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Abstract
Antimicrobial resistance (AMR) represents a critical public health issue that requiring immediate action. Wild 
halophytic plants can be the solution for the AMR crisis because they harbor unique endophytes capable 
of producing potent antimicrobial metabolites. This study aimed at identifying promising and antimicrobial 
metabolites produced by endophytic/epiphytic bacteria recovered from the wild Bassia scoparia plant. Standard 
methods were employed for the isolation of endophytes/epiphytes. Whole genome sequence (WGS) using Oxford 
Nanopore technology followed by antiSMASH analysis coupled with advanced LC-MS spectroscopic analysis were 
used for identification of the active antimicrobial metabolites. This study identified Bacillus licheniformis strain 
CCASU-B18 as a promising endophytic bacterium from the Bassia scoparia plant. In addition, the strain showed 
broad-spectrum antibacterial activity against three standard and five MDR clinical Gram-positive and Gram-negative 
isolates, and antifungal activity against the standard C. albicans strain. Six main antimicrobial metabolites—
thermoactinoamide A, bacillibactins, lichenysins, lichenicidins, fengycin, and bacillomycin—were verified to exist by 
whole genome sequencing for identifying the respective conserved biosynthetic gene clusters in conjunction with 
LC/MS-MS analysis. The complete genomic DNA (4125835) and associated plasmid (205548 bp) of the promising 
endophytic isolate were sequenced, assembled, annotated, and submitted into the NCBI GenBank database under 
the accession codes, CP157373. In conclusion, Bacillus licheniformis strain CCASU-B18, a promising endophytic 
bacterium exhibiting broad-spectrum antimicrobial activities, was isolated. Future research is highly recommended 
to optimize the culture conditions that will be employed to enhance the production of respective antimicrobial 
metabolites, as well as testing these compounds against a broader range of MDR-resistant pathogens.
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Introduction
Antimicrobial resistance (AMR) is one of the most 
urgent public health concerns that needs to be dealt with 
rapidly. According to the World Health Organization 
(WHO), 1.27 million deaths were directly associated with 
antimicrobial drug resistance in 2019 (WHO 2023). The 
number of global deaths is predicted to reach 10 million 
by 2050, presumably being the primary cause of global 
deaths that year (Tang et al. 2023). Additionally, AMR 
poses a severe economic challenge; the World Bank, in 
a report titled “Drug-resistant infections: a threat to our 
economic future” stated that by 2030 1-3.4 trillion US 
dollars will be lost in terms of gross domestic product as 
a result of resistant infections (Miller-Petrie et al. 2017). 
One of the multiple ways to tackle this crisis is by means 
of innovating new antimicrobial therapeutics. Despite 
significant efforts by researchers, there remains a gap 
between newly developed antimicrobial agents and the 
rise of drug-resistant pathogens. There are still insuffi-
cient antibacterial drugs to combat WHO-priority patho-
gens that pose a threat to global health, which include 
carbapenem-resistant K. pneumoniae, A. baumannii, and 
P. aeruginosa (Miethke et al. 2021).

More than 60% of the newly innovated antibacterial 
compounds in the last 40 years are derived from nature 
(Miethke et al. 2021). Secondary metabolites derived from 
endophytic bacterial extracts are considered one of the nat-
ural sources of antibiotics (Martinez-Klimova et al. 2017). 
Endophytic bacteria, also known as “Endophytes” are a class 
of bacteria that are found within plant tissues. This type of 
bacteria is a mutualistic bacteria that live in symbiosis with 
the plant host without showing any signs of pathogenicity. 
Moreover, “Epiphytes” are another bacterial class related to 
plants that inhabit the plant’s surface (Afzal et al. 2019). Phe-
notypic investigation coupled with metagenomic/genomic 
analysis of the biosynthetic gene cluster of valuable second-
ary metabolites followed by spectroscopic analysis has been 
successfully used to screen and explore the nature of respec-
tive valuable metabolites (Eltokhy et al. 2021, 2022, 2024; 
Alam et al. 2022; Elbakary et al. 2024).

In recent years, Endophytes have attracted much atten-
tion due to their well-established secondary antimicro-
bial metabolites. Secondary antimicrobial metabolites 
isolated from endophytes include a range of chemical 
structures including peptides, alkaloids, steroids, terpe-
noids, polyketides, phenols, quinones, and flavonoids 
antibiotics (Yu et al. 2010; Martinez-Klimova et al. 2017). 
Endophytes still show immense potential to be a valuable 
source of newly discovered active metabolites (Gouda 
et al. 2016). This study aimed at identifying promising 
antimicrobial metabolites produced by the endophytic/
epiphytic bacteria recovered from the wild Bassia sco-
paria plant, particularly those exhibiting broad-spectrum 

activities against standard and clinical bacterial and fun-
gal pathogens.

Materials and methods
Collection of bacterial isolates
Plant collection and identification
A visibly healthy plant was collected using a shovel, ster-
ile bag, and sterile gloves. It was collected from the First 
Settlement, New Cairo, Cairo, Egypt (30°03’26.7"N, 
31°25’33.4"E) where it grew wildly in sandy, rocky soil. The 
plant was transported in an icebox to the lab where it was 
stored in the refrigerator for 24 h before processing. The 
plant was identified as Bassia scoparia using LeafSnap 
application (https://leafsnap.com/) (accessed on 01 ​S​e​p​t​e​
m​b​e​r 2024) that acquired recognition accuracy of 94.38% 
as referred by previously reported (Turkoglu et al. 2021).

Plant processing
Plant parts, including roots, stems, and leaves were first 
rinsed with tap water, then cut into two parts using sterile 
scissors and cutters. The first part was just washing using 
sterile distilled water three times (each 1 min) to isolate 
epiphytes (War Nongkhla and Joshi 2014). The second 
part was subjected to surface sterilization to isolate endo-
phytes. The surface sterilization process included immer-
sion of plant parts in 70% ethanol for 1 min followed by 
treatment using 2.5% NaOCl (Sahu et al. 2022). Washing 
with sterile distilled water 3 times (each 2 min) was per-
formed during the process and its end to avoid sterilant 
remnants of the plant tissue (Sahu et al. 2022).

Isolation and purification of endophytes and epiphytes
The plant parts were cut using a sterile blade in a ster-
ile glass petri dish. The plant parts were cut horizontally 
about 1 cm for a segment. The part subjected to surface 
sterilization was cut longitudinally to allow easier growth 
of endophytes. The segments were plated on nutrient 
agar, potato dextrose agar, and tap water-yeast extract 
agar, then, the plates were incubated for up to 4 weeks at 
27 °C (Coombs and Franco 2003). During the incubation 
period, an examination of plates was conducted every 
three days to detect the presence of grown colonies, 
which were then purified by the streak plate method.

Preliminary screening of antimicrobial activity
Screening of endophytic and epiphytic bacteria for antimi-
crobial activity was carried out by the perpendicular streak 
method (Ashitha et al. 2019). The tested bacteria were 
streaked vertically against standard and multi-drug resistant 
(MDR) pathogens including E. coli ATCC 25922, S. aureus 
ATCC 25923, C. albicans ATCC 14053, MDR E. coli, MDR 
P. aeruginosa, MDR A. baumannii, MDR K. pneumoniae, 
and MDR K. terrigena. The clinical MDR clinical isolates 
were obtained from the Culture Collection Ain Shams 

https://leafsnap.com/
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University (CCASU). The antimicrobial resistance pattern 
of clinical isolates used in this study is shown in Table  1. 
These strains were adjusted to a turbidity equivalent to 0.5 
McFarland standard. The streak method was carried out on 
Mueller Hinton agar plates which were incubated for 24 h at 
30 °C (Ashitha et al. 2019).

Preparation of the endophytic extract
The culture medium used in shake flask production is 
modified starch casein broth (Singh et al. 2021). The col-
onies of the selected isolates were cultured in 25 mL of 
broth for 24 h at 150 rpm and 30 °C. About 2 mL of the 
seed culture of optical density 0.7 was used to inoculate 
22 ×  50 mL Erlenmeyer flasks (each containing 100 mL 
of modified starch casein broth). The flasks were incu-
bated for 72 h at 150 rpm and 30 °C (Singh et al. 2021). 
Bacterial mass separation was achieved through centrif-
ugation at 12,000  rpm for 10  min followed by filtration 
through Whatman No.1 filter paper. The obtained filtrate 
was then mixed with ethyl acetate at a ratio of 1:1 (v/v). 
The extraction process was conducted twice to enhance 
the recovery of metabolite broth (Singh et al. 2021) and 
the collected organic layer was evaporated at 45 °C using 
a rotatory evaporator (IKA RV 10, China) to yield the 
crude extract (Eltokhy et al. 2021).

Antimicrobial analysis of the collected extract
Antibacterial activity was evaluated by the agar well dif-
fusion method (Eltokhy et al. 2021). The crude extract 
was dissolved in 1.5 mL of dimethyl sulfoxide (DMSO). 
The DMSO (diluted 60%) was used as a negative control. 
However, antifungal activity was tested by dissolving the 
extract in 60% diluted DMSO due to the high fungicidal 
effect of pure DMSO. The extract was tested against 
respective standard and clinical isolates which were 
adjusted to turbidity equivalent to 0.5 McFarland stan-
dard. Incubation was carried out at 37° C and plates were 
examined for zones of inhibition after 24 h.

Genomics and antiSMASH analysis of the promising isolate
The chromosomal DNA was extracted using QIAamp® 
DNA Mini Kit (cat. no. 51304, Qiagen, Hilden, Ger-
many) using manufacturer protocol for Gram-positive 
bacteria, and the resulting DNA was quantified using 
Qubit 4 (Thermo Fisher Scientific, Massachusetts, USA). 
About ~ 400 ng of the collected chromosomal DNA was 
used for the library preparation using a Rapid Sequenc-
ing Kit (SQK-RAD004; Oxford Nanopore Technologies, 
Oxford, UK) according to manufacturer instructions. 
Sequencing was performed using MinION™ and R9.4.1 
flow cells (FLO‐MIN106; Oxford Nanopore Technolo-
gies). The MinKNOW software version 23.11.5 (Oxford 
Nanopore Technologies) was used for data acquisition.

Data analysis
MinION™ sequence reads (i.e., POD5 data) were con-
verted into fastq files using Dorado basecall server ver. 
7.3.9 (Oxford Nanopore Technologies) on AWS EC2 
g4dn.xlarge. fastq files were classified using kraken2 
(Wood and Salzberg 2014) and then visualized using 
recentrifuge (Martí 2019), then processed using Flye 
(Kolmogorov et al. 2019) reference-based assembly 
against the most abundant tax Bacillus licheniformis 
“taxid: 1402”. draft assembly was polished three times 
using medaka.

Identification of the biosynthetic gene clusters
AntiSMASH version 7 (Antibiotics and Secondary 
Metabolite Analysis Shell) was used to align and analyze 
sequences for potential secondary metabolite gene clus-
ters. (https:/​/antism​ash.sec​onda​rymetabolites.org/#!/start) 
(Blin et al. 2021).

LC-MS analysis of the obtained extract
The obtained extract was analyzed by LC-MS/MS using 
The Vanquish Core HPLC System coupled with a Thermo 
ScientificTM Q Exactive™ Hybrid Quadrupole-Orbitrap 
mass spectrometer equipped with an electrospray ion-
ization (ESI) source coupled with an auto-sampler and 
surveyor UHPLC binary pump (Thermo Fisher Scien-
tific, Bremen, Germany) and the process was carried out 
as previously described (Wong et al. 2020). The column 
used for separation was the Acquity C18 column (1.8 μm, 
2.1 ×  50  mm). The mobile phase used in the separation 
was LC-MS-grade water (solvent A) and methanol (sol-
vent B), each consisting of 0.1% FA with a flow rate of 3 
mL/min. Positive and Negative ion mode was done in full 
scan mass spectra acquisition from 200 to 3000 m/z with 
HCD collision energy of 20, 40, and 60%, as previously 
reported (Wong et al. 2020).

Table 1  Antimicrobial resistance pattern of tested MDR clinical 
isolates
Clinical isolate code Resistance pattern*
MDR E. coli TMP/SMX, AMC, CPD, CTX, CIP, GEN, MEM
MDR P. aeruginosa MEM, CAZ, FEP, GEN, AMK, CIP
MDR A. baumannii TMP/SMX, SAM, CTX, CRO, CIP, DOX, GEN, 

AMK, MEM
MDR K. penumoniae MEM, TMP/SMX, AMC, CTX, CRO, CIP, 

DOX, GEN, AMK
MDR Klebsiella terrigena MEM, AMC, SAM, FEP, CIP, DOX
*AMC = amoxicillin/clavulanic acid, AMK = Amikacin, CAZ = ceftazidime, 
CPD = cefpodoxime, CRO = ceftriaxone, CTX = cefotaxime, DOX = doxycycline, 
FEP = cefepime, CIP = ciprofloxacin, GEN = gentamicin, MEM = meropenem, 
SAM = ampicillin/sulbactam, TMP/SMX = trimethoprim-sulfamethoxazole.

https://antismash.secondarymetabolites.org/#!/start
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Results
Preliminary screening of antimicrobial activity
Preliminary screening results showed significant antimi-
crobial effects exhibited by both endophytes (coded EE) 
and epiphytes (coded E) separated from root (R), stem 
(S), and leaves (L). The endophytic bacterial isolate EES4 
separated from the stem exhibited the most promis-
ing antimicrobial effect, with notable activity against E. 
coli ATCC 25,922, S. aureus ATCC 25,923, C. albicans 
ATCC 14,053, MDR E. coli, MDR P. aeruginosa, MDR 
A. baumannii, MDR K. pneumoniae, MDR K. terrigena 
(Table  2). Therefore, the EES4 isolate was selected for 
further evaluation.

Antimicrobial analysis of EES4 isolate extract
The ethyl acetate extract of isolate EES4 showed distinct 
zones of inhibition in comparison to the negative control 
as shown in Table 3. The agar well diffusion results were 
consistent with the perpendicular streak method results. 
The recovered EES4 extract showed broad antimicro-
bial activity against E. coli ATCC 25922, S. aureus ATCC 

25923, C. albicans ATCC 14053, and MDR P. aeruginosa 
is delineated in Fig. S1.

Identification of EES4 isolate
The EES4 isolate was morphologically and genetically 
identified as Bacillus licheniformis isolate EES4. The com-
plete genomic sequence (4125835 bp) was deposited in the 
NCBI GenBank with assigned accession number CP157373 
(https:/​/www.nc​bi.nlm.​nih.​gov/nuccore/CP157373.1). 
It was found that this strain harbored a large plasmid 
(205548  bp) which was sequenced, assembled, annotated, 
and deposited under the accession number CP157373 
(https:/​/www.nc​bi.nlm.​nih.​gov/nuccore/CP157374.1). The 
EES4 strain was deposited in the Culture Collection Ain 
Shams University ​(​​​h​t​​t​p​s​​:​/​/​c​​c​i​​n​f​o​.​w​d​c​m​.​o​r​g​/​c​o​l​l​e​c​t​i​o​n​/​b​y​_​i​
d​/​1​1​8​6​​​​​)​, a local culture collection under the accession code, 
Bacillus licheniformis strain CCASU-B18.

AntiSMASH analysis
Aligning and analysis of the whole genome sequence 
of Bacillus licheniformis strain CCASU-B18 revealed 
a number of secondary antimicrobial metabolite 

Table 2  Antimicrobial preliminary screening of endophytic (EE) and epiphytic (E) bacterial isolates against standard and clinical 
pathogens
Isolate code Standard strains MDR clinical isolates

C. albicans 
ATCC 14,053

S. aureus 
ATCC 25,923

E. coli ATCC 
25,922

E. coli P. aeruginosa A. baumannii K. pneumoniae K. 
ter-
rige-
na

ER1 + - - + - - - -
ER2 + + - + - - - -
EER3 + - + + - - - -
EES4 + + + + + + + +
EES5 + - - - - - - -
EL6 + + + + + + - -
EER7 + - - - - - - -
EES8 + + - - - - - -
ER9 + - - - - - - -
EER10 + - - - - + - -
EEL11 + + - - - - - -
ES12 + + + + + + - -
ES13 - - - - - - - -
ES14 + + - - - - N/A N/A
ES15 + + - - - - N/A N/A
EES16 - - - - - - - -
+: Inhibits growth, -: no inhibition, N/A: not performed, EES4 showed activity against all the tested microbial strains and was selected for further experiments.

Table 3  Antimicrobial activity of crude extract of the isolate EES4 against various standard strains and MDR pathogens
Zone of inhibition (mm)
C. albicans ATCC 
14,053

S. aureus ATCC 
25,923

E. coli ATCC 
25,923

MDR P. aeruginosa MDR A. baumannii MDR K. 
pneu-
moni-
ae

Ethyl acetate extract 24 18 20 24 14 18

https://www.ncbi.nlm.nih.gov/nuccore/CP157373.1
https://www.ncbi.nlm.nih.gov/nuccore/CP157374.1
https://ccinfo.wdcm.org/collection/by_id/1186
https://ccinfo.wdcm.org/collection/by_id/1186
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biosynthetic gene clusters. The following metabolites are 
listed according to the percent of similarity of the respec-
tive biosynthetic gene clusters.

Thermoactinoamide A
It is considered a newly discovered lipophilic cyclopep-
tide that has bactericidal activity against S. aureus (Teta 

et al. 2017). The biosynthetic gene cluster showed 100% 
similarity to Thermoactinomyces sp. AS95 (Fig. 1a).

Bacillibactin/bacillibactin E/bacillibactin F
Bacillibactins are iron-scavenging molecules known as 
sidrephores that exhibit bactericidal activity against MDR 
bacteria (Chakraborty et al. 2022; Dimopoulou et al. 2021). 

Fig. 1  The biosynthetic gene clusters of Bacillus licheniformis strain CCASU-B18 identified using antiSMASH for the following metabolites: a thermoacti-
noamide A; b bacillibactin; c lichenysin; d lichenicidins and e fengycin and bacillomycin. The conserved biosynthetic gene(s) are colored
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The bacillibactins biosynthetic gene cluster of Bacillus 
licheniformis strain CCASU-B18 showed 100% similarity to 
that produced by Bacillus sp. WMMC1349. (Fig. 1b)

Lichenysin
It is a valuable lipopeptide biosurfactant that is known 
for its anti-biofilm activity (Zammuto et al. 2023). Gene 
cluster showed 100% similarity to Bacillus licheniformis 
ATCC 14,580 (Fig. 1c).

Lichenicidin VK21 A1/A2
Lichenicidins belong to a class of natural antibiotics 
called lantipeptides that contain lanthionine amino acid 
as part of their structure. Lantipeptides bactericidal effect 
is attributed to their ability to disrupt the cellular mem-
brane and cell wall synthesis acquiring activity against 
MDR bacteria (Chakraborty et al. 2019). The lichenicidin 
gene cluster of Bacillus licheniformis strain CCASU-B18 
showed 100% similarity to lichenicidin VK21 A1 /A2 pro-
ducing gene cluster (Fig. 1d).

Antifungal metabolites fengycin and bacillomycin
Fengycin is an antifungal cyclic lipopeptide with activity 
against C. albicans (Rautela et al. 2014). Bacillus licheni-
formis CP157373- CP157374 showed 100% similarity to 
Bacillus velezenensis FZB42. Moreover, a bacillomycin 
gene cluster of Bacillus licheniformis strain CCASU-B18 
showed 100% similarity to that of B. amyloliquefaciens. 
Bacillomycin is a potent antifungal metabolite produced 
by some bacilli such as B. subtilis and B. amyloliquefa-
ciens as previously reported (Fig. 1e).

LC-MS analysis
The LC/MS analysis of the obtained extract in both posi-
tive and negative ion modes resulted in the detection of 
multiple secondary metabolites that were consistent with 
the antiSMASH genomics analysis. The positive mode 
spectra peaks corresponded to the detection of the fol-
lowing protonated molecules thermoactinoamide B peak 
at m/z 702 (Fig. 2a), thermoactioamide H peak at m/z 686 
(Fig.  2b), thermoactioamide J peak at m/z 680 (Fig.  2c), 
thermoactioamide K peak at m/z 652 (Fig. 2d), bacillibac-
tin peak at m/z 883 ((Fig. 2e), fengycin peak at m/z 1464 
(Fig. 2f ). The negative mode spectra peaks corresponded 
to the detection of the following deprotonated molecules 
thermoactinoamide D peak at m/z 764 (Fig. 3a), thermo-
actioamide I peak at m/z 778 (Fig. 3b), thermoactioamide 
J peak at m/z 678 (Fig. 3c), bacillibactin peak at m/z 881 
(Fig. 3d), lichenysin peak at m/z 1020 (Fig. 3e), fengycin 
peak at m/z 1462 (Fig. 3f ).

Discussion
The decline in the development of new antimicrobials has 
led to one of the most critical public health threats identi-
fied as antimicrobial resistance (Hutchings et al. 2019). 
Plants are hosts to an exceptional class of bacteria known 
as endophytes that have been a valuable source of various 
bioactive compounds (Martinez-Klimova et al. 2017). Endo-
phytes assist plants greatly in overcoming stressful condi-
tions therefore, the most promising endophytes have been 
associated with wild plants due to their ability to withstand 
extremely harsh conditions (Afzal et al. 2019). In the present 
study, a promising endophytic bacterium was isolated and 
identified through whole genomic sequencing as B. licheni-
formis with an accession number CP157373 on the NCBI 
GenBank database and deposited in the Culture Collection 
of Ain Shams University (CCASU) as Bacillus licheniformis 
strain CCASU-B18. This endophyte bacterium was isolated 
from the wild halophyte Bassia scoparia growing in Cairo, 
Egypt. To the best of our knowledge, this is the first report 
to investigate the antimicrobial capability of endophytic 
bacteria isolated from Bassia scoparia.

In this study, the tested isolate showed broad-spectrum 
antimicrobial activity against three standard microbial 
strains including, C. albicans, S. aureus, E. coli, as well as 
four MDR clinical pathogens including E. coli, P. aeru-
ginosa, (A) baumannii, K. pneumoniae and K. terrigena. 
Our results are in accordance with previous studies that 
reported (B) licheniformis as a remarkable species which 
has been associated with various bioactive compounds. 
Such compounds included antibacterial, antifungal, anti-
viral, antibiofilm as well as anticancer agents (Shleeva 
et al. 2023; Alharbi et al. 2024). A study performed on B. 
licheniformis B116 strain isolated from soil showed anti-
bacterial activity against S. aureus, B. cereus, Listeria 
monocytogenes, Micrococcus luteus, E. coli, and Salmonella 
enterica serovar (Guo et al. 2012). Another study on probi-
otic B. licheniformis MCC 2512 identified a new lantibiotic 
known as sublichenin that exhibited bactericidal effects 
against foodborne pathogens, enhancing the biosafety of 
the food system (Halami 2019). Moreover, B. lichenifor-
mis 09IDYM23 strain was reported to display antifungal 
activity as well as antibacterial activity due to the pres-
ence of new glycolipids. B. licheniformis 09IDYM23 had an 
effect on S. aureus, B. subtilis, B. cereus, Salmonella typhi 
serovar, E. coli, and P. aeruginosa in addition to antifungal 
activity against (C) albicans and other plant-related fungi 
(Tareq et al. 2015).

Following the confirmation of B. licheniformis strain 
CCASU-B18 antimicrobial activity, genomic analysis 
provided deeper insights into the biosynthetic potential 
of the isolate. A study conducted showed that antimicro-
bial metabolite genes constitute 5% of the whole Bacil-
lus genus genome (Chen et al. 2007). Interestingly, in the 
present study, genomics analysis revealed the presence of 
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six conserved (100% identity) antimicrobial biosynthetic 
gene clusters in the genome of B. licheniformis strain 
CCASU-B18. The first gene cluster showed 100% similar-
ity to the biosynthetic gene cluster of thermoactinoamide 

A, a bioactive metabolite of Thermoactinomyces sp. AS95. 
This cyclic peptide showed bactericidal activity against 
S. aureus as well as antitumor activity (Teta et al. 2017; 
Della Sala et al. 2020). This gene cluster to the best of our 

Fig. 2  The positive mode spectra peaks of the LC/MS analysis for the following metabolites produced by Bacillus licheniformis strain CCASU-B18: a ther-
moactinoamide B; b thermoactinoamide H; c thermoactinoamide J; d thermoactinoamide K and e bacillibactin, f fengycin
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knowledge, is the first time to be identified in a Bacillus 
licheniformis strain CCASU-B18 and the second time 
to be identified in the genus Bacillus, as stated by a very 
recent study that detected the presence of thermoacti-
noamide A gene cluster in the B. subtilis Tamang Srain 

genome (Prakash Tamang et al. 2024). Analyzing the 
LC/MS spectra, we detected the presence of thermo-
actinoamide B, D, H, I, J, and K in our aqueous extract, 
which are structural variants of themoactinoamide A 
(Della Sala et al. 2020). Therefore, the production of 

Fig. 2  (continue)
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thermoactinoamide derivatives by B. licheniformis strain 
CCASU-B18 has been confirmed by genomic analysis 
and LC-MS analysis.

Moreover, antiSMASH analysis revealed a second biosyn-
thetic gene cluster showing 100% similarity is lichenicidin 

VK21 A1/A2, these peptides were primarily isolated from B. 
licheniformis VK21 strain (Shenkarev et al. 2010). Licheni-
cidin VK21 A1/A2 are ribosomal peptides known as lan-
tipeptides that target cell wall synthesis by targeting lipid 
II precursor. Lantibiotics are known to exhibit activity 

Fig. 3  The negative mode spectra peaks of the LC/MS analysis for the following metabolites produced by Bacillus licheniformis strain CCASU-B18: a ther-
moactinoamide D; b thermoactinoamide I; c thermoactinoamide J; d bacillibactin e lichenysin, f fengycin
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against Gram-positive bacteria such as methicillin-resis-
tant S. aureus (MRSA) and vancomycin-resistant entero-
cocci (VRE) (Breukink and de Kruijff 2006; Chakraborty 
et al. 2019). Previous studies are in line with our study as 
the aqueous extract of B. licheniformis strain CCASU-B18 
showed bactericidal activity against S. aureus ATCC 25,923. 

However, the lichenicidin peptides were not identified in 
the LC/MS as lichenicidin VK21 A1 mass is 3249.51 Da and 
lichenicidin VK21 A2 mass is 3019.36 Da (Shenkarev et al. 
2010). Whereas, the detection limit was 3000 m/z, prevent-
ing the identification of these molecules.

Fig. 3  (continue)
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The bacillibactin class was the third biosynthetic gene 
cluster identified showing 100% similarity to the produc-
ing gene cluster. Bacillibactins are non-ribosomal peptides 
associated with various Bacillus strains that belong to a 
class known as sidrephores which cause low iron availabil-
ity for other pathogens in the surrounding environment 
(Zhou et al. 2018). Bacillibactin E and bacillibactin F were 
identified in a recent study from a Bacillus strain linked to 
a marine sponge (Wu et al. 2021). To the best of our knowl-
edge, this study provided the first evidence that B. licheni-
formis possesses the biosynthetic gene of bacillibactin E 
and bacillibactin F metabolites and they were both detected 
in the LC/MS spectra. Lichenysin is the fourth gene clus-
ter identified showing 100% conservation. This gene has 
always been associated with B.licheniformis (Gudiña and 
Teixeira 2022). Lichenysin is a unique, nontoxic cyclic lipo-
peptide biosurfactant that belongs to a class of biosurfac-
tants known as surfactins. Microbial biosurfactants have 
significant industrial value not only for their high biode-
gradability but also for their antimicrobial and antibiofilm 
properties (Gudiña and Teixeira 2022). Our LC/MS results 
corresponded well with the antiSMASH analysis as licheny-
sin homologs molecular weights were detected from 993 to 
1035 Da (Coronel-León et al. 2016; Zammuto et al. 2023). 
Culture media is key in the expression of lichenysin synthe-
tase and in lichenysin homologs diversity (Gudiña and Teix-
eira 2022; Zammuto et al. 2023) hence, the culture media 
used in our study for fermentation is in line with lichenysin 
production.

Fengycin is another cyclic lipopeptide that is known 
for its fungicidal activity (Rautela et al. 2014). Although 
the fifth gene cluster shows 46% similarity with fengycin, 
however, the crude extract of B. licheniformis CP157373-
CP157374 showed distinct activity against Candida spp. in 
addition to the detection of fengycin homologs in the LC/
MS spectra 1450–1515 Da (Rautela et al. 2014). Fengycin 
homologues containing long acyl chains are known for 
their potent activity against Candida spp. (Rautela et al. 
2014) and that can offer an understanding of our isolate’s 
significant anti-candidal activity. The antiSMASH analysis 
also revealed conservation of the biosynthetic gene clus-
ter of bacillomycin D, however, it was not detected in the 
LC-MS spectra. A previous report confirmed the produc-
tion of bacillomycin D by B. amyloliquefaciens (Gu et al. 
2017)d subtilis (PEYPOUX et al. 1981)which has a potent 
antifungal activity, particularly against the plant-patho-
genic fungus Fusarium graminearum. Wild halophytic 
plants, often considered troublesome in agriculture, can be 
the solution to the AMR crisis. Its resistance to biotic stress 
can be attributed to its ability to harbor unique endo-
phytes. Endophytes, including B. licheniformis, produce 
exceptional secondary metabolites that possess different 
bioactivities of great potential that can be used in the dis-
covery of new molecules (Chaudhary et al. 2022; Kamran 

et al. 2022). This is the first study to report themoactino-
amide-A structural variants,, bacillibactins, lichenysins, 
lichenicidins, fengycin, and bacillomycin from B. licheni-
formis strain CCASU-B18. Future research could explore 
optimizing culture conditions to enhance the production 
of specific antimicrobial metabolites, as well as testing 
these compounds against a broader range of clinically rel-
evant pathogens, particularly those conferring phenotypic 
resistance to existing antimicrobial agents used in clinical 
practice. In conclusion, a promising endophytic bacterium 
was isolated from Bassia scoparia plant and identified as 
B. licheniformis strain CCASU-B18. The respective endo-
phytic bacterium exhibited broad-spectrum antibacterial 
activities against the standard and MDR clinical isolates, as 
well as antifungal activity against the standard C. albicans 
strain. The whole genome sequence, coupled with LC-MS 
analysis confirmed the presence of four major antimicro-
bial metabolites including thermoactinoamide A, bacilli-
bactins, lichenysins, fengycin. However, lichenicidins, and 
bacillomycin were only confirmed by the identification of 
their biosynthetic gene clusters. Future research is highly 
recommended to optimize the culture conditions that will 
be employed to enhance the production of the respective 
antimicrobial metabolites, as well as testing these com-
pounds against a broader range of MDR-resistant patho-
gens for future therapeutic potential. To the best of our 
knowledge, this is the first report to investigate the anti-
microbial capability of endophytic bacteria isolated from 
Bassia scoparia plant.
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