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Invasive alien plants pose a significant threat to biodiversity and the agricultural economy. The invasive 
weed (Ammannia coccinea) competes with rice in paddy fields, potentially threatening rice production. 
Despite the crucial need to estimate the global geographical distribution and ecological niche dynamics 
of A. coccinea for effective early warning, control strategies, and global rice security, relevant research 
remains scarce. This study utilized the Biomod2 platform, which integrates multiple single models 
into ensemble model, incorporating environmental and species data to analyze the distribution range 
shifts of A. coccinea under current and future climate scenarios. It also quantified and analyzed shifts 
in the species’ ecological niche across these climate scenarios. The results indicated that the potential 
suitable areas for A. coccinea were mainly in Southern North America, northern and south-eastern 
South America, south-western Europe, the Middle East, central Africa, western Asia, south-eastern 
Asia, with a gradual increase in mid-high suitability habitat over time and radiation levels. While 
the overall ecological niche of A. coccinea remains stable, minor shifts are expected under future 
conditions. Temperature, precipitation, and the human impact index were the key factors influencing 
the future distribution of A. coccinea. Climate change contributes to the expansion of A. coccinea's 
highly suitable areas and shifts its ecological niche. Organizations efforts should focus on preventing 
the spread of A. coccinea in regions where its potential distribution overlaps with key rice production 
areas. The findings of this study provide critical insights into the global distribution and ecological 
niche dynamics of A. coccinea, aiding in the development of early warning and control strategies to 
mitigate its impact on biodiversity, agriculture, and particularly rice production under future climate 
scenarios.
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In recent years, with the acceleration of international exchanges and transnational trade, an increasing number 
of organisms have crossed spatial boundaries to reach other regions, where they have proliferated and caused 
adverse impacts on the local ecological ecosystems. As a result, the invasion of exotic organisms has emerged 
as a significant environmental concern for humanity in the twenty-first century1. Among these invasive species, 
plants play a major role, accounting for approximately 20% of the world’s flora2. Invasive alien plants pose a 
serious threat to native species, biodiversity, ecological balance, agricultural production, and even economic 
stability3,4. For example, species like Mikania micrantha Kunth and Eupatorium odoratum L. have caused 
significant ecological and economic damages in regions such as China and Australia, contributing to billions in 
financial losses5–7. These losses include reduced crop yields, increased costs of management and eradication, and 
disruption of local ecosystems.

In the context of global warming, future climate change will alter the land surface temperature and 
precipitation pattern, significantly affecting invasive species distribution8. Higher temperatures typically 
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accelerate their metabolism, development, and reproductive cycles, promoting their spread. For example, the 
red imported fire ant (Solenopsis invicta) has expanded into higher latitude regions as warmer climate allow it to 
thrive in new habitats9. Similarly, species are likely to shift to higher altitudes and latitudes under global climate 
change, accelerating the invasion process of exotic species10. In addition to temperature changes, alterations 
in precipitation patterns can also facilitate the invasion of alien plants. Some studies have shown that genetic 
alterations and accelerated evolution, triggered by changes in precipitation, contribute to the spread of invasive 
species. For example, two annual grass species, Avena barbata and Bromus madritensis, have shown reduced 
growth and reproduction in areas with decreased precipitation in the United States11. Human activities and land 
use further exacerbate these shifts by modifying habitats and ecosystems12,13. Once invasive species successfully 
colonize new areas, eradication becomes highly challenging. Therefore, it is crucial to investigate the global 
distribution of invasion plants under climate change conditions. Such research will provide the foundation for 
developing effective early warning and control systems to mitigate the threats posed by invasive species14.

To enhance the efficiency of invasive species control, predicting the potential distribution habitats of invasive 
plants using species distribution models (SDMs) has become a key focus in biological invasion research15. 
SDMs predict the actual and potential distribution of a species by using algorithms to determine its ecological 
requirements, projecting these results in a specific spatiotemporal context. This process considers both the known 
distribution points and the associated environmental variables16. Numerous SDMs are available, each differing 
in principles, algorithms, and predictive performance17. We applied 10 modelling algorithms from the Biomod2 
platform, including Generalized Linear Model (GLM), Generalized Boosted Model (GBM), Generalized 
Additive Model (GAM), Classification Tree Analysis (CTA), Artificial Neural Network (ANN), one Rectilinear 
Envelope Similar to BIOCLIM (SRE), Flexible Discriminant Analysis (FDA), Multivariate Adaptive Regression 
Splines (MARS), Random Forest (RF), Maximum Entropy Models (MaxEnt)18. Biomod2 integrates results from 
multiple single models to improve the accuracy of species distribution predictions19. Ensemble model refer to 
the modeling approach where multiple individual models (often referred to as “single models”) are combined 
to make a final prediction. The greater reliability of ensemble model compared to single models has made them 
widely used for studying the potential suitable areas for invasive alien plants9, such as Centaurea solstitialis L20, 
Heracleum mantegazzianum21, Aegilops tauschii and Ambrosia artemisiifolia (common ragweed)22–24.

Ammannia coccinea is a noxious weed that competes with rice and is frequently found in rice paddies. It 
also thrives in various wet environments including wet meadows, rivers, riverbanks, floodplains, ponds, lakes, 
and marshes25,26. Native to North and Central America, A. coccinea has been introduced to many countries, 
including France, Spain, Portugal, Italy, Bulgaria, Greece, Turkey, Australia, Africa, Morocco, and others25,27,28. It 
was introduced to China, Japan, Korea, Malaysia, and other Asian countries in the 1950s28,29. It is now one of the 
most widely distributed nuisance weeds in the region30,31. The seeds of A. coccinea are small and highly prolific, 
averaging 270 seeds per capsule and producing over 500,000 seeds per plant32. In shaded conditions, A. coccinea 
adapts by increasing the ratio and stem node length while reducing stem diameter, branch number, and stem 
node count33. A. coccinea contains flavonoids, such as quercetin, that are converted to protective compounds 
when exposed to UV-B radiation34. These flavonoids scavenge free radicals and improve the plant’s resistance 
to fungal pathogens35. A. coccinea thrives in freshwater at a depth of up to 0.5 meters25,30. These biological 
characteristics traits enhance the competitiveness and invasiveness of A. coccinea32. In California rice fields, A. 
coccinea is highly competitive, outcompeting rice 45 days after sowing, with densities of 110 plants/m2 causing 
a 39% reduction in rice yields33,36.

Given A. coccinea's high competitiveness and its significant impact on paddy fields, predicting its global 
distribution patterns under climate change and understanding its niche dynamics are of critical importance. 
However, comprehensive research on this subject remains limited. This study addresses this gap by employing 
advanced species distribution models and niche analysis methods to examine A. coccinea's distribution and 
niche shifts in globally suitable areas. This research reveals A. coccinea's invasion dynamics, offering critical 
insights for developing effective biosecurity measures and management strategies to mitigate its impact on 
global agriculture.

Materials and methods
Acquisition and screening of occurrence records
Occurrence records for A. coccinea were gathered from literature resource, field surveys, the Global Biodiversity 
Information Network (http://www.GBIF.org; https:   //d oi. org/h   ttp s:/ /d oi.or g/  10.15468/dl.d9vykx)37, China Plant 
Image Bank (https://ppbc.iplant.cn), and China Digital Herbarium (https://www.cvh.ac.cn/index.php). Once 
the occurrence locations were identified from China Plant Image Bank and China Digital Herbarium, the 
coordinate picker tool (https://lbs.amap.com/tools/picker) was used to retrieve latitude and longitude data. 2862 
occurrences were collected after removing some duplicates. To ensure data accuracy and precision, occurrence 
records that were not on land or had incorrect coordinates were excluded. Concurrently, to ensure compatibility 
with the resolution of our environmental variables, we refined the occurrence data using ENMTools v1.4.438. This 
process filtered the data to retain only one occurrence record per 10 × 10 km grid, effectively minimizing spatial 
autocorrelation. If unaddressed, spatial autocorrelation can skew results due to the clustering of data points39. 
Finally, 1138 occurrence records of A. coccinea were obtained for modeling its potential global distribution using 
Biomod2 (Fig. 1).

Obtaining and filtering environment variables
Current climate data (1970–2000) and future climate data (2041–2060, 2061–2080, 2081–2100) were downloaded 
from WorldClim (www.worldclim.org)40. The current climate data come from WorldClim 2.1 and include 19 
variables related to temperature and precipitation, along with digital elevation data (elev), all at a resolution of 
5 arc-minutes. To account for the influence of human activities and land use on invasive plant distribution34,35, 
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we included Human Impact Index (HII;2.5arc-minutes) and global land cover data (GlobCover 2009;  h t t p : / / d u 
e . e s r i n . e s a . i n t / p a g e _ g l o b c o v e r . p h p     ; 2.5arc-minutes). Both variables were resampled to 5 arc-minute resolution 
in ArcGIS. Future climate data for the 2050s, 2070s, and 2090s were derived from three shared socioeconomic 
pathways (SSPs) under CMIP6: SSP126, SSP245, and SSP585. These scenarios reflect different levels of radiative 
forcing in 2100: 2.6 W/m2 in a sustainability-focused world (SSP126), 4.5 W/m2 in a middle-of-the-road scenario 
(SSP245), and 8.5 W/m2 in a high-growth, high-energy world (SSP585)41,42. Data from the BCCCSM2-MR 
model were used, which combines SSPs with Representative Concentration Pathways (RCPs) to project future 
climate trends43.

To prevent model misinterpretation due to multicollinearity between environmental variables44, we 
conducted a correlation analysis on the 22 bioclimatic variables using R. The variables were first extracted to the 
sample points using ArcGIS’s multi-value extraction module and then analyzed for correlation using R. Variables 
with a correlation coefficient |r|> 0.8 were removed, keeping the one with the higher contribution to the models 
based on jackknife importance values. This process reduced the 22 variables to 12 predictors, minimizing 
redundancy and enhancing model robustness (Table 1, Fig. 2). Correlation analysis is essential for identifying 
multicollinearity, preventing highly correlated variables from distorting model outcomes. Jackknife importance 
values assess each variable’s independent contribution to the models. Combining these two approaches ensured 
the models remained both robust and interpretable.

Construction and evaluation of ensemble models
The Biomod2 includes 10 single models, enabling a wide range of configurations to meet diverse research needs45. 
By integrating these single models, we leverage their respective sensitivities and explanatory powers to enhance 
the diversity, robustness, and comprehensiveness of predictions. This ensemble approach reduces individual 
model bias, minimizes errors, and improves overall prediction accuracy by combining outputs, thereby better 
assessing uncertainty19. Studies have shown that combining multiple single models generally results in higher 
predictive accuracy than using a single model, thereby improving the reliability and practicality of scientific 
research17.

In this study, we used 10 single models (GAM, GBM, GLM, CTA, MARS, ANN, SRE, FDA, RF, MaxEnt) from 
the R package Biomod2 to predict potentially suitable areas for A. coccinea based on species occurrence records 
and environmental variables. We employed the disk method in Biomod2 to generate pseudo-absence samples 
equal in number to the presence points. This approach enhances the accuracy of classification algorithms like 
classification trees and random forests46. In each species distribution models setup, 75% of the data was used 
for training and the remaining 25% for testing to evaluate model accuracy and reliability47. The division of 
training and test data was repeated randomly 5 times and the models were repeated 10 times. Additionally, 500 
pseudo-negative sample points were randomly selected 46,48,49 and repeated three times, resulting in a total of 
150 modeled species distributions.

The true skill statistic (TSS), area under the receiver operating characteristic curve (AUC), and Cohen’s kappa 
(Kappa) were used to evaluate model accuracy, with values closer to 1 indicating more reliable predictions50–52. 
The evaluation criteria for AUC, TSS and Kappa are presented in Table 2. Of the 150 constructed models, those 
with TSS and AUC values greater than 0.75 were selected to build the ensemble species distribution models. 
Model weighting in the ensembles was based on the evaluation score. Models with higher ratings received 

Fig. 1. Screened global distribution occurrence records of Ammannia coccinea.
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Fig. 2. Correlation analysis of 12 selected environment variables.

 

Code Description Unit Weather to use A. coccinea for modeling Importance (Jackknife)

bio1 Annual mean temperature °C Yes 6

bio2 Mean diurnal range °C Yes 2.5

bio3 Isothermality °C No 2

bio4 Temperature seasonality – No 5.1

bio5 Maximum temperature of the warmest month – No 1.5

bio6 Minimum temperature of the warmest month °C No 0.4

bio7 Annual mean temperature range °C No 1.1

bio8 Mean temperature of the wettest quarter °C Yes 0.1

bio9 Mean temperature of the driest quarter °C Yes 0.1

bio10 Mean temperature of the warmest quarter °C Yes 10.9

bio11 Mean temperature of the coldest quarter °C No 0.9

bio12 Annual precipitation mm No 0.4

bio13 Precipitation of the wettest month mm Yes 1.3

bio14 Precipitation of the driest month mm No 0.6

bio15 Precipitation seasonality ( CV) – No 0.8

bio16 Precipitation of the wettest quarter mm No 0.2

bio17 Precipitation of the driest quarter mm Yes 3.6

bio18 Precipitation of the warmest quarter mm Yes 0.3

bio19 Precipitation of the coldest quarter mm Yes 7.8

HII Human Influence Index – Yes 44.4

Globcover Global land cover Km2 Yes 8.6

elev above sea level M Yes 1.3

Table 1. Selected climatic variables influencing the distribution of Ammannia coccinea.
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greater weighting in the combined models50. The importance of each environmental factor was assessed using 
Biomod2. Finally, the ensemble model was used to predict the potential global distribution of A. coccinea under 
climate change scenarios.

We employed multiple integrated methods to construct ensemble models for the potential distribution areas 
of A. coccinea, including EMmean (ensemble mean), and EMca (consensus average) etc. This multifaceted 
approach enabled a comprehensive evaluation of the models, ensuring the selection of the optimal ensemble 
model for accurate prediction.

Division of the suitable areas
The critical value of ensemble model were used as the threshold to differentiate between suitable and unsuitable 
zones. The ASCII raster layer, ranging from 0 to 1,000 in the ensemble model, indicated the occurrence 
probability (p) of A. coccinea. A larger P-value indicates a higher probability of occurrence of A. coccinea9,20. 
We divided the potential global distribution of A. coccinea into four categories using ArcGIS: high-suitability 
habitat (600 ≤ P ≤ 1000), moderate-suitability habitat (400 ≤ P < 600), low-suitability habitat (200 ≤ P < 400), and 
unsuitable habitat (0 ≤ P < 200). We used the raster map of suitable zones for A. coccinea to create binary maps 
through the reclassification function in ArcGIS 10.2, and applied the SDM Toolbox v2.0 plugin to calculate the 
spatial patterns of these suitable zones. When binarizing the prediction results, we used 0.2 as the boundary 
between suitable and non-suitable zones. We compared current and future projections of total suitable area and 
assessed changes by calculating areas of expansion, contraction, and rates of gain and loss.

Ecological Niche comparison measures
We utilized the Principal Component Analysis (PCA) method from the ecospat software package53 to investigate 
ecological niche shifts of A. coccinea under current and future climatic scenarios. This approach is widely used 
to analyze the ecological niche dynamics of invasive alien species54,55. We employed the Schoener’s D metric 
was used to quantify ecological niche overlap, which ranges from 0 to 1, with larger values indicating greater 
overlap between the two areas56. This index is crucial for understanding how the ecological niche of A. coccinea 
changes or remains stable under current and future climate scenarios. Niche equivalency tests and similarity 
were conducted to evaluate the significance of niche overlap across geographic areas56,57. The niche equivalency 
test assessed whether the niches of the two entities were equal (full overlap), moderately similar (partial overlap), 
or distinctly different (no overlap). The niche similarity test assessed whether the niches of the two entities 
being compared were more similar (or different) than expected by chance, also considering the surrounding 
environmental conditions throughout the geographic area56,58. The test was repeated randomly 100 times, and 
the null hypothesis of ecological niche equivalence or similarity could be rejected if the observed niche values 
(D) were significantly lower than the overlap value from the null distribution (P ≤ 0.05)57.

To assess niche dynamics, an environments was considered to indicate niche expansion if it is available in 
both current and future ranges but was only occupied in the future range56. Similarly, an environment indicated 
niche stability if occupied in both current and future ranges, while niche unfilling if it was used in the current 
range but available yet unexploited in the future range58. Values for expansion, stability, and unfilling ranging 
from 0 to 100% were deemed significant if greater than 10%. Niche expansion is regarded as the sole measure 
that accurately reflects shifts in a realized niche54,55.

Results
Evaluation of model accuracy
We evaluated the performance of 10 individual models (GAM, GBM, GLM, CTA, SRE, MARS, FDA, ANN, 
RF, and MaxEnt) using TSS, Kappa, and AUC as evaluation metrics (Table 3). Since the TSS values of SRE 
and ANN did not meet the threshold of greater than 0.75, they were not included in the construction of the 
ensemble models. Ultimately, we selected GAM, GBM, GLM, CTA, MARS, FDA, RF, and MaxEnt to construct 
the ensemble models. We found that the EMca version had the highest accuracy, with TSS and AUC values 

Evaluation index MARS RF MAXENT CTA FDA GAM GBM GLM EMca EMmean

TSS 0.844 0.992 0.857 0.882 0.828 0.836 0.883 0.807 0.891 0.876

ROC 0.967 0.997 0.944 0.972 0.961 0.974 0.986 0.958 0.983 0.982

KAPPA 0.847 0.991 0.832 0.884 0.831 0.844 0.892 0.816 – –

Table 3. Evaluation metric values for individual models and ensemble models.

 

Evaluation index Fail Bad Medium Good Excellence

AUC 0.50–0.60 0.60–0.70 0.70–0.80 0.80–0.90 0.90–1.00

TSS 0.00–0.40 0.40–0.55 0.55–0.70 0.70–0.85 0.85–1.00

Kappa 0.00–0.40 0.40–0.55 0.55–0.70 0.70–0.85 0.85–1.00

Table 2. Evaluation standard for AUC, TSS and Kappa.
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greater than those of EMmean (Table 3). Therefore, we selected the EMca version for further visualization and 
analysis.

Significance of environmental variables
Eight single models was used to assess the contribution of environmental variables affecting the distribution 
of A. coccinea, and the results were shown in Fig.  4. The top contributing variables across different models 
varied slightly, but the most influential variables included the Human Impact Index (HII), mean annual 
temperature (bio1), mean temperature of the warmest quarter (bio10), and precipitation of the coldest quarter 
(bio19). Specifically, the ensemble model results (Fig. 3) confirmed that these four environmental variables were 
consistently the most influential across all models, indicating that two temperature variables, one precipitation 
variable, and one anthropogenic factor primarily drive the distribution of suitable habitats for A. coccinea. This 
highlights the central role of temperature and human influence in determining the species’ suitable habitats.

Ecological Niche analysis
Niche analyses contrasting current and future climatic conditions revealed a moderate degree of similarity across 
all scenario comparisons, with Schoener’s D values ranging from 0.518 for current vs SSP585-2090s to 0.805 for 
current vs SSP126-2050s (Fig. 4; Table 4). These Schoener’s D values indicate moderate to high similarity between 
suitability distributions in different climatic scenarios. The pattern suggests a prospective shift in climatic 
suitability, with a potential reduction of A. coccinea's current niche under future climate conditions. The results 
showed that the Schoener’s D values for the SSP126 scenarios are all greater than the SSP245 scenarios, while the 
Schoener’s D for the SSP245 scenarios are all greater than the SSP585 scenarios. In short, there was a decreasing 
trend in the Schoener’s D values with an increasing radiation intensity over time. The results of the climatic 
background PCA have been presented in Table 4 and Figure S3. Across all PCA analyses, PC1 consistently 
captures the largest source of climatic variation, typically associated with temperature-related variables (e.g., 
bio1, bio10). PC2, on the other hand, reflects the second-largest variation in the climatic dataset, generally 
driven by precipitation variables (e.g., bio19). These principal components together provide a comprehensive 
summary of the key climatic factors influencing the environmental variation across different time periods and 
SSP scenarios. This result is consistent with the importance of environment variables in Biomod2.

Furthermore, we extended the exploration of niche equivalency and similarity. In pairwise analyses of climate 
ecological niches of species under current and future climate scenarios, the p-values for equivalence were less 
than 0.05, leading to the rejection of the null hypothesis of ecological niche equivalency and similarity in all 
pairwise comparisons (Fig. 4; Table 4). This suggested that A. coccinea may experience significant differences in 
its ecological niche characteristics under future climate scenarios (Fig. 5).

Red areas indicate expansion, green areas represent unfilling, and blue areas show overlap (Table 4). The 
values of ecological niche expansion and stability suggested that A. coccinea will experience minimal niche 
expansion (< 10%) in the future. However, as radiation intensity increases over time, the extent of ecological 
niche expansion and unfilling is expected to increase, while niche stability is likely to decrease.

Fig. 3. Contribution values of environmental variables in single models and the ensemble model.
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Niche comparison pairs PC1 (%) PC2 (%) Niche overlap (D) Niche expansion (%) Niche stability (%) Niche unfilling (%)

Current vs SSP126-2050s 38.08 23.21 0.799 0.008 0.992 0.004

Current vs SSP126-2070s 38.10 23.18 0.794 0.007 0.993 0.003

Current vs SSP126-2090s 38.01 23.32 0.805 0.006 0.994 0.003

Current vs SSP245-2050s 38.05 23.22 0.696 0.006 0.994 0.007

Current vs SSP245-2070s 37.91 23.18 0.711 0.009 0.991 0.007

Current vs SSP245-2090s 37.75 23.15 0.645 0.012 0.987 0.012

Current vs SSP585-2050s 37.78 23.20 0.673 0.01 0.99 0.008

Current vs SSP585-2070s 37.40 23.21 0.613 0.026 0.974 0.01

Current vs SSP585-2090s 37.11 23.01 0.518 0.037 0.963 0.022

Table 4. Niche comparisons and variation between the current and future projected distribution ranges of A. 
coccinea.

 

Fig. 4. Changes in the ecological niche of A. coccinea under different future climate scenarios compared to the 
current.
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Current potential global distribution of A. coccinea
We employed the ensemble model in Biomod2 to predict the potential global distribution of A. coccinea 
under current climate conditions (Fig. 6). Under current climatic conditions, the potential global geographic 
distribution of A. coccinea is concentrated in southern North America, northern and southeastern South America, 
southwestern Europe, the Middle East, central Africa, western Asia, Southeast Asia, etc. (150 °E–120 °W, 40 °S–
60 °N). Specifically, the high suitable habitat area was 1,759.12 × 104 km2, accounting for 11.81% of the global 

Fig. 5. The ecological niche equivalency and similarity of A. coccinea under different future climate scenarios 
compared to the current.
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land area, covering regions such as the United States, Mexico, Cuba, Puerto Rico, Jamaica, northern Colombia, 
northern Venezuela, Portugal, the eastern coast and south of Brazil, northeastern Argentina, Paraguay, Spain, 
Italy, Greece, Turkey, the southwestern corner of Russia, Iran, India, northern China, Cambodia, Vietnam, the 
Philippines, Korea, Japan, southeastern Australia, Guinea, Liberia, the southern coast of Nigeria, and other areas. 
North, southeastern China, Cambodia, Vietnam, Philippines, Korea, Japan, southeastern Australia, Guinea, 
Liberia, southern coast of Nigeria and other regions. The moderately suitable habitat area was 101.76 × 104 
km2, accounting for 8.1% of the global land area, mainly surrounding the highly suitable area. The low-suitable 
habitat area was 1920.86 × 104 km2, accounting for 12.89% of the global land area, covering regions such as 
the northwestern United States, central Mexico, Peru, Bolivia, central Colombia, Venezuela, Fatima, Germany, 
Poland, Hungary, Rome, Ukraine, Turkey, Iran, Uzbekistan, Pakistan, central India, Myanmar, Indonesia, 
Cameroon, Central Africa, the Congo, the Sudan, South Africa, Zimbabwe, Mozambique, Madagascar and other 
regions.

Future potential global distribution of A. coccinea
The potential geographic distribution and suitable area of A. coccinea under future climate conditions are 
presented in the supplemental materials (Figures S1 and S2, Table S1). The changes in the area of A. coccinea 
distribution under future climate change conditions compared to the current distribution are shown in Fig. 7.

Compared with the current conditions, mid-high suitable areas were expected to expand under future 
climate scenarios, with the most significant expansion observed under the SSP585 scenario in the 2090s (Figures 
S1, S2). While the distribution of suitable areas remains relatively stable in some regions, overall, significant 
geographical shifts are anticipated under future climate conditions. Except for SSP245 in 2090 and SSP585 in 
2070 and 2090, habitat contraction exceeds expansion, and total suitable habitat area decreases under all other 
climate scenarios. Notable expansion were expected in regions such as northeastern Bolivia, eastern Colombia, 
central Brazil, Nigeria, South Sudan, Uzbekistan, central India, Myanmar, Thailand, northwestern China, and 
parts of Australia. The contractions areas of the suitable areas were mainly located in the southwestern Russia, 
northern Kazakhstan, southern Africa, northern China, and southern Cana.

Discussion
Accuracy of model predictions
Variations in the prediction process and parameter algorithms across individual models may lead to uncertainty 
in their prediction results9. Ensemble model constructed using the Biomod2 platform were applied to predict 
the potential habitat distribution of the invasive plant A. coccinea, effectively reducing the uncertainty and 
simulation bias with single models. To mitigate sampling bias, the occurrence records of A. coccinea were 
carefully screened. To avoid multicollinearity among environmental variables, Pearson correlation analysis and 
jacknife method were used to remove highly correlated and less importance factors. Nine climate factors, one 
terrain factor, one human disturbance factor, and one land type coverage factor were selected for the distribution 
models. The predicted values of AUC, TSS, and Kappa for the single models met the “excellent” standard, while 
the of AUC and TSS values for the ensemble model reached the standard of "excellent." This indicated that the 

Fig. 6. Potential global distribution of A. coccinea under current climate conditions.
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model predictions were accurate and reliable, and closely aligned with the species, actual distribution. Thus, 
these models can be utilized to analyze the global potential distribution of A. coccinea.

Key environmental and anthropogenic factors influencing the global distribution of A. 
coccinea
The key environmental variables influencing the potential global distribution of A. coccinea included annual 
mean temperature (bio1), mean temperature of the warmest quarter (bio10), precipitation of the coldest 
quarter (bio19), and human impact index (HII). In summary, the potential global geographic distribution of A. 
coccinea was determined by the synergistic effects of three environmental variables: temperature, precipitation 
and anthropogenic impacts. In areas where A. coccinea has successfully invaded, favorable temperature and 
precipitation have facilitated its colonization and expansion. This has led to faster reproduction and greater 
adaptability in A. coccinea25,33,34. Research has shown that A. coccinea is photoblastic, requiring temperature 
above 15  °C and a soil burial depth of less than 3  cm for successful germination and seedling emergence29. 
Dormant A. coccinea seeds require at least 100 days of cold stratification, diurnal temperature fluctuations, and 
light for optimal germination59. Generally, A. coccinea thrives in warm environments, with temperatures above 
28 °C favoring its growth32. Climate warming has increased A. coccinea,s environmental tolerance, expanding its 
invasive range. These studies support and validate our findings.

The coldest season precipitation (bio19) significantly influences the potential geographic distribution of A. 
coccinea. Precipitation plays a crucial role in determining the establishment and spread of invasive species, as it 
directly affects soil moisture levels and plant physiology51. For A. coccinea, adequate precipitation during colder 
months may promote germination and seedling survival, particularly in regions with moderate or seasonal 
droughts. Insufficient precipitation can limit the species’ growth by reducing soil water availability, leading to 
lower reproductive success and slower population expansion60. Studies have shown that altered precipitation 
patterns, driven by climate change, have already begun reshaping the geographic distribution of invasive species 
globally, facilitating their spread into previously unsuitable areas11,61,62. Therefore, changes in precipitation 
patterns due to climate change could enhance the invasiveness of A. coccinea in regions with favorable conditions.

Anthropogenic influences have also partially shaped the potential geographic distribution of A. coccinea. 
Studies have shown that A. coccinea frequently occurs in rice fields, which are heavily impacted by human 
activities. Human influences have also facilitated multiple dispersal pathways of A. coccinea. The seeds of A. 
coccinea can be dispersed through various pathways, including agricultural trade, water flow, and attachment 
to mud or machinery tires used in cultivation22. The spread of A. coccinea is accelerated by human activities. 
Therefore, under suitable temperature, precipitation, and anthropogenic activity, A. coccinea will flourish.

Fig. 7. Projected changes in potential global suitable habitats for A. coccinea under future climate scenarios 
compared to the current climate: (a) SSP126 for the 2050s, 2070s, and 2090s; (b) SSP245 for the 2050s, 2070s, 
and 2090s; (c) SSP585 for the 2050s, 2070s, and 2090s.
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Changes in potential geographic distribution of A. coccinea
Our results showed that, under current climatic, the potential geographical distribution of A. coccinea is 
mainly in Southern North America, northern and southeastern South America, southwestern Europe, West 
Asia, and Southeast Asia. This was consistent with previous research32, indicating a strong agreement between 
the simulated potential geographic distribution of A. coccinea and its actual range under the current climatic 
scenarios. Research indicates that under future climate conditions, the potential areas of moderate to high 
suitability for A. coccinea are expected to expand. Furthermore, with ongoing climate change, particularly the 
rise in radiation intensity, the global invasion range of A. coccinea is expected to expand rapidly in moderate to 
high suitability zones. This suggests that different socioeconomic development pathways significantly impact 
the global spread of A. coccinea, with high fossil fuel consumption accelerating its spread63. Additionally, the 
Schoener’s D values and niche analysis results indicate that as radiation intensity increases (e.g., in the SSP585 
scenario), the climatic suitability of A. coccinea’s current niche gradually decreases. This reduction in suitability 
may drive the species to seek new habitats at higher latitudes where temperature and precipitation conditions 
are more favorable. Specifically, the declining trend in Schoener’s D values suggests that A. coccinea's current 
niche will become less suitable in the future, promoting a shift in its range to higher latitudes to find climates 
that match its tolerance thresholds.

Ecological niche dynamics and adaptation of A. coccinea
Ecological niches are crucial for prediction invasive species, distribution. Invasive alien species adapt to new 
habitats in a variety of ways and expand their ecological niche space after colonisation, ultimately leading 
to differences between native and invasive ecological niches, such as thermal niche shifts64. For A. coccinea, 
the maximum ecological niche overlap (SSP126-2050s) was 0.805, indicating substantial similarity, while the 
minimal ecological niche overlap (SSP585-20900  s) decreased to 0.518, indicating greater differentiation in 
extreme future climate scenarios. This suggests that A. coccinea has broad ecological adaptability to various 
environments.

Despite overall niche stability for A. coccinea under future conditions, we observe increased niche expansion 
and unfilling as radiation intensity rose (e.g., SSP585), suggesting A. coccinea will exploit more diverse habitats 
and expand its range. As its current niche becomes less suitable, it is likely to migrate to higher latitudes in search 
of favorable conditions. Additionally, the PCA analysis showed significant shifts in the species’ niche under 
future scenarios, with niche equivalency being rejected (p < 0.05). This supports the potential for A. coccinea to 
expand its distribution as temperatures rise and precipitation patterns change. As the suitable areas expand, A. 
coccinea is likely to face competition with local species for resources and space.This competition could negatively 
impact local biodiversity, as invasive species often suppress or replace native species by occupying resources and 
altering habitats33,35. Therefore, as climate change intensifies, managing the expansion of A. coccinea will become 
a critical issue for ecological management.

Targeted prevention and pontrol strategies for A.coccinea
A. coccinea is a noxious weed that competes with rice in paddy fields and is spreading globally. Globalization 
and climate warming have promoted the invasion of alien species65,66. Managing A. coccinea is challenging due 
to climate change, with its global distribution influenced by temperature, precipitation, and human activities. 
The seeds can spread through water currents or agricultural machinery, such as rice harvesters34. Therefore, 
government should focus prevention and control efforts on regions where A. coccinea overlaps with key rice 
production areas, rather than only targeting highly suitable habitats for the weed. Tailored prevention strategies 
are crucial, especially in areas where rice production and A. coccinea overlap, as these regions face significant 
threats to food security.

Control measures should combine mechanical, chemical and biological measures. Mechanical techniques 
like early removal and tilling can eliminate the weed, while herbicides provide chemical control. Biological 
control through natural enemies like insects or pathogens can offer long-term suppression. Early and intensive 
control usually yields better outcomes62. Thus, agencies should conduct surveys in high-risk areas to assess 
the weed’s impact and provide a scientific basis for implementing effective control measures. These efforts will 
improve global knowledge of invasive species management and reduce the impact on rice production.

Existing deficiencies and future development directions
Our analysis of A. coccinea's potential distribution is more comprehensive and accurate compared to previous 
studies. The key advantages are: (1) Using the latest species distribution data, which improves accuracy and 
geographic coverage; (2) Implementing a stricter environmental variable selection, considering factors like 
the human impact index (HII) and Globcover; (3) Using the Biomod2 platform to integrate multiple models, 
enhancing prediction reliability; (4) Expanding the study to a global scale, predicting future distributions across 
different climate scenarios; (5) Quantifying niche dynamics like expansion, unfilled areas, and stability, offering 
deeper insights into the species’ ecological adaptability.

Despite efforts to improve model accuracy, species distribution is a complex result of biotic and abiotic 
interactions. Our study focused on climate, HII, and Globcover, but factors like species interactions, infrastructure 
development, and trade activities also influence invasive species spread, highlighting limitations in our model43. 
Future research should include a wider range of variables, especially species interactions, native biota, and socio-
economic factors, to better understand distribution patterns of A. coccinea and other invasive species under 
changing environmental conditions. Although our research offers valuable insights into the species’ distribution, 
future studies should incorporate more comprehensive factors for deeper understanding and more effective 
management strategies.
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Conclusions
The habitats of A. coccinea are highly susceptible to climate change, resulting in shifts in suitable areas and 
alterations the species, ecological niches. Using the ensemble model constructed from the best-performing single 
models, we achieved high accuracy in predicting the potential global distributions of A. coccinea. Under current 
climatic conditions, the species is predominantly found in Southern North America, northern and south-eastern 
South America, south-western Europe, the Middle East, central Africa, western Asia, and south-eastern Asia. 
Future climate scenarios predict an expansion of mid-to-high habitability areas for A. coccinea.

While the overall ecological niche of A. coccinea remains stable, minor shifts are expected under future 
conditions. Key environmental drivers—temperature, precipitation and human impact index (HII) -played a 
key role in facilitating its invasion and expansion globally. Given these findings, organizations efforts should 
focus on preventing the spread of A. coccinea in regions where its potential distribution overlaps with key rice 
production areas, rather than solely targeting the species’ highly suitable habitats. Strengthening prevention 
and control measures in such regions is crucial, as A. coccinea poses a threat to food security. Taking proactive 
measures will not only safeguard agricultural production but also contribute to achieving the United Nations 
Sustainable Development Goals, particularly those related to food security and environmental sustainability.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due (our experimental 
team’s policy) but are available from the corresponding author on reasonable request.
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