European Journal of Pediatrics (2025) 184:98
https://doi.org/10.1007/500431-024-05925-5

REVIEW q

Check for
updates

Artificial intelligence in pediatric allergy research

Daniil Lisik' © - Rani Basna'%® - Tai Dinh3>*® . Christian Hennig®® - Syed Ahmar Shah®® - Géran Wennergren’
Emma Goksor’® - Bright I. Nwaru'®

Received: 18 October 2024 / Revised: 6 December 2024 / Accepted: 11 December 2024
© The Author(s) 2024

Abstract
Atopic dermatitis, food allergy, allergic rhinitis, and asthma are among the most common diseases in childhood. They are
heterogeneous diseases, can co-exist in their development, and manifest complex associations with other disorders and envi-
ronmental and hereditary factors. Elucidating these intricacies by identifying clinically distinguishable groups and actionable
risk factors will allow for better understanding of the diseases, which will enhance clinical management and benefit society
and affected individuals and families. Artificial intelligence (Al) is a promising tool in this context, enabling discovery of
meaningful patterns in complex data. Numerous studies within pediatric allergy have and continue to use Al, primarily
to characterize disease endotypes/phenotypes and to develop models to predict future disease outcomes. However, most
implementations have used relatively simplistic data from one source, such as questionnaires. In addition, methodological
approaches and reporting are lacking. This review provides a practical hands-on guide for conducting Al-based studies in
pediatric allergy, including (1) an introduction to essential Al concepts and techniques, (2) a blueprint for structuring analysis
pipelines (from selection of variables to interpretation of results), and (3) an overview of common pitfalls and remedies.
Furthermore, the state-of-the art in the implementation of Al in pediatric allergy research, as well as implications and future
perspectives are discussed.

Conclusion: Al-based solutions will undoubtedly transform pediatric allergy research, as showcased by promising find-
ings and innovative technical solutions, but to fully harness the potential, methodologically robust implementation of more
advanced techniques on richer data will be needed.

What is Known:
e Pediatric allergies are heterogeneous and common, inflicting substantial morbidity and societal costs.
o The field of artificial intelligence is undergoing rapid development, with increasing implementation in various fields of medicine and research.

What is New:

e Promising applications of Al in pediatric allergy have been reported, but implementation largely lags behind other fields, particularly in
regard to use of advanced algorithms and non-tabular data. Furthermore, lacking reporting on computational approaches hampers evidence
synthesis and critical appraisal.

® Multi-center collaborations with multi-omics and rich unstructured data as well as utilization of deep learning algorithms are lacking and will
likely provide the most impactful discoveries.
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Introduction

Artificial intelligence (Al) is defined as computer systems
that are capable of performing tasks that typically require
human intelligence. Al is arguably the most transforma-
tive technology of the modern age, and has revolutionized
science in waves over the past decades [1, 2], from hard-
coded rule-based systems, to machine learning (ML) algo-
rithms that learn from data, and most recently generative
Al that enable interactive synthesis and generation of text
and images/audio [3, 4]. Al is fundamental to automate and
optimize patient management [3], accelerate drug discovery
[5], and democratize healthcare-related knowledge [6]. Al
even holds potential as a digital assistant in the conceptual-
ization of research and its communication [7].

Pediatric allergic diseases are heterogeneous and intri-
cately interrelated [8]. In combination with increased avail-
ability of large-scale (bio)medical data, pediatric allergy
research is a suitable context for Al-driven research [9,
10]. The high prevalence of pediatric allergies [11-14] also
promises societal benefits from Al applications in clini-
cal practice (e.g., decision support systems) and targeted
preventive measures. However, challenges need to be met,
including patient privacy, validity, generalizability, speci-
ficity, contextualization, bias, and explainability [10, 15,
16]. Furthermore, given the rapid development in AI, up-
to-date methodological insight is vital, but most clinicians
lack such training and many research groups do not include/
co-operate with specialists [17]. This review is intended as
a guide and reference for conducting Al-based research in
pediatric allergy. It is composed of three sections: (1) intro-
duction of relevant Al terminologies/concepts, techniques,
common pitfalls and remedies, and a blueprint for structur-
ing and reporting Al-based studies; (2) overview of studies
implementing Al in pediatric allergy in unique and impactful
ways; (3) a discussion of limitations and possibilities of Al
in pediatric allergy.

Brief background into the field of Al
Machine learning

Machine learning (ML) is a subset of Al. As with other Al
techniques, ML algorithms (models) mimic human intel-
ligence by solving problems and performing tasks “intelli-
gently”. In ML, however, there are no preprogrammed rules
for how to perform tasks or solve problems; instead, these
are derived from patterns that the models learn from data
based on mathematical principles. The underlying objective
is to measure and enhance specific tasks, e.g., identifying
subgroups in a patient sample [18]. ML is commonly cat-
egorized by the mechanism by which it learns from data.
Briefly, in supervised learning, the model learns patterns
associated with provided labels, aiming to predict labels in
new data (e.g., unseen patients with certain symptoms hav-
ing a disease or not). Supervised learning can be divided into
classification (categorical labels, e.g. asthma subtypes) and
regression (continuous labels, e.g. lung function results). In
unsupervised learning, the model does not involve labels,
and instead “independently” explores distinct patterns (sub-
groups) within data (e.g. trajectories of eczema) onto which
it provides label suggestions. Semi-supervised and active
learning are useful on large data in which a small subset is
labeled and for which labeling is difficult/time-consuming,
and differ mainly by the mechanisms by which they assign
labels to unlabeled data [19]. Finally, in reinforcement learn-
ing, a virtual artificial environment is created, within which
atask (e.g. drug dosing to reduce complications while maxi-
mizing survival/recovery rates) is simulated by the model
and optimized based on negative/positive feedback from the
virtual artificial environment [20, 21] (Fig. 1).

Artificial neural networks (ANNSs) are a subtype of ML
conceptually inspired by the neuron structures in the brain.
The basic unit consists of neurons, receiving input from
and transmitting output to other neurons based on specific
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functions/criteria. ANNs are composed of at least one hid-
den (processes therein cannot be directly observed) neuron
layer and an input and output layer. Deep neural networks
(DNN) are ANNs with multiple hidden layers [22], applica-
tions of which are commonly referred to as deep learning
(DL). Numerous neural network types have been developed
for specific tasks, such as convolutional neural networks,
suitable for image analyses [23], and recurrent neural net-
works, applicable in sequential data/trajectory analyses [24].
The model used must be thoughtfully selected, due to model
assumptions regarding data, type(s) of patterns learned, and
output interpretation. Summaries of common models are
presented in Table 1. Many methods used today have a long
history, originally stemming from fields such as statistics
[25]. Due to the development of computing power, they can
nowadays be used on large datasets and constitute standard
components of the ML toolbox.

The following subsections describe terminology, tech-
niques, and pitfalls (and remedies) for each step of an ML
pipeline — from preprocessing to interpretation of results.
A flowchart aimed to guide structuring of such pipelines is
presented in Fig. 2.

A non-comprehensive general workflow with recom-
mended steps to include in a study utilizing machine learn-
ing. In specific contexts, certain steps may not be needed or
appropriate. Likewise, some studies may warrant specific
steps not mentioned here. Items fully encapsulated in paren-
theses indicate that some machine learning models manage
said issue “automatically” or performance evaluation may
not be clear.

Main steps of machine learning pipelines
Preprocessing

Preprocessing is often the most time-consuming step and
heavily influences model performance/output. Exploratory
data analysis typically precedes, to understand data distri-
bution, patterns of missingness, and differences between
the analyzed subsample and excluded subjects. Com-
monly, data need to be transformed to suitable forms (fea-
ture engineering), e.g., one-hot encoding categorical vari-
ables, log-transforming skewed data, and standardization/
normalization of variables on different scales (e.g., height
and income, where the latter could otherwise dominate by
magnitude). In many datasets, redundant/non-informative/
“noisy” variables are present, which may increase run-time
and hamper performance and interpretation, necessitat-
ing feature selection. Beyond manually selecting sensible
variables, a simple example of feature selection is based
on correlation matrices, in which correlated variables are
dropped. A related technique (feature extraction) also
reduces data dimensionality, by transforming variables into

a lower-dimensional subspace while minimizing informa-
tion loss. Principal component analysis is a simple feature
extraction technique, also managing correlated variables.
Some preprocessing techniques may be counterproductive,
e.g., categorizing continuous variables, which should be
avoided if possible to retain maximal differentiating infor-
mation. See Table 2 for a summary of common preprocess-
ing techniques.

Model training/evaluation

As per the “no free lunch” theorem [128], no model is ideal
for all contexts. Thus, multiple models should be evalu-
ated, the choice of which depends on the (1) nature of the
data (density/distribution; tabular/non-tabular; numeri-
cal, categorical, or mixed; presence of outliers/noise etc.),
and (2) task (relevant learning mechanism, desired utility/
interpretability of output etc.). See Table 1 for a summary
of common methods (additional methods are described in
Table S1). Furthermore, it is important to accommodate
differing and clinically influential factors (such as sex and
age) of allergies and their presentation and outcomes. An
Al application may otherwise produce biased and non-gen-
eralizable output when such factors are not accounted for
[129]. Such unfairness in Al can be addressed using vari-
ous approaches, e.g., by so-called “active fairness”, which
essentially involves incorporating important “sensitive”
attributes into the algorithm [130].

An important issue in cluster analysis is that there is
no unique definition of an “optimal”/ “true” clustering.
Most datasets allow for different reasonable clustering
according to different criteria, e.g., requiring clusters to
be homogeneous (low within-cluster distances), or making
cluster separation the dominating criterion (which may
lead to heterogeneous clusters if no gap separates dissimi-
lar observations/subjects). It may also be reasonable to
make model assumptions (e.g. Gaussian). These choices
cannot be made from data alone; rather, they need to be
made with the clustering requirements in mind [51, 131].
Ensemble clustering provides an alternative approach, in
which clustering output from several algorithms are run
through a consensus function to derive a final solution
[132], and can be attractive in difficulty of deciding what
kind of clusters are sought after. It must be noted, how-
ever, that ensemble clustering does not necessarily provide
a more “correct” solution, as clustering algorithms are
based on different concepts of what an optimal cluster
is; this discrepancy is similar to meta-analysis, in which
studies are often too heterogeneous for pooling. The cor-
responding subdomain in supervised learning (ensemble
learning) [88, 133—135] is more often appropriate, as the
different learners/models aim to solve the same underly-
ing problem.

@ Springer
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B = - In unsupervised clustering, selecting a distance measure

S k) . e .

g =3 g L2 (i.e., measure of similarity/dissimilarity between subjects)

ha v ! = s S . . . P .

> = £ g 53 is of importance, as it heavily influences evaluation met-
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5 S E 2 c = rics [50, 51, 136—138]. Another crucial issue in clusterin
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o £ 3 Sz 5 SRR is the choice of the number of clusters. In many situations

= Bn = [P N = 9o 5 . )

£ 8.2 E 2 <o ‘é’ the data do not determine an unambiguous number of clus-

5 = ¢ > 4 . . c
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2 |55% 5% ©%% . \ n o

= 8 . =

= £3 £3 £ E £ E8 2 clustering required fo'r the application. Lower numbers of

2w K] EB E= 585 8388 clusters are often easier to handle, but often larger num-
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ES| 2=% 8 g ET RS bers of clusters can improve the model fit. Several indices

Eglr<<s AEaAalas 3 L.

HE|mmmnm = = LI can be used for determining the number of clusters, but

they commonly give conflicting results [S1, 139]. Clini-
cal interpretation is central in weighing between different
alternatives.

Overfitting occurs when a model is overly specific to
the training data, thus not generalizing well to unseen data.
The risk of overfitting increases with model complexity
and the number of variables in relation to the sample
size [140]. Overfitting may also result from improperly
separating training and validation data [10]. A common
approach to combat overfitting is splitting data into: (1)
training set (for training the model); (2) validation set
(for fine-tuning); (3) test set (for performance evaluation)
[122, 141, 142]. In neural networks, dropout regularization
is a common technique to reduce the risk of overfitting.
Underfitting is the opposite issue: the complexity of the
data is not reflected in the model, e.g., too few variables
or insufficient/non-representative training sample, and the
performance is suboptimal on both training and unseen
data [140, 143, 144].

Fine-tuning of hyperparameters (model settings) is gener-
ally necessary to optimize performance, typically done by
comparing performance using different hyperparameters. A
common technique is grid search (brute force search of all
possible hyperparameter settings) [145], the practicality of
which is limited in contexts with many possible settings.
Random search is a compromise in such cases. Optuna
[146], a hyperparameter optimization framework, and
Bayesian optimization [147] are additional alternatives. The
metrics assessed in training vary depending on the analysis
aim(s), learning mechanism, and data, but should include
multiple [148] metrics, e.g., accuracy, recall etc. (supervised
learning) or intra-cluster separation, inter-cluster homoge-
neity etc. (unsupervised learning). In cluster analysis, some
choices (e.g., dissimilarity measure) should aim at valid
representation of the data within the context rather than
optimizing cluster validity measures, as the meaning of cri-
teria such as between-cluster separation and ultimately the
clustering itself relies on the dissimilarity measure. Beyond
optimizing a model on specific data, it is also valuable to
stress-test the application under different conditions, such
as assessing the stability of the algorithm with introduction
of noise to the data, or by comparing the output of multiple

ers, which can lead to decreased
of weak classifiers is not controlled

performance if not handled

properly
m Can overfit if the number and size

target is non-linear, unless feature

engineering is applied
m Susceptible to overfitting with

high-dimensional data if not regu-
between dependent and independ-
ent variables, which can be limit-
ing in complex scenarios [106]

larized appropriately

relationship between features and
m Assumes linear connection

m Sensitive to noisy data and outli-
m Prone to underfitting when

Disadvantages/limitations

fiers to create a strong classifier,
improving accuracy

m Often achieves better performance
with less tweaking of parameters
compared to other complex models

m Well-understood and widely used
more advanced models in specific
contexts of binary classification
problems [105]

m Combines multiple weak classi-
m Comparable performance to

m Simple implementation

Advantages/strengths
m Efficient to train

one-vs-rest strategy) classification

simple models through ensemble
m Suitable for models where the

methods
extended to multiclass, e.g., with

outcome is a probability 01

for regression
m If crucial to boost performance of

Appropriate use-cases / assumptions
m Classification, but can be adapted

of data
m Primarily for binary (but can be

The list is not intended to be comprehensive or cover all relevant/possible use-cases, but rather to provide an overview of common and promising algorithms. Abbreviations. AD, atopic derma-
titis; A, artificial intelligence; AR, allergic rhinitis; FA, food allergy; FeNO, fraction of exhaled nitric oxide; N/A, not available; OFC, oral food challenge; SNP, single nucleotide polymorphism

Table 1 (continued)
Adaptive boosting (Adaboost)/
Logistic Regression (LR)

Model name?

@ Springer



98 Page 8 of 20 European Journal of Pediatrics (2025) 184:98

Problem for which machine learning is a suitable tool -
s
o
v v 3
&
Clustering (discovery of patterns/groups within Prediction (learning of patterns within labeled data, 4
unlabeled/minimally labeled data, e.g., identification e.g., prediction of asthma diagnosis or persistent g':
of phenotypic subtypes of eczema) allergic rhinitis) B

¢ Exploratory data analysis/descriptive statistics * Exploratory data analysis/descriptive statistics
¢ Outlier/invalid data management e Outlier/invalid data management v
o (Missingness management) * (Missingness management) ':l;;
¢ Feature selection ¢ (Predictor)/label selection 8
¢ (Data splitting) e Data splitting g
* (Feature engineering) * (Feature engineering) g

¢ (Feature extraction)

¢ Algorithm selection
¢ Internal validation
¢ Selection of optimal solution (model)

¢ Sensitivity analysis

¢ External validation/replication

¢ Uncertainty in segmentation

¢ Importance of individual features

¢ (Feature extraction)

¢ Class imbalance management

¢ Algorithm selection

¢ Internal validation

¢ Selection of optimal solution (model)

* Sensitivity analysis

» External validation/replication

* Uncertainty in prediction

¢ Importance of individual predictors

uonenjeas/bujuien
IPON

¢ Characteristics in subgroups

Fig.2 Recommended flowchart for building a machine learning pipeline

algorithms. A summary of common evaluation approaches
is presented in Table 3.

Interpretation

Models differ by assumptions and statistical methods and
thus necessitate appropriate interpretation of results. As an
example, in hard clustering algorithms (e.g., k-means), each
subject is assigned to one cluster; however, it is possible that
some subjects are not similar to subjects within their cluster,
necessitating cautious conclusions about cluster homoge-
neity. Multiple techniques can be used to assess outliers,
e.g. heatmaps [47]. A substantial part of interpreting the
performance of a model is to elucidate determinant factors.
SHapley Additive exPlanations (SHAP) [152] is a common
tool to visualize the contribution/importance of each vari-
able for prediction or clustering. Finally, externally validat-
ing the results in a comparable independent cohort is useful
to evaluate model robustness and generalizability. A list of
common interpretation approaches are shown in Table 4.

@ Springer

uonejassdiayug

Practical aspects of implementation

Software necessary for implementing Al-based applications
are widely available, often through free open-source pack-
ages for Python and R statistical software. However, the
major hurdle often lies in hardware and technical know-how.
In terms of hardware, most “shallow” algorithms, as well
as DL with small/moderate-sized data, can be performed
on regular modern laptops/computers. For advanced mod-
elling or analysis of large data, the use of dedicated hard-
ware is often needed, in which case it is crucial to ascertain
that sensitive data are not accessible by unauthorized par-
ties. Although computational skills are much more time-
consuming to develop, there are many resources aimed at
lowering the barrier to implementing Al, e.g., low-code/
no-code platforms/tools for performing Al-based analyses,
such as MLpronto [153], Orange Data Mining, KNIME, as
well as various online courses and certifications in Al for
clinicians [154]. While everyone in a healthcare team does
not necessarily need to learn how to program or develop
in-depth knowledge about machine learning, it is important
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that colleagues have at least a basic understanding of funda-
mental concepts, to efficiently discuss Al implementations.

Ethical considerations and reporting

Beyond understanding of technical intricacies, Al-based
research in pediatric allergy necessitates particular attention
to ethical aspects, e.g., pertaining to data protection, as Al
algorithms are often fed vast amounts of sensitive informa-
tion. Frameworks guiding safe inclusion of pediatric data in
Al-based research include ACCEPT-AI [129].

Detailed reporting from all steps of the pipeline is crucial
for critical appraisal and reproducibility/synthesis. For exam-
ple, as allergic diseases demonstrate heterogeneous develop-
mental patterns across age, it is essential to clearly report on
age (and variation thereof) in the study population. Multiple
checklists have been developed, e.g., Transparent Reporting
of a multivariable prediction model for Individual Progno-
sis or Diagnosis (TRIPOD + Al) [155] for prediction models
and Guidelines for Reporting on Latent Trajectory Studies
(GROLTS) [156] for trajectory analyses, although well-estab-
lished equivalents are lacking in many areas, e.g. cluster analy-
sis. While items essential to report vary depending on analysis
and data, a general guideline is provided in Table 5. Report-
ing recommendations of Al-based clinical studies have also
been proposed [157]. Additional guidelines can be found at
the EQUATOR (Enhancing the QUAlity and Transparency Of
health Research) Network (https://www.equator-network.org/).

Implementation in clinical practice
and research

Implementation of Al across disciplines varies massively.
For example, across United States Food and Drug Adminis-
tration-approved medical Al devices, a majority have been
developed for radiology, while none are listed under allergy
[161]. Despite this, the need is paramount and the possibili-
ties evident, given the availability of rich data and compu-
tational power, as well as rapid development of algorithms.
While applications in clinical practice are largely absent, the
utilization of Al within research is more established. In the
following subsections, promising/impactful Al-based studies
in pediatric allergy are summarized.

Diagnosis of disease

In a study by Kothalawala et al., models were evaluated for
predicting asthma at 10 years based on hospital records, clin-
ical assessments, and questionnaire responses from multiple
time points. Notably, just a few predictors (cough, atopy, and
wheeze) contributed substantially [78]. He et al., conversely,
focused on predicting asthma at 5 years, reporting limited

predictive power of markers from infancy, with earliest reli-
able model being based on data at age 3 years. The authors
also noted a clear progression of feature importance at differ-
ent ages [162]. Overall, substantial heterogeneity is present
across prediction models of asthma, and generalizability is
moderate, rendering clinical implications unclear [77, 163].
This uncertainty is furthered by reports indicating compara-
ble performance to regression models [164]. Sophisticated
Al methods are demanding to implement; thus, they are
rare and may not live up to their potential. Although pre-
diction models using multi-omics data are scanty, there are
indications that specific omics combination provide supe-
rior performance [79, 165]. Prediction models have also
been applied in diagnosis of atopic dermatitis (AD) [84],
allergic rhinitis (AR) [166], and more specific diagnostic
labels, e.g. oral food challenge positivity to specific foods
[99, 167]. Overall, these studies demonstrate applicability of
various predictors and meaningful results, but also substan-
tial heterogeneity and limited clinical utility due to lacking
methodological reporting and impracticality of synthesis/
comparisons.

Subtyping of disease

Subtyping can be performed on cross-sectional (cluster anal-
ysis) or repeated measures (trajectory analysis). In a study
by Havstad et al. [63], a cluster analysis of sensitization pat-
terns, found four clusters, which were more strongly associ-
ated to AD and wheeze/asthma compared to any atopy. Stud-
ies focused on endotypic markers have also exemplified the
heterogeneity of allergy, e.g., a study by Malizia et al. [29],
in which three inflammatory patterns of seasonal AR were
identified based on cytokine patterns. Longitudinal disease
patterns have commonly been derived from binary (pres-
ence/absence) markers, and although clinically meaning-
ful patterns have been identified, e.g. wheezing trajectories
associated with (actionable) risk factors [168] and outcomes,
such as allergic disease/sensitization in adulthood [169],
important disease characteristics are omitted. Some studies
have included severity measures, e.g., by Mulick et al. on
eczema trajectories [170]. Given the reported uncertainty/
within-class heterogeneity with latent class analysis [46,
171], a common algorithm in trajectory analysis, alterna-
tive methods, based on cluster analysis of longitudinal data
condensed into characteristics such as onset-age, number
of episodes with symptoms etc., as implemented by Haider
et al., have contributed with homogeneous trajectories of
eczema [45] and wheezing [46, 47]. Studies incorporating
data from multiple sources, such as parental report and pre-
scribed medication/physician assessment [172—174], have
further contributed with distinct subgroups and highlighted
the complexity underlying pediatric allergies and utility of
multi-dimensional characterization.

@ Springer
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Table 4 Common/recommended approaches for interpreting model results

Approach Rationale/use-case

Examples

Replication with independent data Deriving comparable results from a model in an

m Re-running analysis in independent external cohort/

(external validation)

external (independent) cohort/sample of individu-
als indicates that the patterns learned by the model
are (relatively) generalizable. Caution is needed in
interpretating such results, however, as it may be
that the underlying characteristics are very similar
in the external data, or conversely, very dissimilar,
which complicates interpretation

Relation with external information Mostly applicable in unsupervised learning. If

Explanation of feature importance

Subgroup homogeneity

derived subgroups indeed represent clinically dis-
tinct entities, it may be that these differ meaning-
fully in aspects not characterized in the model. For
example, if clusters based solely on skin prick test
results are composed of children with very similar
sociodemographic background factors, it increases
the probability that there may be non-random and
clinically meaningful pathophysiological differ-
ences between the clusters

Machine learning models, particularly with higher

degree of complexity, are not directly interpret-
able based on the output. To get a sense of the
attributes and patterns that influenced the model
the most, multiple techniques are available to visu-
ally/numerically present the most important parts
of the data according to the model. Individual
methods may or may not be applicable in specific
models/contexts

In unsupervised learning, the derived subgroups

may have within-subgroup heterogeneity impact-
ing interpretation of recognizability in the clinical
setting, subsequent association analyses etc.

For this reason, it is useful to present (indirect)
measures of homogeneity/heterogeneity within
derived classes. For trajectory analyses, the 95%
confidence interval (95%CI) around the predictor
prevalences/probabilities may indicate the degree
of variation within trajectories. Tabular data may
provide similar information as well

population

m Tables/plots of characteristics (with appropriate
statistical significance tests)
m Figures, e.g., spider plots, bar plots etc

m Class Activation Maps (CAM) [158]

m Local Interpretable Model-agnostic Explanations
(LIME) [159]

m SHapley Additive exPlanations (SHAP) [152]

m Mean decreased Gini value [160]

m Heatmaps [45-47]
m Tables/plots of characteristics (with 95%Cls)

The table describes common techniques used in model evaluation. The list is not meant to be comprehensive or universally applicable. It is rec-
ommended, particularly for unique applications, to evaluate previous similar implementations or relevant technical literature.

Management of disease

Successful management can be defined in various ways,
including survival, treatment adherence, and remission.
Typically, the same models as for diagnosis prediction
are applicable. Tailored sequential models have shown
promising accuracy in predicting adherence to subcuta-
neous immunotherapy in AR treatment [175]. Disease
progress can also be modelled as trajectories. In a study
by Belhassen et al. [176], trajectories based on use of
inhaled corticosteroids before and after asthma-related
hospitalization were derived and related to, among others,

sociodemographic factors, which may provide guidance
in individualized treatment. DL image analysis of eczema
lesions [177] coupled with a mobile app has shown prom-
ising results in e.g., patient-oriented eczema measures
[178], although large-scale studies are needed to validate
such findings, and engagement rates need to improve.
Similarly, an Al-assisted clinical support was evaluated
in asthma management, showing comparable asthma exac-
erbation rates as with regular care, albeit reducing admin-
istrative burden [179], indicating limitations in clinical
decision-making and potential in streamlining time-con-
suming tasks.

@ Springer
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Table 5 Recommended elements to report in machine learning-based studies

Step

Rationale/general description

Preprocessing

m Exploratory data analysis/descriptive statistics

- Cohort characteristics: Describe in detail the used cohort/sample. Present the initial participation rate and relevant back-
ground factors for evaluation of generalizability and representability

- Analysis subset characteristics and comparison: If a subset of the cohort/sample was used for the analysis, compare back-
ground factors between the full cohort/sample and the subset

- Correlation analysis: Report correlations between variables (e.g., through a correlation matrix). Understanding these relation-
ships can guide feature engineering and model selection, as well as reveal potential (multi)collinearity issues

- Missingness: Visualization of the degree of missingness (across subjects and variables, preferably with a measure of patterns
across missingness between variables) provides useful information as well

m Outlier/invalid data management: Describe the presence/degree of outliers and/or data deemed invalid, and if any processing
of these was performed. Visualization is particularly useful, e.g., with simple box plots. If possible, provide code/syntax (in a
repository)

= Management of missingness: Visualize/tabulate missingness and patterns thereof. Provide the rationale for using a particular
imputation algorithm or other approach, including details (preferably including plots) on evaluation/validation of the imputa-
tion. If possible, provide code/syntax (in a repository)

m Feature selection: Provide explicit rationale for the used variables. Ideally, add a table (in the supplementary material) where

the reason(s) for inclusion/exclusion for each variable that could potentially have been of relevance are listed. Importantly,
feature selection processes should be described in detail, including narrative summary and output of data-driven approaches
and tables. If data-driven methods were used, provide code/syntax (in a repository)
m Feature scaling: Report if the variables were inputted as-is or if any scaling was performed (preferably providing code/syntax)
= Dimensionality reduction: Report the tools and hyperparameters/settings used (preferably providing the actual code/syntax),
together with details on the percentage of variance explained in the reduced subspace, loss, or other relevant information to

assess the performance/representability of the new data

Model train-

m Algorithm selection: Describe the rationale for the selection of models. Preferably, select at least two models to assess the

m Model implementation: Explain in detail how the model(s) were implemented, which hyperparameter settings were tested and

the underlying rationale. Preferably, provide the actual implementation code/syntax (in a repository)

m Model evaluation: Provide a detailed log of the model(s) with different hyperparameters, so as to make the selection of the
optimal solution transparent and clear for the reader. For example, if a cluster analysis was performed and 3-5 cluster-solutions
were assessed as the top 3 models, provide clinical characteristics and evaluation metrics for at least these (but preferably all

ing / evalu- robustness of the chosen solution
ation
tested solutions)
Interpretation

m Characteristics: Most relevant for unsupervised analyses. Provide rich details on the subgroups, including on parameters

included and not included in the model (e.g., background factors, comorbidities, sociodemographic factors etc.)
m Influencing factors/explanation of the model: Provide as much detail as possible on how the model derived its output, e.g.,

feature importance

m Uncertainty in findings: Describe the uncertainty in the model (e.g., 95% confidence intervals of the predictions or subject

characteristics)

m External validation: Provide an analysis of the generalizability of the results, preferably by externally validating the model in

a different cohort/sample

m Limitations: Could the analyses have been done differently in an optimal setting? Transparently describe challenges and draw-

backs/compromises

Outcome prediction

Models for outcome prediction, typically architecturally
equivalent to diagnosis prediction models, have been used
in various settings, from relatively simplistic contexts and
predictor sets, such as symptom and treatment recordings
of eczema, aiming to predict future severity [180], to large-
scale medical record data to predict asthma persistence [77].
In general, despite incremental improvement, even models
incorporating > 100 predictors and large study samples
are not yet fully refined for broad clinical implementation
[181]. Associated health outcomes, such as suicidality in
adolescents with AR, have also been investigated, adding
important contribution to our understanding of the complex

@ Springer

multi-dimensional nature and implication of pediatric
allergy [182]. DL implementations are scanty [183].

Limitations and future perspectives

Advanced Al is data hungry [184], and data are limited
in many contexts. Possible solutions include data aug-
mentation, active learning, and transfer learning [185].
This challenge is exacerbated by data protection laws
limiting data sharing, particularly within the European
Union. Non-disclosive distributed learning frameworks
may facilitate collaboration, while large language models
may aid in tedious standardization/harmonization. As an
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example, DataSHIELD is a freely available open-source
framework for co-analysis of individual-level data, which
allows original data to remain unseen by other entities
[186]. Broad multi-disciplinary collaboration may also
facilitate incorporation of multi-omics data, and ulti-
mately aid in streamlining Al training through increased
concentration of relevant expertise. National and inter-
national consortia require substantial administrative
efforts, particularly at the early stage, but are increasingly
needed to meet the demands of data and context-specific
expertise.

Explainability is another pertinent issue, which has
largely persisted, particularly for advanced algorithms
[187-189], and which may introduce elusive biases.
Increased involvement of patient-representative groups is
key to continuously safe-guard and appropriately adjust
models. Decision-makers are also often uninformed of
technical specifics, potentials, and limitations of Al applica-
tions, resulting in unequal distribution of funding. Increased
familiarity with Al is needed, as are well-established guide-
lines and easy-to-use frameworks for conducting analyses
in a reproducible and appropriate fashion. These character-
istics are largely lacking in the extant Al-based studies in
pediatric allergy. Furthermore, there are important gaps in
the literature. For example, few studies are focused on food
allergy and allergic rhinitis in comparison to eczema and
particularly asthma. It is likely that the most impactful dis-
coveries will be made using DL approaches with large-scale
multi-omics data (including wearables and other accessible/
non-invasive gadgets) as well as nationwide/multi-national
register data with cross-linkage, in which input is as unfil-
tered and comprehensive as possible. This will maximally
harness the computational power and data-driven analyses
enabled by such technologies.

Conclusion

Al has immense potential in pediatric allergy, although
implementation in research and clinical practice is still at
the foundational stage. Improved methodology, increased
detail in reporting of computational aspects in studies, and
increased collaboration are central to accelerate impactful
discoveries. Advanced models are also underutilized, as are
multi-omics and rich unstructured data. Finally, decision-
makers and the general public (not least patient-representa-
tive groups) should be involved in development of Al-based
technologies in order to increase awareness of utility, instill
trust, and reduce bias of such applications.
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