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Human AI collaboration for unsupervised
categorization of live surgical feedback
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Formative verbal feedback during live surgery is essential for adjusting trainee behavior and
accelerating skill acquisition. Despite its importance, understanding optimal feedback is challenging
due to the difficulty of capturing and categorizing feedback at scale. We propose a Human-AI
Collaborative Refinement Process that uses unsupervised machine learning (Topic Modeling) with
human refinement to discover feedback categories from surgical transcripts. Our discovered
categories are rated highly for clinical clarity and are relevant to practice, including topics like
“Handling and Positioning of (tissue)” and “(Tissue) Layer Depth Assessment and Correction [during
tissue dissection].” These AI-generated topics significantly enhance predictions of trainee behavioral
change, providing insights beyond traditional manual categorization. For example, feedback on
“Handling Bleeding” is linked to improved behavioral change. This work demonstrates the potential of
AI to analyze surgical feedback at scale, informing better training guidelines and paving the way for
automated feedback and cueing systems in surgery.

In recent years, it has become increasingly evident that formative verbal
feedback to surgical trainees in the operating room (OR) plays a critical role
in enhancing surgical education and outcomes1. High-quality feedback
during surgical training is linked with better intraoperative performance2,
faster acquisition of technical skills3, and greater trainee autonomy4. Feed-
back in the OR is intended to modify trainee behavior or thinking and, as
depicted in Fig. 1, is generally triggered by a trainer’s observation of a
trainee’s performance. Quantifying, understanding, and addressing the
quality of such feedback is essential for improving both immediate surgical
practices and long-term educational outcomes. However, effectively
quantifying and enhancing the value of live surgical feedback remains a
substantial challenge.

Despite the recognized benefits, existing literature lacks a universally
accepted system for categorizing and evaluating this type of feedback
effectively. Prior approaches have struggledwithmeaningful categorization,
clinical validation, and scalability. They have also been limited by the sub-
stantial manual effort required from human annotators1. On top of that, no
consensus exists on a method for categorizing and evaluating OR feedback
to optimize its impact. Some approaches focused on categorizing teaching
behaviors (e.g., informing, questioning, responding, or tone setting)5 or tried
to describe intraoperative communication (e.g., explaining, commanding,
and questioning)6. Yet, these offer an incomplete view at best and have not

been rigorously validated for clinical relevance. The latest work, which
involved substantial manual effort from experts, developed broader feed-
back categorization into three core components (Anatomic, Procedural,
Technical) and auxiliary delivery aspects (Praise, Criticism, andVisualAid).
This categorization has been shown to exhibit some association with
behavioral outcomes7 and the potential for automation to deliver feedback8.
Yet, such broad categorization to date has provided limited value for the
fine-grained understanding of feedback effectiveness3 and is not sufficiently
detailed for the development of automated surgical guidance systems9. On
top of that, the approach is limited by the human capability to recognize
complex patterns in the data10, inherent cognitive biases of human
annotators11, and limitations of human attention span12. These challenges
affect the scalability of manual approaches and fundamentally limit the
discovery of more complex patterns in the data.

To address these challenges, we introduce a semi-automated surgical
feedback analysis framework (Fig. 2). The framework takes as input raw text
transcripts of surgical feedback delivered during live surgical cases (a) to
perform a semi-automated discovery of feedback categories (b), which are
then evaluated for their interpretability and ability to predict clinical out-
comes (c). The core of our framework is the novelHuman-AI Collaborative
Topic Refinement Process that facilitates the discovery of meaningful cate-
gorization of live surgical feedback with minimum human effort. Our
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process involves 3 main steps: 1) Automated Topic Clustering, 2) Human
Interpretation, and 3) Automated Topic Refinement. In the first step, we
apply an automated unsupervised topic modeling technique called BER-
Topic, which extracts a representation of text (embedding) using a pre-
trained large language model—BERT. This representation captures the
semantic “meaning” of the text and groups feedback instances with similar
meanings into the same topic. In the second step, we collect human inter-
pretation and topic refinement suggestions, which are then automatically
applied in the third step to produce refined topic clusters. Our process is
designed to minimize the manual effort of categorizing surgical feedback at
scale, while supporting human raters with initial discovery and ensuring the
incorporation of valuable human insights.

We perform a rigorous evaluation of our discovery process and the
clinical relevance of the resulting categorization of surgical feedback into
topic clusters. Initial automated topic modeling resulted in the discovery of

28 topics, which were consolidated into 20 final topics following human
interpretation and refinement. These topics were evaluated by two trained
human raters in terms of “clinical clarity” defined as “meaningfulness for
clinical practice”. The top-scoring topics related to aspects of high clinical
relevance such as “Controlling and Addressing Bleeding”, “Sweeping
Techniques”, and “Trainer’s Intervention & Visual Verification”. Sub-
sequent competitive evaluation againstmanually annotated categories from
prior work7 revealed that our AI-discovered topics offer a statistically sig-
nificant and independent contribution to the prediction of trainee Beha-
vioral Response, Verbal Acknowledgment, as well as trainer Taking Control
for non-safety related reasons. We further show which discovered novel
topics significantly contribute to outcome prediction, revealing categories
related tohighurgency feedbackaround “HandlingBleeding” and “Trainer’s
Intervention” as well as fine-grained categorization of feedback around
instrument handling, such as “Sweeping Techniques” and “Pulling,

Fig. 1 | Informal feedback delivery process in live robot-assisted surgery.The need
for feedback is often triggered by trainee behavior, while the feedback itself can relate
to various aspects; we highlight some feedback content categories discovered with
our framework. Feedback can impact the trainee’s behavior, as well as result in verbal

acknowledgment, or a request for clarification. Trainee behavior is sometimes also
met with a subsequent reaction from the trainer. The categorization in black has
been provided manually, while the feedback categories in green have been auto-
matically discovered using our AI-based framework.

Fig. 2 | Overview of the surgical feedback analysis framework applied in
this work. aWe take as input raw transcripts of feedback (video is shown only for
context) delivered during live surgical cases7. bWe apply our novel Human-AI

collaboration process to discover the categorization of this raw feedback into clinically
meaningful categories. cWe perform rigorous interpretation and evaluation steps,
including the ability of the discovered categorization to predict clinical outcomes.
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Retraction”. Finally, the statistical analysis of the association of the dis-
covered topics with trainee behavior offers clinically meaningful insights
into which types of feedback are more likely to lead to behavior adjustment
or verbal acknowledgment in the context of real-world surgeries.

To the best of our knowledge, we are the first to propose a Human-AI
collaboration for the semi-automated discovery of surgical feedback cate-
gorization. We further rigorously demonstrate the utility of our approach,
showing its statistically significant higher predictive power compared to
manual human categorization, while requiringmuch less human effort.We
further show the ability of our approach to reveal novel and clinically
meaningful surgical feedback categories. Our findings reveal that certain
feedback topics are particularly predictive of positive trainee outcomes,
while others are less effective, offering practical tools for trainers to refine
their feedback techniques, ultimately aiming to improve patient care and
surgical proficiency across various specialties. Ultimately, our process can
lead to automated quantification of live surgical feedback at scale and the
development of automated coaching systems.

Results: clinical interpretation and validation
Our process led to the discovery of 20 AI topics capturing various aspects of
surgical feedback (Fig. 3) basedona raw transcribed text of 3740 instancesof
live surgical feedback collected in prior work7.We evaluated these topics for
their ability to independently contribute (on top of manual human
categories7) to the prediction of clinical outcomes in the form of annotated
Trainee Behavior and Trainer Reaction also provided in prior work (Table
1). We further analyze the statistical associations of the individual dis-
covered topics with Trainee Behavior Adjustment (Fig. 3a) and Trainee
Verbal Acknowledgment (Fig. 3b). Further details of the dataset, the
Human-AIcollaborative refinement process, and the evaluation canbe found
in the “Methods” section.

Clinical outcomes prediction
Table 1 presents the results of prediction of various aspects of Trainee
Behavior using a Random Forest (RF) model. The full model includes both

human manually-derived categories from prior work7 and AI-discovered
topics. The subsequent 2 variations of the full model remove firstly the AI-
discovered topics or secondly the human manually-derived categories. The
change in theAUROC (ΔAUC) describes the impact of the removal of these
variablesonmodel performance.Anynegative values indicate a reduction in
performance, and further statistically significant reductions forwhich a 95%
confidence interval (95% CI) does not overlap with 0.0 are underscored.
Further details of the analysis can be found in the Methods section. Similar
results obtained with other supervised models can be found in Supple-
mentary Note E.

Without AI-discovered topics, the model accuracy statistically
decreased in two of the three behavioral adjustment measurements with
AUROC change of −0.03 (95% CI: −0.05, −0.02) and −0.04 (95% CI:
−0.05,−0.03) in “Verbal Response” and “Behavioral Response” respectively.
In contrast, without human-rated categories, only the decrease in “Verbal
Response” was statistically significant with AUROC of −0.02 (95% CI:
−0.03, −0.01) as in Table 1. Further investigation of the variables of
importance in the RF model predicting “(Trainee) Behavioral Adjustment”
revealed that seven of the AI-discovered topics were ranked among the top
twelve predictive features with the out-of-bag Gini (OOBGini) score > 0
(Supplementary Note B). The positive OOBGini score suggests that the
variable contributes positively to the model’s accuracy. Specifically, the AI-
discovered topics related to “Pulling, Retraction”, “Trainer’s Queries”, and
“Sweeping Techniques” ranked as the 2nd, 5th, and 6th most predictive
variables. Similarly, four of theAI-discovered topics ranked among the eight
top predictive variables for “(Trainee) Verbal Acknowledgment” (Supple-
mentary Note C). Specifically, the AI-discovered topics related to
“Encouraging Continuation” and “Sweeping Techniques” ranked as the 2nd
and 3rd most predictive variables.

A large statistically significant reduction inAUROCof−0.10 (95%CI:
−0.16, −0.04) was found with removal of AI-discovered topics for antici-
pating “(Trainer) Taking Control (non-safety reasons)”, which refers to a
situation when the trainer takes full control of the surgical robot away from
the trainee for demonstrative teachingpurposes.An even larger reductionof

Fig. 3 | Discovered feedback topic clusters and their associations with different
aspects of behavioral change of a trainee. a Association of discovered topics with
trainee Behavior Adjustment, representing an observable adjustment made by a trainee
that corresponds directly with the preceding feedback. bAssociation of discovered topics
with trainee Verbal Acknowledgment representing audible reaction from the trainee
confirming that they have heard the feedback. The strength of associationwas quantified
as theRate Ratio (RR) calculated as the rate of behavioral adjustmentwhen feedback on a
given topic was present over the rate when it was absent. The more the mean RR for a

topic is to the right, the stronger the positive association. Whereas RR closer to the left
denotes a negative association. We can see that some high-urgency feedback such as
“Handling Bleeding’ is muchmore likely to result in immediate behavior adjustment and
less likely to lead toverbal acknowledgment (i.e., trainee just sayinghe/sheunderstood the
feedback). At the same time, intuitively, “Trainer’s Queries” are much more likely to be
metwith just a verbal response froma trainee rather thanabehavior change.Wenote that
some of the topic titles were shortened for display purposes.
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AUROC of −0.15 (95% CI: −0.30, 0.0) was found for “(Trainer) Taking
Control (safety)” without AI-discovered topics, which represents a rare
situation when the trainer has to take control of the surgical robot out of
concern for patient safety. Yet this difference did not reach statistical sig-
nificance. For the removal of Human Categories, the reduction of −0.03
(95%CI:−0.06,−0.01) for “(Trainer) Taking Control (non-safety reasons)”
also reached statistical significance, though with a much smaller effect size.
There are no remarkable changes inmodel accuracy in othermeasurements
after dropping either AI or human-rated categories, which indicates no
unique contribution from either (Table 1)

Association analysis
Figure 3 depicts the associations of the AI-discovered topics with trainee
behavioral outcomes after feedback: a) Behavioral Adjustment and b)
VerbalAcknowledgment. EachAI topic is representedonay-axis. Examples
of the feedback instances under the discoveredAI topics can be found in Fig.
4. The strength of association was quantified as the Rate Ratio (RR) calcu-
lated as the rate of behavioral adjustment when feedback on a given topic
was present over the rate when it was absent. The more the mean RR for a
topic is to the right, the stronger the positive association.Whereas RR closer
to the left denotes a negative association. The vertical line at 1.0 represents a
reference denoting average association strength. The error bars around
average RR values for each topic represent 95% confidence intervals. Topics

for which confidence intervals don’t overlap with the reference line denote
statistically significant association. This analysis has been performed using a
multivariate generalized linear mixed-effects model (GLMM). Further
details can be found in the “Methods” section.

Figure 3a showsAI discovered feedback topics associated with chances
of trainee Behavioral Adjustment. As shown, the “Handling Bleeding” topic
was themost strongly associatedwithpositive behavioral adjustmentwith an
RR of 1.54 (95% CI: 1.35, 1.72). Other strongly positively associated topics
for trainee behavior change included “Sweeping Techniques” (RR: 1.33; 95%
CI: 1.16, 1.51), “Positioning & Height Guidance” (RR: 1.32; 95% CI: 1.13,
1.49), “Pulling, Retraction” (RR: 1.28; 95% CI: 1.16, 1.42), and “Instrument
Positioning” (RR: 1.20; 95% CI: 1.06, 1.34). Several topics were also nega-
tively associated with the chance of trainees’ Behavioral Adjustment,
including “Trainer’s Queries” (when a trainer asks a question to a trainee)
(RR: 0.60; 95% CI: 0.35, 0.84) followed by “Affirmative Feedback and
Inquiry” (RR: 0.67; 95%CI: 0.50, 0.84), and “Prostate&UrethraPositioning”
(RR: 0.83; 95% CI: 0.67, 1.00).

Figure 3b shows discovered feedback topics associated with chances of
VerbalAcknowledgment froma trainee.We can see that the topics capturing
trainers’ guidance on “Prostate & Urethra Positioning” as well as “Trainer’s
Queries” (when the trainer asks a question to a trainee) are positively asso-
ciated with verbal acknowledgment from a trainee, with RRs of 1.16 (95%
CI: 1.01, 1.30) and 1.17 (95% CI: 0.98, 1.35) respectively. At the same time,

Table 1 | Independent contributions of AI Discovered Topics and Manual Human Labeled Categories from prior work to
prediction of outcomes following surgical feedback

Category Behavior Outcome Full (AI+Human) Without AI Topic Clusters Without Human Categories

AUC 95% CI Δ AUC 95% CI Δ AUC 95% CI

Trainee Behavior Verbal Acknowledgment 0.70 (0.69, 0.74) −0.03↓4.3% (−0.05, −0.02) −0.02↓2.9% (−0.03, −0.01)

Behavioral Adjustment 0.74 (0.73, 0.76) −0.04↓5.4% (−0.05, −0.03) −0.01 ↓1.4% (−0.02, 0.0)

Ask for Clarification 0.53 (0.47, 0.58) 0.01 ↑1.9% (−0.05, 0.08) −0.02 ↓3.8% (−0.08, 0.04)

Trainer Reaction Approval 0.66 (0.64, 0.69) −0.01 ↓1.5% (−0.04, 0.01) −0.01 ↓1.5% (−0.02, 0.01)

Disapproval 0.63 (0.57, 0.70) −0.04 ↓6.4% (−0.11, 0.03) −0.04 ↓6.4% (−0.08, 0.0)

Taking Control (safety) 0.82 (0.70, 0.94) −0.15 ↓18.3% (−0.30, 0.0) 0.03 ↑3.7% (−0.02, 0.09)

Taking Control (non-safety) 0.82 (0.76, 0.87) −0.10↓12.2% (−0.16, −0.04) −0.03↓3.7% (−0.06, −0.01)

A higher drop after the removal of AI Topic Clusters compared to the removal of Human Categories indicates the higher importance of these predictors. The analysis was performed using fivefold cross-
validation. Significant changes at α = 0.05 level are underlined.

Fig. 4 | Sample of AI discovered topics grouping
trainers’ feedback delivered live during surgery.
We provide examples of feedback instances (left)
and word clouds (right) summarizing the most fre-
quent words in the topic.
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“Encouraging Continuation” represented the topic most negatively asso-
ciatedwith verbal acknowledgment with an RR of 0.47 (95%CI: 0.28, 0.66).
Other topics with such negative association included feedback around
“Sweeping Techniques” (RR: 0.65; 95% CI: 0.39, 0.90), “Handling Bleeding”
(RR: 0.65; 95%CI: 0.42, 0.88), and “Affirmative Feedback and Inquiry” (RR:
0.74; 95% CI: 0.58, 0.90).

Discussion
The critical importance of verbal feedback during surgical training has been
increasingly recognized1,13, playing a key role in both immediate trainee
performance adjustments2 and long-term surgical skill acquisition3. Inter-
personal communication challenges have been indicated as responsible for
many inefficiencies and errors in the operating room (OR)14. Yet, under-
standing how feedback is delivered in live surgeries and what constitutes
optimal feedback requires a clinically meaningful categorization scheme15.
Existing efforts focus on categorizing narrow aspects of feedback such as
teaching behaviors (e.g., informing, questioning, responding)5, commu-
nication type (e.g., commanding, explaining, questioning)6, or coarse-
grained content (e.g., anatomic, procedural, technical) and delivery aspects
(e.g., praise, criticism)7. They also require substantial manual effort and
ultimately suffer from limited human ability to recognize complex patterns
in the data7. Existing clinical evaluations of prior categorization approaches
often lack examination of impact on trainee behavior5 and merely provide
descriptive statistics6. The most thorough evaluation to date only analyzed
associations between certain categorization subsets and trainee behavior7.
Our work addresses these gaps by providing a comprehensive evaluation.

In this work, we introduce a novel Human-AI Collaborative Refine-
ment Process for categorizing live real-world surgical feedback, which
leverages unsupervised learning techniques complemented by human
expertise. By first automatically discovering feedback categories from raw
surgical transcripts, we reduce the reliance on expensive manual annota-
tion, enhancing scalability and improving theprecisionof feedbackanalysis.
Leveraging machine learning addresses the inherent challenges related to
human attention span12, the subjectivity of individual raters11, knowledge
limitations16, aswell as the limitationsof human raters to recognize complex
patterns in the data at scale10. At the same time,with support for subsequent
low-effort human interpretation and refinement, we provide crucial
supervision from human raters in this high-stakes domain17. The benefit of
our approach lies in hybrid Human-AI collaboration, which leverages the
strengths of both unsupervisedmachine learning and human refinement to
achieve high interpretability and clinical relevance of the discovered feed-
back categorization into topics. This is a novel application of Human-AI
collaboration in surgical space. Our method also has substantial practical
importance, as it offers a scalable, efficient way to analyze and categorize
surgical feedback, which is crucial for training and assessment in medical
education18.

For unsupervised topic discovery, we employ BERTopic19, an
embedding-based topic modeling framework that offers substantial
benefits over traditional methods like Latent Dirichlet Allocation
(LDA)20, Hierarchical Dirichlet Processes (HDP)21, and Non-negative
Matrix Factorization (NMF)22. Traditional keyword-based models
depend on word co-occurrence and do not performwell with brief texts
comprising only a few words23, typical in our data. They also necessitate
extensive preprocessing (e.g., stop word removal, stemming), which
can impact the results24. In contrast, BERTopic leverages pretrained
text embeddings that capture semantic meaning, making it especially
effective for shorter texts23, and capable of accurately representing
polysemous words and synonyms25. It groups similar feedback
instances into topics effectively without relying on identical keywords,
producing more coherent and diverse topic representations. Further-
more, embedding-based methods can directly process raw texts26,
benefiting from a broader linguistic context. We also enhance topic
discovery with GPT-4 prompting-based topic title generation. This
method utilizes both frequent keywords and representative feedback
instances to craft contextually meaningful titles without depending

solely on dominant keywords. It adapts especially well to changes in
topic composition following human feedback.

Our study successfully demonstrated three key results: a) the effective
unsupervised categorization of surgical feedback into clinically relevant
topics, b) the significant and independent contribution of these AI-
discovered topics to predicting trainee behavioral outcomes in addition to
prior human categorization, and c) the ability of our method to reduce the
human effort significantly compared to manual categorization. The AI-
discovered topics highlight several intuitive associations with trainee
behavior, which provide additional support for their meaningfulness and
practical value. We can see that feedback on topics such as “Handling
Bleeding”, “Sweeping Techniques,”, and “Positioning & Height Guidance” is
most likely to result in a change in trainee behavior. The effectiveness of
these feedback topics aligns well with findings from prior studies that
emphasize the importance of targeted, actionable, and specific feedback in
surgical training environments9,27. Furthermore, feedback on “Handling
Bleeding” is especially likely to result in the subsequent change in trainee
behavior due to its urgency. The trainee ismuchmore likely to try to address
the bleeding as soon as possible, rather than simply acknowledge the
receptionof feedbackor engage in verbal discussion.On the otherhand, also
intuitively, the topic capturing “Trainer’s Queries” (when a trainer asks a
question to a trainee) is much more likely to result in a verbal acknowl-
edgment from a trainee rather than an immediate behavior response.
Feedback topics such as “Adjusting Precision” and “Cutting & Clipping”
result in an average rate of behavioral adjustment, likely due to their lower
urgency.

The analysis of the variables of importance for the prediction of trainee
behavior reveals which discoveredAI topics are of particular importance for
predicting trainee behavior and supplementing prior human
categorization7. Even more importantly, we can see that these components
offer meaningful discoveries likely generalizable to other types of surgeries.
Specifically, the topics around “Handling Bleeding” and “Trainer’s Inter-
vention” highlight the importance of capturing feedback expressing high-
stakes interventions that require immediate reaction or can incur safety
concerns. Furthermore, the predictive importance of having separate topics
around “Pulling, Retraction” and “Sweeping Techniques” suggests the value
of capturingmorefine-grained aspects around the technical and procedural
execution of surgical tasks. These technical aspects are fairly universal across
surgery types28,29. Finally, the independent predictive value of “Trainer’s
Queries” and “Trainer’s Interventions” suggests that capturing the teaching
style of a trainer is also important, which aligns with selective categorization
schemes from prior work around teaching behavior4 and intraoperative
communication6.

We have rigorously evaluated our approach following several human
interpretation and statistical validation steps. Two trained human raters
independently interpreted the initially discovered topics, rating them in
terms of clinical clarity and consistency. These interpretations have been
repeated at each step of the discovery and refinement process. We further
evaluated the statistical association of the discovered topics with trainee
behavioral responses and trainer reaction dimensions annotated indepen-
dently in prior work7. Finally, a biostatistician who was not involved in the
development of the Human-AI collaborative approach served as the inde-
pendent evaluator to assess the AI model performance. The independent
biostatistician also further inspected the variables of importance in these
prediction models, to understand which of the AI-discovered topics pro-
vided the novel categorization on top of manual categories. This multi-
faceted evaluation with independent qualitative interpretability and statis-
tical validity checks performedby different analysts enhanced the credibility
of our findings and further improved on the evaluation rigor from prior
work in this space.

While our method marks a significant advancement in surgical feed-
back analysis, it is not without limitations. The initial unsupervised learning
approach relies on the quality of the extracted text meaning representations
(embeddings), which may be affected by medical vocabulary and profes-
sional slang30. While we followed the best practices, any automated
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clustering method has inherent instability31 which may lead to potentially
better starting points for the initial step of topic discovery.We currently also
don’t incorporate themultimodal (i.e., video and audio) nature of feedback,
relying only on transcribed text (Fig. 2 includes video only for context). We
note that there are techniques such as multimodal transformer32 which can
facilitate that, but this also leads to the additional burden of interpretation
and refinement for the human raters. Additionally, our approach, while
paving the way for automated quantification of live surgical feedback at
scale, still benefits from human-AI collaboration for clinical interpretation
and topic refinement. However, as we show in the additional analysis in
Supplementary Note D, human refinement is not crucial for the good
performance of ourmethod in behavior prediction tasks but rather serves to
enhance interpretability and clinical clarity.

The broader impact of this research is multifaceted, contributing to
advancements in real-world surgical feedback analysis, effectiveHuman-AI
collaboration in health, and the development of automated training tools in
surgery.

Our approach crucially enables the analysis of real-world surgical
feedback at scale by leveraging unsupervised machine learning techniques
coupled with minimal yet strategic human supervision. As such, it can
substantially aid in understanding the complex dynamics of communica-
tion in the operating room (OR), which has been a long-standing
challenge15.

We also enhance the completeness of feedback categorization by using
AI methods that discover complex patterns in the data, which might
otherwise be overlooked by human raters. The initial automation step also
helps to minimize the subjective interpretation biases typically associated
with individual institutions or specific training backgrounds.

Additionally, the Human-AI collaboration approach we propose is
likely to improveacceptance amongmedical professionals compared to a fully
automated system without human input33. Human supervision and
refinement enhance interpretability and empower human raters by incor-
porating their expert judgment, ensuring that the AI complements rather
than replaces the human element in surgical training.

Our approach can also inform controlled studies and lead to the
development of real-time warning and feedback systems. Our process results
in a higher granularity of categorization associated with statistically sig-
nificant associationswith trainee behavior, which can facilitate personalized
training and assessment approaches3. For example, the absence of a specific
category of feedback in particular training contexts, when expected, could
signal a level of subjectivity or simple omission that can diminish the quality
of training34. Such granularity can help formulate data-driven hypotheses
that inform the design of specific targeted clinical studies investigating
different properties of feedback in an experimental setting. Ultimately, our
approach can lead to the development of an automated real-time warning
and feedback system in a surgical context. Such a system could warn the
trainer about potentially ineffective feedback in real-time or suggest what
feedback might be valuable to consider in particular contexts, serving as an
AI-driven assistant much needed in surgical settings35.

Further research could explore the integration of multimodal data,
such as video, and audio, into the AI analysis framework. Multimodal
integration could lead to more nuanced insights into surgical performance
and training needs. There is significant potential for developing real-time
feedback and warning systems based on the categorization and analysis
achieved in this study. Future work could focus on the design and imple-
mentation of these systems in live surgical settings to provide immediate
guidance and correction, thereby enhancing the safety and effectiveness of
surgical training and operations.

Methods
We aim to categorize the recorded instances of feedback delivered during
surgery into clinicallymeaningful and interpretable categorieswithminimal
manual effort from experts. In this section, we describe the dataset onwhich
we applied our process, aswell as the details of ourHuman-AI Collaborative
approach.

Ethics approval
All datasets used in this study were collected following rigorous ethical
standards under the approval of the Institutional Review Board (IRB) of the
University of Southern California, ensuring the protection of participants’
rights and privacy. Written informed consent was obtained from all indi-
viduals who participated in the dataset collection (HS-17-00113). Further-
more, to safeguard the privacy and confidentiality of the participants, the
datasets were de-identified prior to model development or analysis.

Surgical feedback dataset
We use a dataset of real-life feedback delivered during the course of robot-
assisted surgeries7. The dataset contains audio recordings of conversations
in the operating room (OR) captured by wireless microphones worn by the
surgeons.Ourdata also contains video captured fromanendoscopic camera
representing the surgeon’s point of view. Video and audio were captured
simultaneously using an external recording device. Each surgery utilized the
da Vinci Xi robotic surgery system36.

A subset of the conversations recorded in the OR represents surgical
feedback. Such feedback is defined as any trainer utterance intended to
modify trainee thinking or behavior. Trainers were defined as those pro-
viding feedback, while the trainees were the recipients of such feedback.
Utterances meeting this definition were timestamped and manually tran-
scribed from audio recordings by medical residents with surgical knowl-
edge. Only feedback instancesmeeting these criteria were transcribed, while
other types of dialog were excluded. The dataset contains 3740 individual
feedback instances as shown in Table 2.

Further, the dataset contains annotations of several dimensions related
to the outcomes (Table 2). The annotations related to Trainee Behavior
capture any form of reaction from a trainee to the feedback provided by the
trainer. The annotated trainee reactions include Verbal Acknowledgment,
which captures the trainee’s verbal confirmation of understanding the
feedback, Behavioral Adjustment, which captures the change in behavior of
a trainee alignedwith the feedback, andAsk forClarification, which captures
instances where feedback was not clear and triggered the trainee to require
further explanation.

Additionally, the dataset includes annotations of Trainer Reaction,
which capture trainers’ responses to changes, or the absence thereof, in
trainee behavior following feedback. These include: Approval, which indi-
cates trainers’ satisfaction with trainee behavior, and Disapproval, which
captures the opposite. Situationswhen the trainer needs to take over control
were also annotated with Taking Control (non-safety) capturing instances
when the trainer takes over the console for non-safety related reasons, while
Taking Control (safety) captures instances when the trainer had to take over
control outof concern forpatient safety.Theprecisedefinitions aswell as the
prevalence of the annotation in our dataset are reported in Table 2. Further
details around data collection and annotation can be found in ref. 7.

Human-AI collaboration for unsupervised feedback
categorization
We introduce a novel Human-AI Collaboration process for unsu-
pervised categorization of surgical feedback, as depicted in Fig. 5. This
process first leverages the unsupervised clustering technique to auto-
matically categorize the unstructured feedback text into topics (1.
Automated Topic Clustering). Such initial categorization is then
inspected by trained human raters (2. Human Interpretation). This step
involves low-effort human feedback about interpretation and adjust-
ments needed to the discovered topics. The human-suggested adjust-
ments are then leveraged to automatically reorganize the topics (3.
Automated Topic Refinement). This process can be repeated several
times as needed. By applying this process, we discovered feedback topics
that align with clinically meaningful categorization while requiring
minimal human effort compared to fully manual annotation of each
feedback instance as performed in prior work7. In this section, we pro-
vide the details of the unsupervised topic clustering method used as a
starting point, and the human interpretation and refinement steps.
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We applied minimal preprocessing of feedback text instances to
remove any identifying mentions of trainers or trainees. We have further
normalized the representation of some short phrases (e.g., “k” with “ok”).
We also replaced some common abbreviations for surgical terms with their
full-text equivalents, such as “DVC” replaced with “Dorsal Vein Complex”.
This minimal preprocessing has been applied to facilitate the extraction of
pre-trained representations (embeddings) for feedback instance text. Con-
trary to keyword-based methods (e.g., LDA37), neural techniques perform
best without removal of “stop words” as transformer-based embedding
models need the full context to create an accurate embedding38.

AI-based automated topic modeling
We employ BERTopic19, a modern topic modeling technique, to analyze
textual data and extract meaningful topic clusters. As shown in Fig. 6 the
BERTopic pipeline follows a distinct workflow to model topics. Step 1 it
converts all feedback instances in the dataset into numerical representations
(i.e., embeddings) that represent their “meaning”. These embeddings can be
used to numerically score the semantic similarity between feedback text
instances. Step 2 involves projecting the embeddings to a lower-
dimensional space, facilitating the grouping of feedback instances that
share similar content. Step 3 involves clustering the feedback instances into

distinct topics, such that feedback instances with similar meaning are
grouped into the same Topic. The final step, Step 4, involves summarizing
the “meaning” of each topic. This involves providing a concise description
capturing the pattern of the feedback instances grouped under a particular
Topic. To decide on the initial number of topics, we relied on a widely used
topic coherence metric—normalized pointwise mutual information
(NPMI)39. This coherence measure has been shown to emulate human
judgment with reasonable performance40. For our data, thismetric achieved
the best score for a range between 20 and 28 topics. We further provide a
more detailed description of the exact techniques used in each step.

Step 1: Numerical Representation of Text (Sentence Embeddings):
BERTopic leverages the pre-trained embeddings that represent textual data
in anumerical format that captures the semantic “meaning”of the text. Such
embeddings can be used to calculate a score for the similarity in meaning
between feedback instances (cosine similarity) as shown using a few
examples in Table 3. Using this similarity score, a very similar pair of
feedback instances receives a score close to 1.0, while very different instances
receive a score close to 0.0. These embeddings are extracted from the BERT
model, a transformer-based languagemodelpre-trained ona large corpus of
text41. The embeddings are further specialized for capturing sentence
similarities using the Sentence Transformer framework called SBERT42. We

Table 2 | Statistics of the annotations in our dataset per behavior categories

Category Dimension Definition Count Freq Count/Case

Feedback Instances Trainer utterance intended to modify trainee thinking or behavior 3740 100.0% 129.0 ± 77.4

Trainee Behavior Verbal Acknowledgment Verbal or audible reaction from the trainee confirming that they have heard the
feedback

1691 45.2% 58.3 ± 31.4

Behavioral Adjustment Behavioral adjustment made by a trainee that corresponds directly with the
preceding feedback

1666 44.6% 57.5 ± 39.3

Ask for Clarification Trainee asks for feedback to be restated due to lack of understanding 77 2.1% 3.2 ± 2.4

Trainer Reaction Approval Trainer verbally demonstrates that they are satisfied with the trainee behavioral
change

552 14.8% 19.7 ± 16.9

Disapproval Trainer verbally demonstrates that they are not yet satisfied with the trainee
behavioral change

71 1.9% 3.6 ± 2.6

Taking Control (non-safety) Trainer takes control of the robot for non-safety related reasons 98 2.6% 3.6 ± 2.3

Taking Control (safety) Trainer takes control of the robot out of concern for patient safety 18 0.5% 1.3 ± 0.5

We provide absolute total counts (Count), the relative frequency of behavior per feedback instance counts (Freq) as well as the prevalence per surgical case (Count/Case).

Fig. 5 |Human-AI collaborationprocess for unsupervised surgical feedback topic
discovery and refinement. The first step involves the automated discovery of a an
initial categorization using unsupervised topic modeling techniques. These topics

are then evaluated by human raters, who also provide suggestions for refinement.
These suggestions are then automatically applied to b refine the discovered topics
further.
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used pretrained embeddings using the “all-MiniLM-L12-v2”architecture43.
The core idea behind BERTopic is to use these embeddings to capture the
contextual relationships between whole, even very short sentences, thereby
enabling the identification of more coherent and semantically rich topics
compared to traditional methods23.

Step 2: Similarity Projection: BERTopic applies dimensionality reduc-
tion techniques, specifically UMAP (Uniform Manifold Approximation
andProjection)44, toproject the extractedsentence embeddings into a lower-
dimensional space. This step is essential for mitigating the “curse of
dimensionality,” enhancing clustering performance by making distances
between high-dimensional text embeddings more meaningful in a lower-
dimensional space. Moreover, by projecting data into a lower-dimensional
space, it retains the integrity of semantic similarities, crucial for accurately
reflecting the thematic structures within the text corpus45. The UMAP
settings that resulted in the highest coherence score in our settings were the
following: No. of neighbors = 15, No. of components = 5, min-dist = 0.05,
metric=“cosine”.

Step 3: Detecting Topic Clusters: For the clustering step, BERTopic
utilizes the HDBSCAN algorithm (Hierarchical Density-Based Spatial
Clustering of Applications with Noise)46, which is capable of identifying
clusters of varying densities and shapes, making it well-suited for the
diverse nature of text data45. HDBSCAN constructs a hierarchy of clus-
ters by examining the dataset across different scales, calculates mutual
reachability distances based on core distances to maintain density

consistency, and then uses these distances to build a minimum spanning
tree (MST)47. From thisMST, it generates a dendrogram representing the
hierarchical structure of clusters. Clusters are then selected based on their
stability within this hierarchy, with more stable clusters (based on the
excess-of-mass algorithm45) deemed significant, while points not
belonging to any stable cluster are classified as noise. This approach
allows HDBSCAN to effectively handle datasets with complex structures
and varying densities without pre-specifying the number of clusters,
making it especially suited for real-world data analysis where the true
cluster structure is unknown. The parameter values used for this step
were min-cluster-size = 50, metric=“euclidean”, cluster-selection-meth-
od=“excess ofmass”48.We further applied outlier reduction by calculating
the Class-based Term Frequency-Inverse Document Frequency (c-TF-
IDF)49 representations of outlier documents and assigning them to the
bestmatching c-TF-IDF representations of non-outlier topics. This is the
default method supported by BERTopic19.

Step 4: Summarized Topic Representation (Topic Names): The final
step of the process is providing concise andmeaningful titles for the topic
clusters based on the underlying feedback instances in the cluster. The
framework provides several methods to accomplish this50. In this work,
we combined the KeyBERTInspired51 representation for topic cluster
keywords extraction with GPT-4-based instruction prompting to
determine the final title for each topic. KeyBERTInspired method
extracts the candidate keywords from a topic cluster using frequency and
importance weighting based on the uniqueness of the keywords for the
cluster using c-TF-IDF. It then calculates the semantic similarity of these
keywords to the representative feedback instances to select the most
relevant ones. Unlike traditional keyword extraction methods that rely
on statistical frequency, KeyBERT focuses on the semantic significance of
words and phrases, selecting those with the highest similarity to the
document’s overall content. We then combine these extracted keywords
with a few representative feedback instances for a topic to prompt GPT-4
for a short label for the topic using the instruction prompt provided in
Supplementary Note A.

Human interpretation
Following automated topic modeling, we facilitate human interpretation
(Fig. 5).

To evaluate the clinical value of the initially discovered topics, we
performed a human evaluation with two trained human raters knowl-
edgeable about the aspects of surgeries. Each rater was provided a spread-
sheetwith the raw text of the transcribed feedback instances, togetherwith a
column representing the title of the main topic to which the instance was
automatically assigned. The raters had access to both keyword-based

Fig. 6 | Processing steps involved in the discovery of topics from surgical feedback
instances. These steps are provided under the BERTopic framework19. Step 1
involves obtaining numerical representations of feedback texts using pretrained
embeddings. Step 2 applies dimensionality reduction and projection of the

mebeddings into lower-dimensional space. Step 3 clusters the feedback instances
into topics based on similarity metric for text represenations. Step 4 summarizes the
contents of each topic cluster using concise titles provided by GPT-4 prompting.

Table 3 | Examples of feedback instances from our dataset
along with their semantic similarity scores calculated using
pretrained ‘all-MiniLM-L12-v2’ sentence-embeddings
(SBERT)42

Feedback Instance
Example

Feedback for Comparison Similarity Score

“okay, that’s pretty good” “yeah, that’s fine” 0.506

“closer and rotate” 0.119

“so burn... coag there first” 0.121

“closer and rotate” “turn don’t push, turn” 0.377

“yeah, that’s fine” 0.058

“this is a lot of bleeding” 0.042

“so burn... coag there first” “this is a lot of bleeding” 0.257

“yeah, that’s fine” 0.056

“closer and rotate” 0.094
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representations of the topics and their titles, generated via GPT-4
prompting.
• Suggested Reorganization:As part of the quality evaluation of the

topics, the raters were also asked to provide suggestions for
refining the discovered topics by suggesting whether a topic
could be combined with another existing topic (merging) as well
as whether the feedback instances grouped under one topic
should be separated into two or more topics (splitting). These
suggestions were aggregated across the two raters and applied in
the topic refinement round.

• Rating Topics: The raters were asked to evaluate the quality of each
topic based on two criteria: “Clinical clarity,” defined as “the mean-
ingfulness for clinical practice,” as well as “Consistency,” defined as “the
uniformity of feedback instances representing the same aspect.” These
dimensions were rated for each topic using a 5-point Likert scale from
“1 - least clear” to “5 -most clear” for “Clinical clarity” and from “1 - least
consistent” to “5 - most consistent” for “Consistency”. The agreement
was measured using a 2-way mixed intra-class correlation with
absolute agreement (ICC)52.

The interpretation round was performed twice with the same set
of raters. First, after the initial fully automated categorization of
feedback instances into 28 topics (Fig. 5a) and then in the second
round, after implementing the suggested reorganizations from the
first round resulting in 20 refined topics (Fig. 5b). In each round,
raters had access to individual feedback instances assigned to the
discovered topics to provide their interpretation. The ratings between
rounds were statistically compared using an independent samples
t-test based on a random sample of 30 feedback instances under
each topic.

Refinement impact on clarity and consistency. The initial auto-
matically extracted topics received a human-derived average clinical
clarity score of 3.14 (SD = 1.36) and consistency score of 3.35 (SD = 1.28).
After clinicians’ input, the topics were consolidated into 20, which scored
higher on clinical clarity with an average score of 3.98, (SD = 0.92,
p < 0.05) as well as consistency with an average score of 4.35 (SD = 0.77,
p < 0.01). Clinical clarity scores exhibited good agreement among raters
in both rounds (Round 1: ICC = 0.85, 95% CI: 0.67, 0.93; Round 2:
ICC = 0.72, 95% CI: 0.30, 0.89), while consistency exhibited moderate
agreement (Round 1: ICC = 0.74, 95% CI: 0.44, 0.88; Round 2: ICC=0.62,
95% CI: 0.04, 0.85)

AI-based automated topic refinement
Following the suggestions from the first round, the topics were reorganized.
In total, human Rater 1 provided 4 suggestions for topic refinement, while
Rater 2 provided 9 suggestions. These suggestions were reconciled with the
raters based on a follow-up discussion to formulate a final set of adjust-
ments. The disagreements between the raters were on the desired level of
abstraction, rather than on substantially different or conflicting grouping
suggestions. The human refinement rules were then grouped into three
categories. Examples of concrete rules can be seen in Table 4. We also
summarize the rule types below:
• Splitting Rules, which captured suggestions for separating the feed-

back instances automatically categorized under one topic into separate
topics. There were seven rules of this kind.

• Merging Rules, which captured suggestions for combining feedback
instances originally automatically assigned toseparate topicsunder one
topic. There were five rules of this kind.

• Approval Rules, which captured approving the original automatically
detected topic and the feedback instances assigned to it. There were 15
rules of this kind.
These 27 rules were applied sequentially starting with Splitting, fol-

lowed byMerging and then Approval. This was intentional, as some of the
intermediate topics created via splitting were subsequently merged. The
rules were applied via a simple keyword-based filtering of the feedback
instances. This process reduced the number of topics from the initially
discovered 28 (see Fig. 5a) to the final set of 20 topics (Fig. 5b with examples
in Supplementary Note F).

The resultingnewsetof topicswith reorganized feedback instanceswas
again passed through Step 4 of the BERTopic framework to extract auto-
mated keywords and promptGPT-4 for topic names. These representations
were used in the second round of human interpretation and subsequent
validation steps. Examples of final AI topics along with concrete feedback
instances under these topics as well as the word clouds with the most
frequent words for a topic can be found in Fig. 4.

Refinement impact on downstream tasks. We evaluated the impact of
the Human Refinement of AI-detected topics on the prediction of out-
comes following surgical feedback. Supplementary Note D compares AI
topics before refinement (“AI Initial” as in Fig. 5a) to AI topics after
Human Refinement ("AI+Human Refinement” as in Fig. 5b). The AUC
differences were tested using Delong’s z-test and Random Forest model.
We used a fivefold cross-validation procedure, which produces very
narrow confidence intervals. We can see that the differences are very

Table 4 | Example refinement rules based on human interpretation and guidance

Initial Topic Name(s) Initial Topic Keyword(s) Rule Type Refinement Outcome

10. Electrocautery Technique “buzz”, “sweep”, “that”, “it” Split “buzz” from “sweep”

9. Sweeping Technique and Nerve Preservation “sweep”, “gentle”, “off”, “do” Split “coag” from “sweep”

19. Surgical Plane Identification and
Management

“plane”, “this”, “travel”, “easy” Split “travel” from “plane” and “easy”

18. Instrument Handling and Needle Control “needle”, “your”, “instrument”, “driver” Split “needle” from “instrument” and “driver”

14. Bleeding Management and Hemostasis “bleed”, “stop”, “there”, “gone” Split “bleed” from “stop”

27. Positive Feedback on Surgical Technique “work”, “job”, “good”, “nice” Merge Combine into a new topic: “0. Affirmative Feedback and
Inquiry”

23. Positive Reinforcement on Maneuver
Execution

“nice”, “move”, “beautiful”, “very”

1. Positive Reinforcement and Guidance “good”, “okay”, “great”, “that”

17. Surgical Guidance andDirectional Feedback “keep”, “go”, “let;, “okay” Merge Combine into a new topic: “2. Encouraging Continuation and
Progress”

16. Acknowledgment and Affirmation of Actions “mhm”,“mmhm,“mhmm”,“lucky”

4. Affirmative and Corrective Guidance
Feedback

“yup”, “yeah”, “uh”, “huh”

The topic refinement rules were categorized into three types: splitting, merging, and approval. Where approval required no adjustment to the originally discovered topic cluster.
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small showing that human refinement did not have much impact on the
prediction of behavioral outcomes. We emphasize that this comparable
performance has been achieved with 20 instead of 28 topics as predictors.
Furthermore, human inspection and refinement helped validate the
topics in terms of clinical meaning and helped improve “clinical clarity”
and “consistency”.

Evaluation setup for discovered topic clusters
We first evaluated the independent contributions of AI-discovered
topics to prediction of trainee behavioral outcomes. Random Forest
(RF) in a fivefold cross-validation setup was used to build models for
predicting trainee behavioral outcomes (Table 1).We first split the data
into five pieces using a stratified sampling procedure to ensure each
piece has an equal case and control sample. Then we train the model
with 80% training sample five times. Within each training process, we
used a fivefold cross-validation for hyperparameter turning. The
hyperparameter setting for RF was based on grid search using an
interval of (5, 10, 25, 50, 100) number of variables to enter and 200 to
1000 trees by an interval of 100. The other hyperparameters were set as
a maximal depth of 50, and leaf size of 5. The optimized hyperpara-
meters are selected byminimizing the out-of-bagmisclassification rate.
The Gini impurity index was used as the loss function. We used King’s
method to address the imbalanced data53. We have built and compared
three models using Delong’s Z test54. The full model is defined as using
both AI topics and human-rated categories7 as the input. The two
reduced models dropped either AI topics or human-rated categories.
The difference in prediction accuracy AUROC between full and
reduced models represents the independent contribution of either AI
topics or human rating in predicting trainee behavioral outcomes. For
example, the AUROC difference between the full model and the
reduced model without AI topics represents the performance loss
without AI topics as the input. If this loss is statistically significant, it
means the AI topics had irreplaceable contributions to model predic-
tion accuracy. For the full model, we also exported the variables of
importance ranked by the Out-of-bag Gini index (OOBGini). It is
another evidence of contribution from either AI or human rating in the
association with trainee behavioral outcomes.

Aside from RF, we have also explored the use of other supervised
models, specifically Elastic-Net and Adaboost (see Supplementary Note E).
RF and AdaBoost are considered non-parametric approaches while Elas-
ticNet is considered a parametric approach in case of strong linear pre-
dictors. All the models use AI Topic Clusters after the Human Refinement
step as predictors. For the Adaboost, since it is more efficient, only 25 trees
were built with a depthof 3 as recommendedby ref. 55. For ElasticNet, the α
value was optimized by gradient descent in the range of 0.1 to 0.02 by 0.001,
and the hyperparameter tuning for L1 ratio was searched between 0 to 1 by
increment of 0.1 to minimize cross-validation predicted residual sum of
squares (CVPRESS).

We further investigated the adjusted association between individual
topics and trainee behavioral outcomes. The independent influence of
discovered topics (coded as 0 or 1 for the absence or presence of a topic,
respectively) on binary-coded trainee Behavioral Reaction and Verbal
Acknowledgment was investigated using a multivariate generalized linear
mixed-effects model (GLMM)56. The model included fixed effects for each
topic and a random intercept, to accommodate the clustering of data by
surgical cases. This acknowledges that observationswithin the same surgical
case are likely to be more similar than those from different cases. The
supplementary Variance Inflation Factor57 analysis indicated no multi-
collinearity among the predictors, affirming that the linear dependencies
between predictors do not inflate the estimated coefficients.

After model fitting, the fixed effect coefficients were exponentiated to
obtain the RRs, offering an interpretation of how the presence of each topic
(versus its absence) affects the trainee reaction, within the context of the
Poisson distribution’s log-linear relationship. We also calculated Wald
confidence intervals for the fixed effects.

Data availability
The datasets generated during and/or analyzed during the current study are
available from the corresponding author upon reasonable request.

Code availability
All unsupervised models were developed using Python and standard deep-
learning libraries such as PyTorch58 and BERTopic19. The code is available
from the corresponding author upon reasonable request. SAS Enterprise
Miner 15.159:High-performanceprocedureswereused formachine learning
evaluation. SAS 9.460 was used for all other statistical analysis. SAS is a global
software; we did not build the custom code formachine learning evaluation.
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