing microglia
to secrete complement component 3, but BM cells can
effectively hide IFITM1 to achieve immune escape.406
Additionally, brain-derived neurotrophic factor may drive
an immunosuppressive TME by converting TAMs to a pro-
tumorigenic M2 phenotype. Most studies focus on specific
stages of tumor cells progression, such as detachment from
the primary site, circulation, and crossing the BBB. How-
ever, Chang et al.447 described the role of YTHDF3 in
promoting BMat various stages of BC. Understanding how
tumor cells navigate to the brain and establish themselves
there remains incomplete. Clarifying the key regulatory
mechanisms at each stage of BM, preventing the occur-
rence of BM, and adopting dynamic and forward-looking
treatment strategies may reduce the occurrence of BM.
Research into the mechanisms of BM is advancing, but

there are similarities in the preclinical research of both BC
and LC. Primary tumors research often focuses on EMT
and overcome the ECM. However, there is little studies
specifically on the metastasis process itself, particularly
interaction between tumor cells and the brain microenvi-
ronment. Recent research highlights interactions between
tumor cells and astrocytes, microglia, and macrophages
as critical areas of focus. Nevertheless, current studies
have yielded inconsistent results, showing that tumor cells
and the microenvironment can either promote or sup-
press tumor progression. Identifying cell subtypes with
metastatic advantages and understanding the interactions
with the microenvironment are crucial for developing
potential treatments.

7 BRIEF SUMMARY OF THE
MICROENVIRONMENT OFMETASTATIC
BRAIN TUMOR

7.1 LCBM

Recent research has overturned the long-held belief that
the brain microenvironment is immune-exempt. Karimi
et al.307 elucidated distinct differences in immune land-
scapes between various primary tumors and BM.290
Understanding these immunological disparities is cru-
cial for advancing the study of LCBM as a distinct field.
Souza et al.,448 through a meta-analysis of transcriptomic
data, identified significant transcriptional alterations in
key driver genes like CD69 and GZMA, emphasizing the
immune system’s role in BM of LUAD. Furthermore, reaf-
firmation of the immunosuppressive TME in BM has been
documented.448
Overall, LCBM are characterized by an immunosup-

pressive and fibrotic niche (Figure 6A).396 Key features

of this microenvironment include diminished immune
cell subsets, reduced cytotoxic T cells, and increased
populations of Treg cells and macrophages.98,291,358 Specif-
ically, T cells in BM exhibit several changes: CD20+
TILs are decreased, CD4+ T cells display an aner-
gic phenotype with low reactivity, and CD8+ T cells
show signs of exhaustion commonly seen with chronic
activation.290,358 Wischnewski et al.,449 using single-cell
sequencing, identified distinct T cell subtypes associated
with BM including CD39+ potential tumor-reactive T cells
expressing CXCL13. Moreover, macrophages and dendritic
cells in BM also display protumor and anti-inflammatory
characteristics.98 The BM environment is marked by a
reduction in antigen-presenting cells, B cells, and T
cells, alongside increases in neutrophils, M2macrophages,
immature microglia, and reactive astrocytes.32 Several
cytokines and chemokines, such as TGF-β1, Visfatin, TNF-
α, PAI-1, IL-2, IL-6, IL-7, IL-8, and elevated levels of
CCL23, CXCL5, CXCL8, CCL8, CCL13, CCL17, and CCL18,
play pivotal roles in the initiation and progression of
BM.358,450 Maurya et al.451 summarized the chemokine cas-
cade in brain tumors, highlighting its importance in tumor
progression.
Proteomics studies have also revealed significant

changes in protein expression related to hypoxia and
oxidative stress in BM. Additionally, pathways related to
metabolism, translation, and vesicle formation are over-
represented in metastatic tumors underlining their critical
roles.338,452 Underscoring big data, detailed descriptions of
cell can be fully described, enhancing the understanding
of the BMmicroenvironment at various stages of BM. This
insight provides valuable therapeutic targets and potential
strategies for intervention.290,453

7.2 BCBM

Similar to LC, the microenvironment of BCBM is charac-
terized by both immunosuppressive and fibrotic properties
(Figure 6B).295 Xiao et al.437 demonstrated that BC pri-
marily consists of immune cells, including CD4+/CD8+
T cells and M2 macrophages, whereas CAFs are predom-
inant in BMs. Among BCBMs, only 3.8% exhibit a “hot”
TME with an active immune response, whereas 73.1% dis-
play a “cold” TME, with significantly reduced TILs.454 In
LCBM, there is an increase in AT2 cells, CD4+ T cells, and
exhausted CD8+ T cells. In contrast, BCBM are marked
by a high presence of epithelial cells and myCAF cells.455
Advanced techniques such as scRNA-seq have identified
new immune cell subsets in BMs, revealing the presence
of immunosuppressive cell populations including FOXP3+
Tregs, RGS5+ CAFs, CCL18+ M2-like macrophages, and
LGALS1+microglia.455
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F IGURE 6 A brief summary of the tumor microenvironment of brain metastasis from lung cancer and breast cancer. Overall, brain
metastases from both breast and lung cancers display a is more immunosuppressive and fibrotic microenvironment compared with their
primary lesions. (A) Lung cancer. Exhausted T cells, Treg cells, macrophages, neutrophil, microglia, astrocyte, cytokines and chemokines
increased. However, dendritic cells, cytotoxic T cells, and B cells decreased. (B) Breast cancer. CCL18+M2 macrophage, RGS5+ fibroblast,
myCAF, FOXP3+Treg cells, LGALS1+microglia, astrocyte increased. And dendritic cells, T cells, and B cells decreased. PD-1/PD-L1, CTLA4,
TIGIT, B7-H3 decreased, and the immune checkpoint that mainly mediates immune escape may be related to LAG3–LGALS3 and
TIGIT–NECTIN2.

Usingmultiplex immunofluorescence, Griguolo et al.456
characterized the BM microenvironment across various
BC molecular subtypes. They found distinct immune
profiles for different subtypes: HR−/HER2−, HER2+,
HR+/HER2−, HR−/HER2−, and HR+/HER2− BCBMs.
Respectively, these subtypes exhibited variations in
immune cell types, with higher levels of CD8+ lympho-
cytes, increased CD4+ FoxP3+/CD8+ cells, and elevated
CD163+M2-polarized microglia/macrophages.456
In contrast to LC, the immune checkpoints such as PD-1

and PD-L1/2 are rarely expressed inCD8+T cells and other
associated cells in the BC microenvironment.304 Specif-
ically, the expression of immune checkpoints including
PD-L1, CTLA4, TIGIT, and B7H3 is notably reduced in
BCBMs.454 Additionally, immune checkpoints like LAG3–
LGALS3 and TIGIT–NECTIN2might play significant roles
in facilitating immune escape.304
Overall, LCBM and BCBM display a more immuno-

suppressive and fibrotic microenvironment compared
with their primary tumors. The immune cell content is
reduced, and their functions are often exhausted. The
immune checkpoint expression is typically decreased,
and in BCBM, PD-1/PD-L1 may not be the primary
axis of immune escape. Recent research increas-
ingly focuses on the roles of astrocytes, microglia,
macrophages, and CAFs. This summary highlights the
latest research progress on BM, particularly emphasizing
transcriptome data to provide up-to-date insights for
researchers.

8 CLINICAL TRIALS BASED ON THE
MECHANISM OFMETASTATIC BRAIN
TUMOR OR THE CUTTING-EDGE
TREATMENT ANDMECHANISM OF TME

8.1 LCBM

8.1.1 Inhibitors

Although the fatal weaknesses of BM have been iden-
tified through its occurrence, development, and explo-
ration of the TME, current clinical trials typically include
BM patients as a subgroup for analysis, and few trials
specifically target treatments for BM. To date, inhibitors
of ATR, HDAC, mTOR, PKCβ, and integrin αvβ3/αvβ5
have been combined with RT in efforts targeting BM
(Table 2). In 2021, ATR inhibitors were founded to
enhance the efficacy of RT in xenografts derived from
LCBM.457 The National Cancer Institute has been inves-
tigating the efficacy of ATR inhibitors combined with RT
for BM patients (NCT02589522). The PI3K–AKT–mTOR
pathway has been implicated in LCBM formation.361
The novel PI3K inhibitor XH30 has shown promise in
inhibiting orthotopic glioblastoma and BM in mice.458
Moreover, mTOR inhibitors have recently garnered atten-
tion (NCT00892801). While preclinical HDAC have been
rarely studied in BM, they have been shown to pro-
mote tumor development and drug resistance in LC,
with their inhibitors advancing to phase I/II clinical
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trials (NCT00838929, NCT00946673).459–461 Additionally,
the PARP inhibitor pamiparib has demonstrated both
effectiveness and safety in treating SCLC.462 Phase II
clinical trials have indicated that veliparib combined
with WBRT can inhibit the progression of LCBM.463
Researchers have also investigated RT combined with
veliparib or apatinib for treating BM (NCT01657799,
NCT03801200).
STAT3 plays a critical role in promoting the progres-

sion of BM, making it a promising therapeutic target. The
IL6–JAK–STAT3 axis and the HLA-G–SPAG9–STAT3 axis
have been identified as key drivers of BM progression.376
Melanoma and BM cells secrete IL6, leading to increased
STAT3 in astrocytes which stimulates tumor growth.
Inhibiting STAT3 has shown significant promise in reduc-
ing tumor proliferation.405,514 The 2023 WCLC Congress
highlighted the therapeutic potential of STAT3 inhibitors
specifically for LCBM. Silibinin, a natural polyphenolic
flavonoid compound, has demonstrated STAT3-inhibiting
properties and efficacy in treating LCBM.515 Clinical tri-
als investigating silibinin’s effectiveness in LCBM, are
currently underway (NCT05689619).516

8.1.2 TTFields

In vitro and animal experiments have demonstrated
that TTFields significantly inhibit the growth of vari-
ous tumors, induce cell death, and regulate immune
function.517 In particular, for brain tumors, current ani-
mal studies have shown that TTFields can transiently
open the BBB.518–523 This temporary opening enhances
drug permeability, thereby improving the efficacy of treat-
ments against intracranial tumors. Although high-level
evidence for TTFields in treating LCBM is currently lack-
ing, this treatment has been shown to extend the survival
of GBM.524–526 This suggests a potential role for TTFields
in treating LCBM (Table 2).
Similar to other tumors, TTFields have mild adverse

reactions in LCBM, predominantly grade 1–2 skin reac-
tions. Phase II clinical trial COMET (NCT01755624)
demonstrated that TTFields had no serious adverse reac-
tions in treating NSCLC BM, with the only reported
adverse effect being mild dermatitis.527 Additionally, a
study (NCT03903640) explored TTFields combined with
ICIs (nivolumab and ipilimumab), achieving a 100%
response rate for both intracranial and extracranial tumor.
The median mOS, intracranial, and extracranial PFS were
reported as 104.5, 99.5, and 58 days, respectively. How-
ever, this study was limited by its small sample size (only
two patients), which necessitates further validation, par-
ticularly concerning the high incidence of serious adverse
reactions such as death and deep vein thrombosis. The

2024 ASCO conference highlighted that TTFields com-
bined with SRS significantly extendedmedian intracranial
progression time (TTFields + SRS vs. TTFields + best
supportive care: 21.9 vs. 11.3 months).528–530 Nevertheless,
factors such as the high cost may constrain the utilization
and adoption of TTFields in clinical practice.531

8.1.3 Antibody–drug conjugates

ADCs are a class of anticancer therapies designed to deliver
cytotoxic drugs directly to tumor cells, combining the ben-
efits of both cytotoxic chemotherapy and targeted therapy
(Table 2).532,533 The DEBBRAH trial demonstrated that the
ADC trastuzumab deruxtecan, targeting HER2, effectively
delays intracranial progression in BCBM.181,499 HER3 is
notably overexpressed in both LCBM and BCBM, sug-
gesting that targeting HER3 could be a critical strategy
for treatment.534,535 Phase II clinical trial HERTHENA-
Lung01 highlighted the therapeutic efficacy of HER3-DXd
in patients who progressed after EGFR-targeted therapy or
chemotherapy.165 Ongoing investigations are also evaluat-
ing HER3-DXd’s role in BM (NCT05865990). Furthermore,
ANG1005, a brain-penetrating peptide–drug conjugate,
has demonstrated activity in BC patients suffering from
leptomeningeal carcinomatosis and recurrent BM.536 Sac-
ituzumab, an ADC targeting Trop-2, is also being investi-
gated for its therapeutic potential (NCT06401824).

8.2 BCBM

8.2.1 Immunotherapy

Immunotherapy is a prominent approach in treating
BMs and has extended survival in various tumors.537,538
However, BCBM, particularly “cold” tumors, shows low
PD-L1 expression (positive rate of only 25% in TNBC),
limiting the success of current immunotherapies.304,539
Research is now focusing on enhancing immunotherapy
for TNBC and improving the BM microenvironment.540
For instance, doxorubicin induces senescence in intracra-
nial BC cells and stimulates CD8+ T cell antitumor
responses, thereby boosting the effectiveness of anti-PD-1
therapies in BCBM.541 Nanoparticles and nanomateri-
als, such as SIL@T, can induce immunogenic cell death
and reverse the immunosuppressive microenvironment,
offering a promising strategy.542,543 CAR-T therapy, which
combines T cell cytolytic activity with antibody speci-
ficity, shows potential treatment strategies. Particularly,
EGFR806 CAR-T targeting the highly expressed EGFR
in BCBM has demonstrated strong antitumor effects in
mouse models.544 CAR-NK cell-derived exosomes also
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show therapeutic promise.545 Additionally, bioinformatics
analyses by Najjary et al.332 suggest that LAG3–LGALS3,
TIGIT–NECTIN2, and VTCN1 could be promising targets
for immunotherapy.304

8.2.2 Targeting the BBB

Modifying the structure of existing drugs and the BBB, or
using drug carriers can significantly enhance drug con-
centrations within the brain.546 Zuclopenthixol, which
binds to the juxtamembrane region of HER2, effectively
inhibits the growth of BC cells.547 NEO100, a high-purity
form of the natural monoterpene perillyl alcohol, not only
enhances BBB permeability but also increases the delivery
of trastuzumab to the brain.548 Angeli et al.549 designed
a trastuzumab Fab fragment to reduce its extravasation
through cerebral blood flow and improve brain perme-
ability. Additionally, employing an adenovirus-associated
virus vector for intrathecal administration of trastuzumab
has shown significant potential in inhibiting tumor
growth.550 Combining trastuzumab with biocytin-TMR
canmarkedly increase intracranial drug concentration and
reduce drug elimination rates.551 Physical techniques also
offer promising approaches to enhance BBB permeability
and treat intracranial tumors. For instance, low-intensity
“whole-brain” ultrasound combined with VCAM-1 func-
tionalized microbubbles can open the BBB and improve
drug delivery.552,553 TTFields therapy, utilizing moderate
frequency (100–300 kHz) and low-intensity (1–3 V/cm)
alternating electric fields, has recently been shown to
temporarily open the BBB and inhibit tumors.248,517,531
New applications of existing drugs and the develop-

ment of novel therapeutic agents, including nanoparticles,
peptides, proteases, and new inhibitors, offer promising
advancements.122,554 Atovaquone, an antiprotozoal drug
used for pneumocystis pneumonia, has been shown to
inhibit BMby decreasing integrinα6, integrin β4, FAK, Src,
and Vimentin expression.555 Preclinical studies suggest
that medicinal mushroom blends can effectively suppress
cerebellar metastasis in BC.556 Dual-action or dual-target
nanotechnology not only enhances BBB permeability but
also modulates tumor cells and the microenvironment to
improve tumor eradication.557,558 The endothelial WNT
signaling pathway and pericytes are crucial for main-
taining BBB integrity. For example, Mu et al.559 utilized
ICAM-1-targeted nanoparticles (NI@I-NPs) coloaded with
nitazoxanamide and ibrutinib to disrupt the BBB and
enhance chemotherapy efficacy. Strategies targeting the
mitochondrial genome can increase BBB penetration of
nanoparticles, allowing for effective treatment of BM.560
Similarly, VCAM-1-targeting nano-wogonin (W@V-NPs)
inhibits WNT signaling at the BTB, disrupts lipogenesis,

and impairs the BC cells’ ability to adapt to the intracranial
low-lipid microenvironment, thereby restricting tumor
growth.561
The dual-acting peptide PepH3–vCPP2319, which com-

bines the specific anti-BC peptide (vCPP2319) with a BBB
shuttling peptide (PepH3), has demonstrated effective BBB
penetration in both in vitro/vivo models.562 Additionally,
the interaction between stromal cells and tumor cells pro-
motes the formation of glycocalyx, potentially leading to
resistance to HER2-targeted therapies such as neratinib.
Mucinase that inhibits the EGFR/HER2 signaling path-
way has been shown to reverse treatment resistance.563
BRBP1-modified multifunctional liposomes are designed
to actively target Twinfilin 1 and overcome paclitaxel
resistance.564 Customized micelles, such as those based
on the in situ microenvironment (T-M/siRNA), can simul-
taneously deliver siRNA and chemotherapeutic agents to
tumor cells.Meanwhile, it inhibits astrocyte activation and
the immunosuppressive activation of microglia, thereby
enhancing antitumor effects.565 Micelles modified with
Angiopep-2, known as Ang-MIC-PTX/LP, offer high drug
loading efficiency for paclitaxel and lapatinib, and their
combination has proven effective in killing intracranial
tumor cells.566

8.2.3 Targeting tumor metabolism

Lipogenesis enables tumor cells to adapt to the low-lipid
brain microenvironment, facilitating colonization and
growth.236 Brain-tropic tumor cells can autonomously pro-
duce fatty acids by upregulating lipogenic fatty acid syn-
thases, which is not observed in extracranial metastases.
This differential metabolic adaptation may explain organ-
specific metastatic patterns.567 Targeting lipid metabolism
in BC presents a promising therapeutic approach. For
instance, the fatty acid synthase inhibitor TVB-2640,
in combination with the topoisomerase inhibitor SN-38,
has shown synergy in treating BM of TNBC.568 ACSS2,
a crucial regulator of fatty acid synthesis and protein
acetylation, can be inhibited by brain-permeable ACSS2
inhibitors. Furthermore, ACSS2 inhibitors work syner-
gistically with radiation to block BCBM.569 Monoacyl-
glycerol lipase (MAGL) regulates the degradation of 2-
arachidonoylglycerol and promotes inflammatory factor
production. Consequently, the MAGL inhibitor AM9928
has been shown to inhibit the adhesion and transendothe-
lial migration of BC cells.570 Despite the effectiveness of
some lipid metabolism regulators in preclinical models,
transitioning these therapies from the laboratory to clinical
practice remains a significant challenge.571,572
HER3, a receptor tyrosine kinase with oncogenic prop-

erties, is highly expressed in a significant proportion
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of patients with BMs (72.9% in LC and 75.0% in BC).
Targeting HER3 with hyperbranched polymers carrying
doxorubicin has proven effective in increasing drug con-
centration at the metastatic site.573 Similar to HER2, HER3
could be a viable target for ADC.534 Additionally, stem
cell-mediated bifunctional therapies targeting EGFR and
DR4/5 have shown effectiveness in inhibiting perivascular
niche micrometastasis and leptomeningeal metastasis.574
The AR, expressed in most BCBM, also represents a
potential therapeutic target.575

9 CONCLUSION

LC and BC are prominent causes of BM.576,577 While the
diagnosis of BM is now routine, challenges remain in
treatment and maintaining quality of life.3 Advances in
diagnostic and therapeutic technologies have significantly
improved the prognosis for LCBM patients, and long-term
survival is now increasingly feasible for BCBM patients.578
Understanding the influence of molecular subtypes and
other factors on prognosis is crucial for achieving preci-
sion treatment and identifying themost responsive patient
populations.189,232,579–581 Current treatment strategies for
BM typically involve a combination of local and systemic
therapies. For LC, targeted therapies, immunotherapies,
and RT have transformed the management of NSCLC
patients with BM, while SCLC is primarily treated with
chemotherapy and RT. In contrast, treatment for BCBM
involves ADC, monoclonal antibodies, TKIs, chemother-
apy, and RT. Recent advancements have reversed the
previously poor prognosis for BM patients.582 A decade
ago, these patients were often excluded from clinical tri-
als due to poor prognosis, but recent recommendations
advocate for their inclusion under nonexclusion crite-
ria (ASCO/FoCR/FDA task force recommendation).237
Prospective clinical trials are primarily focused on LC,
BC, and melanoma.583 The development of TKIs such
as osimertinib, icotinib, and pyrotinib, as well as mono-
clonal antibodies like trastuzumab, pembrolizumab, and
nivolumab, represents a significant area of interest for
systemic therapy.583 Although leptomeningeal metastasis
historically has a poor prognosis, recent improvements in
diagnosis and treatment have led to better outcomes.584
Furthermore, recognizing the brain’s role in behavior
and emotions underscores the importance of preserv-
ing neurocognitive function and quality of life alongside
survival (NCT04890028).585 Efforts by oncologists high-
light the need for continued research into optimizing
current treatment and developing newdiagnostic and ther-
apeutic approaches for BM. Emerging diagnostic meth-
ods, including less invasive circulating biomarkers, offer
promise for the management of BMs.576 CSF testing is

increasingly used for diagnosing and predicting treatment
outcomes.586 While ctDNA has proven useful in various
tumors, its detection rate in leptomeningeal metastases
requires improvement.261 Despite these challenges, liquid
biopsy remains a promising tool for tumors, facilitating
diagnosis, prognosis, and monitoring of minimal residual
disease and recurrence.385
In BM, AI is increasingly integrated with multimodal

data, including imaging omics and pathology omics, to
enhance predictions of metastasis occurrence and progno-
sis, identify primary tumors and their molecular subtypes,
and assist in RT planning.587,588 AI applications in tumor
models are advancing high-throughput systems capable
of real-time modeling and monitoring of tumor develop-
ment and biophysical characteristics.589 Challenges such
as the difficulty in obtaining samples for BM research can
limit the robustness of evidence.590 However, AI-driven big
data platforms, which combine imaging omics, pathology
omics, and transcriptomics, are emerging to facilitate the
exploration of clinical diagnosis, treatment, and the mech-
anisms underlying BM.591,592 Integrating bulk and single-
cell transcriptome helps uncover the molecular mecha-
nisms associated with tumor development and provides
a comprehensive understanding of the TME.304 Recent
advancements in transcriptomics, proteomics, genomics,
metabolomics, andmethylation sequencing have provided
multidimensional data for understanding BM.323,341,346
These developments significantly contribute to further
elucidation of the BM complexities.261
Preclinical research in BM has made significant strides,

particularly with the use of brain-tropic cell lines and
animal models.242 Recent innovations, such as organoid
models, have introduced breakthroughs in basic research
andpersonalized treatment strategies. Additionally, hydro-
gel models that simulate tumor dormancy and interac-
tions with the microenvironment, as well as microflu-
idic chips that mimic the metastasis process, represent
cutting-edge tools that warrant further investigation.278–281
However, each model comes with its own set of advan-
tages and limitations in BM research.261 Understanding
the key carcinogenic steps in the tumor-soil theory is
crucial for developing effective therapeutic targets. This
includes elucidating how tumors escape the primary site,
protect themselves during dissemination, interact with
brain microenvironment components, and the nature of
the brain microenvironment once metastasis occurs.593,594
Currently, treatment strategies predominantly focus on the
primary tumor, with relatively few therapies developed
specifically for BMs.277,372,373,418,424,427 Specifically targeted
treatments based on the mechanisms of BM are still lim-
ited. Effective treatment for BM often requires overcoming
the BBB to increase intracranial drug concentrations.546
Therefore, the development of TKIs and nanotherapy that
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can penetrate the BBB are promising directions for future
research.197,595–597 While addressing BMs is essential, it is
equally important to consider the primary tumor. Com-
paring the similarities and differences in metastases from
various primary tumors can provide valuable insights for
precise therapy.598,599
The National Cancer Institute Collaborative Workshop

has emphasized the need to establish research priori-
ties that address critical areas of unmet need for BM
patients.600 Key areas requiring attention include identi-
fying and screening high-risk patients, evaluating physi-
cal and cognitive impairments, addressing discrepancies
between preclinical models and clinical realities, and
developing BM-specific diagnostic tests and treatment
strategies.276,600 Over the past decade, multidisciplinary
team collaborations have significantly improved the prog-
nosis for BM patients.601,602 Continued focus on these
research priorities will advance our understanding and
management of BMs, highlighting the potential for achiev-
ing substantial progress and improving outcomes in the
future.
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