
CT Super-Resolution GAN Constrained by the Identical, 
Residual, and Cycle Learning Ensemble (GAN-CIRCLE)

Chenyu You,
Departments of Bioengineering and Electrical Engineering, Stanford University, Stanford, CA 
94305 USA

Guang Li,
Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA

Yi Zhang [Senior Member, IEEE],
College of Computer Science, Sichuan University, Chengdu 610065, China

Xiaoliu Zhang,
Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52246 USA

Hongming Shan,
Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA

Mengzhou Li,
Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA

Shenghong Ju,
Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda 
Hospital, Medical School, Southeast University, Nanjing 210009, China

Zhen Zhao,
Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda 
Hospital, Medical School, Southeast University, Nanjing 210009, China

Zhuiyang Zhang,
Department of Radiology, Wuxi No.2 People’s Hospital, Wuxi 214000, China

Wenxiang Cong,
Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA

Michael W. Vannier [Member, IEEE],
Department of Radiology, University of Chicago, Chicago, IL 60637 USA.

Punam K. Saha [Senior Member, IEEE],
Department of Electrical and Computer Engineering and Radiology, University of Iowa, Iowa City, 
IA 52246 USA

Eric A. Hoffman [Member, IEEE],

Corresponding authors: Yi Zhang; Ge Wang., yzhang@scu.edu.cn, wangg6@rpi.edu. 

This paper has supplementary downloadable material available at http://ieeexplore.ieee.org., provided by the author.

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

HHS Public Access
Author manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 December 21.

Published in final edited form as:
IEEE Trans Med Imaging. 2020 January ; 39(1): 188–203. doi:10.1109/TMI.2019.2922960.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/


Department of Radiology and Biomedical Engineering, University of Iowa, Iowa City, IA 52246 
USA

Ge Wang [Fellow, IEEE]
Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA

Abstract

In this paper, we present a semi-supervised deep learning approach to accurately recover 

high-resolution (HR) CT images from low-resolution (LR) counterparts. Specifically, with the 

generative adversarial network (GAN) as the building block, we enforce the cycle-consistency in 

terms of the Wasserstein distance to establish a nonlinear end-to-end mapping from noisy LR input 

images to denoised and deblurred HR outputs. We also include the joint constraints in the loss 

function to facilitate structural preservation. In this process, we incorporate deep convolutional 

neural network (CNN), residual learning, and network in network techniques for feature extraction 

and restoration. In contrast to the current trend of increasing network depth and complexity to 

boost the imaging performance, we apply a parallel 1 × 1 CNN to compress the output of the 

hidden layer and optimize the number of layers and the number of filters for each convolutional 

layer. The quantitative and qualitative evaluative results demonstrate that our proposed model is 

accurate, efficient and robust for super-resolution (SR) image restoration from noisy LR input 

images. In particular, we validate our composite SR networks on three large-scale CT datasets, and 

obtain promising results as compared to the other state-of-the-art methods.

Keywords

Computed tomography (CT); super-resolution; noise reduction; deep learning; adversarial 
learning; residual learning

I. INTRODUCTION

X-RAY computed tomography (CT) is one of the most popular medical imaging methods for 

screening, diagnosis, and image-guided intervention [1]. Potentially, high-resolution (HR) 

CT (HRCT) imaging may enhance the fidelity of radiomic features as well. Therefore, 

super-resolution (SR) methods in the CT field are receiving a major attention [2]. The image 

resolution of a CT imaging system is constrained by x-ray focal spot size, detector element 

pitch, reconstruction algorithms, and other factors. While physiological and pathological 

units in human bodies are on an order of 10 microns, the in-plane and through-plane 

resolution of clinical CT systems are on an order of submillimeter or 1 mm [2]. Even 

though the modern CT imaging and visualization software can generate any small voxels, 

the intrinsic resolution is still far lower than what is ideal in important applications such 

as early tumor characterization and coronary artery analysis [3]. Consequently, producing 

HRCT images at a minimum radiation dose level is highly desirable in the CT field.

In general, there are two strategies for improving CT image resolution: (1) hardware-

oriented and (2) computational. First, more sophisticated hardware components can be 

used, including an x-ray tube with a fine focal spot size, detector elements of small pitch, 

and better mechanical precision for CT scanning. These hardware-oriented methods are 
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generally expensive, increase CT system costs and radiation dose, and compromise imaging 

speeds. Especially, it is well known that high radiation dosage in a patient could induce 

genetic damages and cancerous diseases [4]–[6]. As a result, the second type of methods 

for resolution improvement [7]–[11] is more attractive, which is to obtain HRCT images 

from LRCT images. This computational deblurring job is a major challenge, representing 

a seriously ill-posed inverse problem [2], [12]. Our neural network approach proposed in 

this paper is computational, utilizing advanced network architectures. More details are as 

follows.

To improve the signal-to-noise ratio and image resolution, various algorithms were 

proposed. These algorithms can be broadly categorized into the following classes: (1) 

Model-based reconstruction methods [13]–[17]: These techniques explicitly model the 

image degradation process and regularize the reconstruction according to the characteristics 

of projection data. These algorithms promise an optimal image quality under the assumption 

that model-based priors can be effectively imposed; and (2) Learning-based (before 
deep learning) SR methods [18]–[20]: These methods learn a nonlinear mapping from a 

training dataset consisting of paired LR and HR images to recover missing high-frequency 

details. Especially, sparse representation-based approaches have attracted an increasing 

interest since it exhibits strong robustness in preserving image features, suppressing noise 

and artifacts. Dong et al. [20] applied adaptive sparse domain selection and adaptive 

regularization to obtain excellent SR results in terms of both visual perceptions and PSNR. 

Zhang et al. [19] proposed a patch-based technique for SR enhancements of 4D-CT images. 

These results demonstrate that learning-based SR methods can greatly enhance overall 

image quality but outcomes may still lose image subtleties and yield blocky appearance.

Recently, deep learning (DL) has been instrumental for computer vision tasks [21], [22]. 

Hierarchical features and representations derived from a convolutional neural network 

(CNN) are leveraged to enhance the discriminative capacity of visual quality, thus people 

have started developing SR models for natural images [23]–[27]. The key to the success 

of DL-based methods is its independence from explicit imaging models and backup by big 

domain-specific data. The image quality is optimized by learning features in an end-to-end 

manner. More importantly, once a CNN-based SR model is trained, achieving SR is a purely 

feed-forward propagation, which demands a very low computational overhead.

In the medical imaging field, DL is an emerging approach which has exhibited a 

great potential [28]–[30]. For several imaging modalities, DL-based SR methods were 

successfully developed [31]–[38]. Chen et al. [31] proposed a deep densely connected 

super-resolution network to reconstruct HR brain magnetic resonance (MR) images. More 

recently, Yu et al. [32] developed two advanced CNN-based models with a skip connection 

to promote high-frequency textures which are then fused with up-sampled images to produce 

SR images.

Very recently, adversarial learning [39], [40] has become increasingly popular, which 

enables CNNs to learn feature representations from complex data distributions, with 

unprecedented successes. Adversarial learning is performed based on a generative 

adversarial network (GAN), defined as a mini-max game in which two competing players 
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are a generator G and a discriminator D. In the game, G is trained to learn a mapping 

from source images x in a source domain X to target images y in the target domain Y . 

On the other hand, D distinguishes the generated images ŷ and the target images y with a 

binary label. Once well trained, GAN is able to model a high-dimensional distribution of 

target images. Wolterink et al. [41] proposed an unsupervised conditional GAN to optimize 

the nonlinear mapping, successfully enhancing the overall image quality. Also, Mardani 

et al. [38] adopted a Compressed Sensing (CS) based MRI reconstruction method into 

the GAN-based network termed GANCS to reconstruct high-quality MR images. Also, in 

order to ensure data consistency in the learned manifold domain, a least-square penalty was 

applied to the training process.

However, there are still several major limitations in the DL-based SR imaging. First, existing 

supervised DL-based algorithms cannot address blind SR tasks without LR-HR pairs. In 

clinical practice, a limited number of LR and HR CT image pairs makes the supervised 

learning methods impractical since it is infeasible to ask patients to take multiple CT scans 

with additional radiation doses for paired CT images. Thus, it is essential to resort to semi-

supervised learning. Second, utilizing the adversarial strategy can push the generator to learn 

an inter-domain mapping and produce compelling target images [42] but there is a potential 

risk that the network may yield features that are not exhibited in target images due to the 

degeneracy of the mapping. Since the optimal G is capable of translating X to Ŷ  distributed 

identically to y, the GAN network cannot ensure that the noisy input x and predicted output 

ŷ are paired in a meaningful way - there exist many mappings G that may yield the same 

distribution over Ŷ . Consequently, the mapping is highly under-constrained. Furthermore, it 

is undesirable to optimize the adversarial objective in isolation: the model collapse problem 

may occur to map all inputs x to the same output image ŷ [40], [43], [44]. To address 

this issue, Cycle-consistent GANs (cycleGAN) was designed to improve the performance 

of generic GAN, and utilized for SR imaging [27]. Third, other limitations of GANs were 

also pointed out in [45]–[48]. How to steer a GAN learning process is not easy since G 
may collapse into a narrow distribution which cannot represent diverse samples from a real 

data distribution. Also, there is no interpretable metric for training progress. Fourth, as the 

number of layers increases, deep neural networks can derive a hierarchy of increasingly 

more complex and more abstract features. Frequently, to improve the SR imaging capability 

of a network, complex networks are often tried with hundreds of millions of parameters. 

However, given the associated computational overheads, they are hard to use in real-world 

applications. Fifth, local feature parts in the CT image have different scales. This feature 

hierarchy can provide more information to reconstruct images, but most DL-based methods 

[24], [25] neglect to use hierarchical features. Finally, the L2 distance between ŷ and y is 

commonly used for the loss function to guide the training process of the network. However, 

the output optimized by the L2 norm may suffer from over-smoothing as discussed in [49], 

[50], since the L2 distance means to maximize the peak signal-to-noise rate (PSNR) [23].

Motivated by the aforementioned drawbacks, in this study we made major efforts in 

the following aspects. First, we present a novel residual CNN-based network in the 
CycleGAN framework to preserve high-resolution anatomical details with no task-specific 

regularization. Specially, we utilize the cycle-consistency constraint to enforce a strong 
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across-domain consistency between X and Y . Second, to address the training problem 

of GANs [40], [46], we use the Wasserstein distance or “Earth Moving” distance (EM 

distance) instead of the Jensen-Shannon (JS) divergence. Third, inspired by the recent 

work [51], we optimize the network according to several fundamental designing principles 

to alleviate computational overheads [52]–[54], which also helps prevent the network 

from over-fitting. Fourth, we cascade multiple layers to learn highly interpretable and 

disentangled hierarchical features. Moreover, we enable the information flow across skip-

connected layers to prevent gradient vanishing [52]. Finally, we employ the L1 norm 

instead of L2 norm to refine deblurring, and we propose to use a jointly constrained total 

variation-based regularization as well, which leverages the prior information to reduce noise 

with a minimal loss in spatial resolution or anatomical information. Extensive experiments 

with three real datasets demonstrate that our proposed composite network can achieve an 

excellent CT SR imaging performance comparable to or better than that of the state-of-the-

art methods [23]–[26], [55].

II. METHODS

Let us first review the SR problems in the medical imaging field. Then, we introduce the 

proposed adversarial nets framework and also present our SR imaging network architecture. 

Finally, we describe the optimization process.

A. Problem Statement

Let x ∈ X be an input LR image and a matrix y ∈ Y  an output HR image, the conventional 

formulation of the ill-posed linear SR problem [18] can be formulated as

x = SH y + ϵ,

(1)

where SH denote the down-sampling and blurring system matrices, and ϵ the noise and 

other factors. Note that in practice, both the system matrix and not-modeled factors can be 

non-linear, instead of being linear (i.e., neither scalable nor additive).

Our goal is to computationally improve noisy LRCT images obtained under a low-dose 

CT (LDCT) protocol to HRCT images. The main challenges in recovering HRCT images 

can be listed as follows. First, LRCT images contain different or more complex spatial 

variations, correlations and statistical properties than natural images, which limit the SR 

imaging performance of the traditional methods. Second, the noise in raw projection data is 

introduced to the image domain during the reconstruction process, resulting in unique noise 

and artifact patterns. This creates difficulties for algorithms to produce high image quality 

results. Finally, since the sampling and degradation operations are coupled and ill-posed, 

SR tasks cannot be performed beyond a marginal degree using the traditional methods, 

which cannot effectively restore some fine features and suffer from the risk of producing 

a blurry appearance and new artifacts. To address these limitations, here we develop an 

advanced neural network by composing a number of non-linear SR functional blocks for 

SR CT (SRCT) imaging along with the residual module to learn high-frequency details. 
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Then, we perform adversarial learning in a cyclic manner to generate perceptually and 

quantitatively superior SRCT images.

B. Deep Cycle-Consistent Adversarial SRCT Model

1) Cycle-Consistent Adversarial Model: Current DL-based algorithms use feed-

forward CNNs to learn non-linear mappings parametrized by θ, which can be written as:

ŷ = Gθ x .

(2)

In order to obtain a decent ŷ, a suitable loss function must be specified to encourage Gθ to 

generate a SR image based on the training samples so that

θ̂ = arg min
θ i

ℒ ŷi θ , yi ,

(3)

where xi, yi  are paired LRCT and HRCT images for training. To address the limitations 

mentioned in II-A, our cyclic SRCT model is shown in Fig. 1. The proposed model includes 

two generative mappings G:X Y G  and F :Y X F  given training samples xi ∈ X and 

yi ∈ Y . The two mappings G and F  are jointly trained to produce synthesized images in 

a way that confuse the adversarial discriminators DY  and DX respectively, which intend to 

identify whether the output of each generative mapping is real or artificial. i.e., given an 

LRCT image x, G attempts to generate a synthesized image ŷ highly similar to a real image 

y so as to fool DY . In a similar way, DX attempts to discriminate between a reconstructed 

x̂ from F  and a real x. The key idea is that the generators and discriminators are jointly/

alternatively trained to improve their performance metrics synergistically. Thus, we have the 

following optimization problem:

min
G, F

max
DY , DX

ℒGAN G, DY + ℒGAN F , DX .

(4)

To enforce the mappings between the source and target domains and regularize the training 

procedure, our proposed network combines four types of loss functions: adversarial loss 
(adv); cycle-consistency loss (cyc); identity loss (idt); joint sparsifying transform loss 
(jst).

2) Adversarial Loss: For marginal matching [39], we employ adversarial losses to urge 

the generated images to obey the empirical distributions in the source and target domains. 

To improve the training quality, we apply the Wasserstein distance with gradient penalty [56] 

instead of the negative log-likelihood used in [39]. Thus, we have the adversarial objective 

with respect to G:
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min
G

max
DY

ℒWGAN DY , G = Ex[D(G(x))] − Ey[D(y)]

+ λEy[ ∇yD(y) 2 − 1 2],

(5)

where E ⋅  denotes the expectation operator; the first two terms are in terms of the 

Wasserstein estimation, and the third term penalizes the deviation of the gradient norm 

of its input relative to one, y is uniformly sampled along straight lines for pairs of G x  and 

y, and λ is a regularization parameter. A similar adversarial loss minF maxDX ℒWGAN DX, F  is 

defined for marginal matching in the reverse direction.

3) Cycle Consistency Loss: Adversarial training is for marginal matching [39], [40]. 

However, in these earlier studies [43], [57], it was found that using adversarial losses alone 

cannot ensure the learned function can transform a source input successfully to a target 

output. To promote the consistency between F G x  and x, the cycle-consistency loss can be 

express as:

ℒCYC G, F = Ex F G x −x 1

+ Ey G F y − y 1 ,

(6)

where ⋅ 1 denotes the ℒ1 norm. Since the cycle consistency loss encourages F G x ≈ x
and G F y ≈ y, they are referred to as forward cycle consistency and backward cycle 

consistency respectively. The domain adaptation mapping refers to the cycle-reconstruction 
mapping. In effect, it imposes shared-latent space constraints to encourage the source 

content to be preserved during the cycle-reconstruction mapping. In other words, the 

cycle consistency enforces latent codes deviating from the prior distribution in the cycle-

reconstruction mapping. Additionally, the cycle consistency can help prevent the degeneracy 

in adversarial learning [58].

4) Identity Loss: Since an HR image should be a refined version of the LR counterpart, 

it is necessary to use the identity loss to regularize the training procedure [43], [44]. 

Compared with the ℒ2 loss, the ℒ1 loss does not over-penalize large differences or tolerate 

small errors between estimated and target images. Thus, the ℒ1 loss is preferred to alleviate 

the limitations of the ℒ2 loss in this context. Additionally, the ℒ1 loss enjoys the same fast 

convergence speed as that of the ℒ2 loss. The ℒ1 loss is formulated as follows:

ℒIDT G, F = Ey G y − y 1 + Ex F x − x 1 .

(7)

We follow the same training baseline as in [44]; i.e., in the bi-directional mapping, the size 

of G y  (or F x ) is the same as that of y (or x).
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5) Joint Sparsifying Transform Loss: The total variation (TV) has demonstrated the 

state-of-the-art performance in promoting image sparsity and reducing noise in piecewise-

constant images [59], [60]. To express image sparsity, we formulate a nonlinear TV-based 

loss with the joint constraints as follows:

ℒJST G = τ G x TV + 1 − τ y − G x TV,

(8)

where τ is a scaling factor. Intuitively, the above constrained minimization combines 

two components: the first component is used for sparsifying reconstructed images and 

alleviating conspicuous artifacts, and the second helps preserve anatomical characteristics by 

minimizing the difference image y − G x . Essentially, these two components require a joint 

minimization under the bidirectional constraints. In this paper, the control parameter τ was 

set to 0.5. In the case of τ = 1, the ℒJST G  is regarded as the conventional TV loss.

6) Overall Objective Function: In the training process, our proposed network is fine-

tuned in an end-to-end manner to minimize the following overall objective function:

ℒGAN − CIRCLE = ℒWGAN DY , G + ℒWGAN DX, F
+ λ1ℒCYC G, F + λ2ℒIDT G, F
+ λ3ℒJST G ,

(9)

where λ1, λ2, and λ3 are parameters for balancing among different penalties. We call this 

modified cycleGAN as the GAN-CIRCLE as summarized in the title of this paper.

7) Supervised Learning With GAN-CIRCLE: In the case where we have access to 

paired dataset, we can render SRCT problems to train our model in a supervised fashion. 

Given the training paired data from the true joint, i.e., x, y ∼ Pdata X, Y , we can define a 

supervision loss as follows:

ℒSUP G, F = E x, y G x − y 1 + E x, y F y − x 1 .

(10)

C. Network Architecture

Although more layers and larger model size usually result in the performance gain, for real 

application we designed a lightweight model to validate the effectiveness of GAN-CIRCLE. 

The full architecture and details of GAN-CIRCLE are provided in the supplementary 

material.

III. EXPERIMENTS AND RESULTS

We discuss our experiments in this section. We first introduce the datasets we utilize 

and then describe the implementation details and parameter settings in our proposed 
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methods. We also compare our proposed algorithms with the state-of-the-art SR methods 

quantitatively and qualitatively. We further evaluate our results in reference to the state-of-

the-art, and demonstrate the robustness of our methods in the real SR scenarios. Then, 

we present the detailed diagnostic quality assessments from expert radiologists. Next, 

we progressively modify some of key elements to investigate the best trade-off between 

performance and speed, and evaluate the relations between performance and parameters. 

Finally, we further illustrate the effect of the filter size, of the number of layers, and of 

the training patch size with respect to the training and testing datasets. Note that we use 

the default parameters of all the evaluated methods. The source code is released at https://

github.com/charlesyou999648/GAN-CIRCLE.

A. Training Datasets

In this study, we used two high-quality sets of training images to demonstrate the fidelity 

and robustness of the proposed GAN-CIRCLE. As shown in Figs. 2–5, these two datasets 

are of very different characteristics. Note the descriptions of detailed data preprocessing are 

provided in the supplementary material.

1) Tibia Dataset: This micro-CT image dataset reflects twenty-five fresh-frozen 

cadaveric ankle specimens which were removed at mid-tibia from 17 body donors (mean 

age at death ± SD: 79.6 ± 13.2 Y; 9 female). After the soft tissue were removed and the tibia 

was dislocated from the ankle joint, each specimen was scanned on a Siemens microCAT 

II (Preclinical Solutions, Knoxville, TN, USA) in the cone beam imaging geometry. The 

micro-CT parameters are briefly summarized as follows: a tube voltage 100 kV, a tube 

current 200 mAs, 720 projections over a range of 220 degrees, an exposure time of 1.0 sec 

per projection, and the filter backprojection (FBP) method was utilized to produce 28.8 μm 
isotropic voxels. Since CT images are not isotropic in each direction, for convenience of 

our previous analysis [61], we convert micro-CT images to 150 μm using a windowed sync 

interpolation method. In this study, the micro-CT images we utilized as HR images were 

prepared at 150 μm voxel size, as the target for SR imaging based of the corresponding 

LR images at 300 μm voxel size. The full description is in [61]. We target 1X resolution 

improvement.

2) Abdominal Dataset: This clinical dataset is authorized by Mayo Clinic for 2016 
NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge. The dataset contains 5, 936 full 

dose CT images from 10 patients with the reconstruction interval and slice thickness of 0.8 

mm and 1.0 mm respectively. The original CT images were generated by multidetector row 

CT (MDCT) with the image size of 512 × 512. The projection data is from 2, 304 views per 

scan. The HR images, with voxel size 0.74 × 0.74 × 0.80 mm3, were reconstructed using the 

FBP method from all 2, 304 projection views. More detailed information of the dataset is 

given in [62].

B. Performance Comparison

In this study, we compared the proposed GAN-CIRCLE with the state-of-the-art methods: 

adjusted anchored neighborhood regression A+ [55], FSRCNN [24], ESPCN [26], LapSRN 

[25], and SRGAN [23]. For clarity, we categorized the methods into the following 
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classes: the interpolation-based, dictionary-based, PSNR-oriented, and GAN-based methods. 

Especially, we trained the publicly available FSRCNN, ESPCN, LapSRN, and SRGAN with 

our paired LR and HR images. To demonstrate the effectiveness of the DL-based methods, 

we first denoised the input LR images and then super-resolved the denoised CT image using 

the typical method A+. BM3D [63] is one of the classic image domain denoising algorithms, 

which is efficient and powerful. Thus, we preprocessed the noisy LRCT images with BMD3, 

and then super-solved the denoised images by A+.

We evaluated three variations of the proposed method: (1) G-Forward (G-Fwd), which 

is the forward generator of GAN-CIRCLE, (2) G-Adversarial (G-Adv), which uses the 

adversarial learning strategy, and (3) the full-fledged GAN-CIRCLE. To emphasize the 

effectiveness of the GAN-CIRCLE structure, we first trained the three models using 

the supervised learning strategy, and then trained our proposed GAN-CIRCLE in the 

semi-supervised scenario (GAN-CIRCLEs), and finally implement GAN-CIRCLE in the 

unsupervised manner (GAN-CIRCLEu). In the semi-supervised settings, two datasets were 

created separately by randomly splitting the dataset into the paired and unpaired dataset with 

respect to three variants: 100%, 50%, and 0% paired. To better evaluate the performance of 

each method, we use the same size of the dataset for training and testing.

We validated the SR performance in terms of three widely-used image quality metrics: Peak 

signal-to-noise ratio (PSNR), Structural Similarity (SSIM) [64], and Information Fidelity 

Criterion (IFC) [65]. Through extensive experiments, we compared all the above-mentioned 

methods on the two benchmark datasets described in Section III-A. Due to the space limit, 

we present network architecture details, and the implementation details are presented in the 

supplementary material.

C. Experimental Results With the Tibia Dataset

We evaluated the proposed algorithms against the state-of-the-art algorithms on the tibia 

dataset. We present typical results in Fig. 2. It can be seen that our proposed GAN-CIRCLE 

recovers more fine subtle details and captures more anatomical information in Fig. 3. It 

is worth mentioning that Fig. 2 shows that there are severe distortions of the original 

images but SRGAN generates compelling results in Figs. 5–8, which indicate VGG network 

is a task-specific network which can generate images with excellent image quality. We 

argue that the possible reason is that the VGG network [66] is a pre-trained CNN-based 

network based on natural images with structural characteristic correlated with the content 

of medical images [67]. Fig. 3 shows that the proposed GAN-CIRCLEs can predict images 

with sharper boundaries and richer textures than GAN-CIRCLEu which learns additional 

anatomical information from the unpaired samples. The difference images are shown in the 

Figs. 4. The difference images were generated by subtracting the generated image from the 

reference image. We compared our method with adjusted anchored neighborhood regression 

A+ [55], FSRCNN [24], ESPCN [26], LapSRN [25], SRGAN [23], G-Forward (G-Fwd), 

G-Adversarial (G-Adv). The quantitative results are in Table I. The results demonstrate 

that the G-Forward achieves the highest scores using the evaluation metrics, PSNR and 

SSIM, which outperforms all other methods. However, it has been pointed out in [68], [69] 

that high PSNR and SSIM values cannot guarantee a visually favorable result. Non-GAN 
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based methods (FSRCNN, ESPCN, LapSRN) may fail to recover some fine structure for 

diagnostic evaluation, such as shown by zoomed boxes in Fig. 3. Quantitatively, GAN-

CIRCLE achieves the second best values in terms of SSIM and IFC. It has been pointed 

out in [70] that IFC value is correlated well with the human perception of SR images. Our 

GAN-CIRCLEs obtained comparable results qualitatively and quantitatively. Table I shows 

that the proposed semi-supervised method performs similarly compared to the fully 
supervised methods on the tibia dataset. In general, our proposed GAN-CIRCLE can 

generate more pleasant results with sharper image contents.

D. Experimental Results on the Abdominal Dataset

We further compared the above-mentioned algorithms on the abdominal benchmark dataset. 

A similar trend can be observed on this dataset. Our proposed GAN-CIRCLE can preserve 

better anatomical informations and more clearly visualize the portal vein as shown in Fig. 

5. These results demonstrate that PSNR-oriented methods (FSRCNN, ESPCN, LapSRN) 

can significantly suppress the noise and artifacts. However, it suffers from low image 

quality as judged by the human observer since it assumes that the impact of noise is 

independent of local image features, while the sensitivity of the Human Visual System 

(HVS) to noise depends on local contrast, intensity and structural variations. Fig. 5 displays 

the LRCT images processed by GAN-based methods (SRGAN, G-Adv, GAN-CIRCLE, 

GAN-CIRCLEs, and GAN-CIRCLEu) with improved structural identification. It can also 

observed that the GAN-based models also introduce strong noise into results. For example, 

there exist tiny artifacts on the results of GAN-CIRCLEu. As the SR results shown in 

Fig. 5, our proposed approaches (GAN-CIRCLE, GAN-CIRCLEs) are capable of retaining 

high-frequency details to reconstruct more realistic images with relatively lower noise 

compared with the other GAN-based methods (G-Adv, SRGAN). In the Figs. 6, we showed 

the difference images by subtracting the generated image from the reference image. We 

compared our method with adjusted anchored neighborhood regression A+ [55], FSRCNN 

[24], ESPCN [26], LapSRN [25], SRGAN [23], G-Forward (G-Fwd), G-Adversarial (G-

Adv). Table I show that G-Fwd achieves the best performance in PSNR. Our proposed 

methods GAN-CIRCLE and GAN-CIRCLEs both obtain the pleasing results in terms of 

SSIM and IFC. In other words, the results show that the proposed GAN-CIRCLE and 

GAN-CIRCLEs generate more visually pleasant results with sharper edges on the abdominal 

dataset than the competing state-of-the-art methods.

E. Super-Resolving Clinical Images

We analyzed the performance of the SR methods in the simulated SRCT scenarios in 

Sections III-C and III-D. These experimental results show that the DL-based methods are 

very effective in addressing the ill-posed SRCT problems with two significant features. First, 
SRCT aims at recovering a HRCT image from a LRCT images under a low-dose protocol. 

Second, most DL-based methods assume the paired LRCT images and HRCT images are 

matched, an assumption which is likely to be violated in clinical practice. In other words, 

the above-evaluated datasets were simulated, and thus the fully supervised algorithms can 

easily cope with SRCT tasks, with exactly matched training samples. Our further goal is 

to derive the semi-supervised scheme to handle unmatched/unpaired data with a relative 

lack of matched/paired data to address real SRCT tasks. In this subsection, we demonstrate 

You et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a strong capability of the proposed methods in the real applications using a small amount 
of mismatched paired LRCT and HRCT images as well as a high flexibility of adapting to 

various noise distributions.

1) Practical SRCT Implementation Details: We first obtained 3 LRCT and HRCT 

image pairs using a deceased mouse on the same scanner with two scanning protocols. The 

micro-CT parameters are as follows: X-ray source circular scanning, 60 kVp, 134 mAs, 

720 projections over a range of 360 degrees, exposure 50 ms per projection, and the micro-

CT images were reconstructed using the Feldkamp-Davis-Kress (FDK) algorithm [71] in 

practice: HRCT image size 1450 × 1450, 600 slices at 24 μm isotropic voxel size, and the 

LRCT image size 725 × 725, 300 slices at 48 μm isotropic voxel size. Then, we compared 

with the state-of-the-art super-resolution methods. Since the real data are unmatched, we 

accordingly evaluated our proposed GAN-CIRCLEs and GAN-CIRCLEu networks for 1X 

resolution improvement.

2) Comparison With the State-of-the-Art Methods: The quantitative results were 

summarized for all the involved methods in Table I. The PSNR-oriented approaches, such 

as FSRCNN, ESPCN, LapSRN, and our G-Fwd, yield higher PSNR and SSIM values than 

the GAN-based methods. It is not surprising that the PSNR-oriented methods obtained 

favorable PSNR values since their goal is to minimize per-pixel distance to the ground 

truth. However, our GAN-CIRCLEs and GAN-CIRCLEu achieved the highest IFC among 

all the SR methods. Our method GAN-CIRCLEs obtained the second best results in 

term of SSIM. The visual comparisons are given in Figs. 7 and 8. To demonstrate the 

robustness of our methods, we examined anatomical features in the lung regions and the 

bone structures of the mice, as shown in Figs. 7 and 8 respectively. It is observed that the 

GAN-based approaches performed favorably over the PSNR-oriented methods in term of 

perceptual quality as illustrated in Figs. 7 and 8. Fig. 7 confirms that the PSNR-oriented 

methods produced blurry results especially in the lung regions, while the GAN-based 

methods restored anatomical contents satisfactorily. In Fig. 8, it is notable that our methods 

GAN-CIRCLEs and GAN-CIRCLEu performed better than the other methods in terms of 

recovering structural information and preserving edges. These SR results demonstrate that 

our proposed methods can provide better visualization of bone and lung microarchitecture 

with sharp edge and rich texture.

F. Diagnostic Quality Assessment

We invited three board-certified radiologists with mean clinical CT experience of 12.3 

years to perform independent qualitative image analysis on 10 sets of images from two 

benchmark dataset (Tibia and Abdominal Dataset). Each set includes the same image slice 

but generated using different methods. We label HRCT and LRCT images in each set as 

reference. The 10 sets of images from two datasets were randomized and deidentified so 

that the radiologists were blind to the post-processing algorithms. Image sharpness, image 

noise, contrast resolution, diagnostic acceptability, and overall image quality were graded on 

a scale from 1 (worst) to 5 (best). A score of 1 refers to a ‘non-diagnostic’ image, while 

a score of 5 means an ‘excellent’ diagnostic image quality. The mean scores with their 

standard deviation are presented in Table III. The radiologists confirmed that GAN-based 
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methods (G-Adv, SRGAN, GAN-CIRCLE, GAN-CIRCLEs and GAN-CIRCLEu) provide 

sharper images with better texture details, while PSNR-oriented algorithms (FSRCNN, 

ESPCN, LapSRN, G-Fwd) give the higher noise suppression scores. Table III shows 

that our proposed GAN-CIRCLE and GAN-CIRCLEs achieve comparable results, while 

outperforming the other methods in terms of image sharpness, contrast resolution, diagnostic 

acceptability, and overall image quality.

G. Model and Performance Trade-Offs

1) Filter Size: Here we compared the GAN-CIRCLE network sensitivities with respect to 

different filter sizes. First, we fixed the filter size of the reconstruction network and enlarged 

the filter size of the feature extraction network to 5×5 and 7×7 respectively. Note that all 

the other settings remained the same as that in Supplementary Material Section I–B. The 

average PSNR with the filter size 3 × 3 is slightly higher than that with the filter size 5 × 5 

and 7 × 7 shown in Fig. 9a. In general, the reasonably larger filter size could help capture 

larger structural features, leading to a performance gain [72]. In the case of the Tibia dataset, 

utilizing filter size 3 × 3 is sufficient to grasp small structural information. Considering the 

tiny structural texture with small pixel size in the case of bone images, the filter size 3 × 3 is 

already good enough.

2) Number of Layers: Recent studies reported in [72], [73] suggest that training a 

network could benefit from increasing the network depth moderately. Here we evaluated 

different network depths by adjusting the number of non-linear mapping layers in the 

feature extraction network to 6, 9, 12, 15 layers respectively in the case of the Tibia 

dataset. Note that all the other settings remained the same as that in Supplementary Material 

Section I–B, and our proposed GAN-CIRCLE used the twelve-layer network. It can be 

seen in Fig. 9b that the twelve-layer network is superior to the six-layer and nine-layer 

networks, respectively. Furthermore, it is found that deeper networks cannot always do 

better. Specifically, the performance of the fifteen-layer network did not outperform the 

twelve-layer network. The observation that “deeper” does not mean “better” was also 

reported in [74], [75]. Therefore, we have selected the twelve-layer networks in this study.

3) Training Patch Size: In general, the benefit of training a CNN-based network with 

patches is two-fold. First, a properly truncated receptive field can reduce the complexity of 

the network while still capturing the richness of local anatomical information [66], [76], 

[77]. Second, the use of patches significantly increases the number of training samples [41], 

[77]. Here we respectively experimented with patch sizes 48 × 48, 64×64, 80×80, and 96×96 

respectively on the Tibia dataset. The results are shown in Fig. 9c. It is observed that large 

training patch sizes do not show any improvement in term of the average PSNR. As a 

trade-off, we used the patch size 64 × 64 in our investigation.

IV. DISCUSSIONS

SR imaging promises multiple benefits in medical applications; i.e., depicting bony details, 

lung structures, and implanted stents, and potentially enhancing radiomics analysis. As a 
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result, X-ray computed tomography can provide compelling practical benefit in biological 

evaluation.

High resolution micro-CT is well-suited for bone imaging. Osteoporosis, characterized by 

reduced bone density and structural degeneration of bone, greatly diminishes bone strength 

and increases the risk of fracture [78]. Histologic studies have convincingly demonstrated 

that bone micro-structural properties are strong determinants of bone strength and fracture 

risk [79]–[81]. Modern whole-body CT technologies, benefitted with high spatial resolution, 

ultra-high speed scanning, relatively-low dose radiation, and large scan length, allows 

quantitative characterization of bone micro-structure [61]. However, the state-of-the-art CT 

imaging technologies only allow the spatial resolution comparable or slightly higher than 

human trabecular bone thickness (100 − 200 μm6 [82]) leading to fuzzy representations of 

individual trabecular bone micro-structure with significant partial volume effects that add 

significant errors in measurements and interpretations. The spatial resolution improvements 

in bone micro-structural representation will largely reduce such errors and improve the 

generalizability of bone micro-structural measures from multi-vendor CT scanners by 

homogenizing spatial resolution.

Besides revealing micro-architecture, CT scans of the abdomen and pelvis are diagnostic 

imaging tests used to help detect diseases of the small bowel and colon, kidney stone, and 

other internal organs, and are often used to determine the cause of unexplained symptoms. 

With rising concerns over increased lifetime risk of cancer by radiation dose associated 

with CT, several studies have assessed manipulation of scanning parameters and newer 

technologic developments as well as the adoption of advanced reconstruction techniques for 

radiation dose reduction [83]–[85]. However, in practice, the physical constraints of system 

hardware components and radiation dose considerations constrain the imaging performance, 

and computational means are necessary to optimize image resolution. For the same reason, 

high-quality/high-dose CT images are not often available, which means that there are often 

not enough paired data to train a hierarchical deep generative model.

Our results have suggested an interesting topic on how to utilize unpaired data so that the 

imaging performance could be improved. In this regard, the use of the adversarial learning 

as the regularization term for SR imaging is a new mechanism to capture anatomical 

information. In this work, we have confirmed the following expected performance order: 

GAN-CIRCLE > GAN-CIRCLEs > GAN-CIRCLEu, and even in the unsupervised context 

we still have decent deblurring effects. Our proposed semi-supervised learning method 

has achieved the compelling results with abdominal and mouse datasets. Specifically, as 

listed in Tables I, II, and III, the proposed semi-supervised methods achieved promising 

quantitative results. However, it should be noted that the existing GAN-based methods 

introduce additional noise to the results, as seen in Section III-C and III-D. To cope with 

this limitation, we have incorporated the cycle-consistency so that the network can learn 

a complex deterministic mapping to improve image quality. The enforcement of identity 

and supervision allows the model to master more latent structural information to improve 

image resolution. Also, we have used the Wasserstein distance to stabilize the GAN training 

process. Moreover, typical prior studies used complex inference to learn a hierarchy of 

latent variables for HR imaging, which is hard to be utilized in medical applications. Thus, 
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we have designed an efficient CNN-based network with skip-connection and network in 

network techniques. In the feature extraction network, we have optimized the network 

structures and reduced the computational complexity by applying a small amount of filters 

in each Conv layer and utilizing the ensemble learning model. Both local and global features 

are cascaded through skip connections before being fed into the restoration/reconstruction 

network.

Although our model has achieved compelling results, there still exist some limitations. 

First, the proposed GAN-CIRCLE requires much longer training time than other standard 

GAN-based methods, which generally requires 1–2 days. Future work in this aspect should 

consider more principled ways of designing more efficient architectures that allow for 

learning more complex structural features with less complex networks at less computational 

cost and lower model complexity. Second, although our proposed model can generate more 

plausible details and better anatomical details, all subtle structures may not be always 

faithfully recovered. It has been also observed that the recent literature [86] mentions 

that the Wasserstein distance may yield the biased sample gradients, is subject to the risk 

of incorrect minimum, and not well suitable for stochastic gradient descent searching. 

In the future, experiments with the variants of GANs are highly recommended. Finally, 

we notice that the network with the adversarial training can generate more realistic 

images. However, the restored images cannot be uniformly consistent to the original high-

resolution images. Also, the recent literature [87]demonstrates that CycleGAN model learn 

to hide reconstruction details in imperceptible noise (high-frequency signal). This could 

theoretically be avoided by strictly enforcing the latent space assumption with added losses. 

It is also mentioned that the cycle-consistency loss may make the CycleGAN network 

vulnerable to adversarial attacks. Increasing the domain entropy with additional hidden 

variables is recommended. To make further progress, we may also undertake efforts to 

add more constraints such as the sinogram consistence and the low-dimensional manifold 

constraint to decipher the relationship between noise, blurry appearances of images and the 

ground truth, and even develop an adaptive and/or task-specific loss function.

V. CONCLUSIONS

In this paper, we have established a cycle Wasserstein regression adversarial training 

framework for CT SR imaging. Aided by unpaired data, our approach learns complex 

structured features more effectively with a limited amount of paired data. At a low 

computational cost, the proposed network G-Forward can achieve the significant SR 

gain. In general, the proposed GAN-CIRCLE has produced promising results in terms of 

preserving anatomical information and suppressing image noise in a purely supervised and 

semi-supervised learning fashion. Visual evaluations by the expert radiologists confirm that 

our proposed GAN-CIRCLE networks have brought superior diagnostic quality, which is 

consistent with systematic quantitative evaluations in terms of traditional image quality 

measures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Proposed GAN framework for SR CT imaging. Our approach uses two generators G
and F , and the corresponding adversarial discriminators DX and DY  respectively, where X
denotes a LR CT image and Y  is the HR CT counterpart. To regularize the training and 

deblurring processes, we utilize the generator-adversarial loss (adv), cycle-consistency loss 

(cyc), identity loss (idt), and joint sparsifying transform loss (jst) synergistically. In the 

supervised/semi-supervised mode, we also apply a supervision loss (sup) on G and F . For 

brevity, we denote G:X Y  and F :Y X as G and F  respectively. * denotes that the loss is 

only trained in the supervised fashion.
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Fig. 2. 
Visual comparison of SRCT Case 1 from the Tibia dataset. The restored bony structures are 

shown in the red and yellow boxes in Fig. 3. The display window is [−900, 2000] HU.
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Fig. 3. 
Zoomed regions of interest (ROIs) marked by the red rectangle in Fig. 2. The restored image 

with GAN-CIRCLE reveals subtle structures better than the other variations of the proposed 

neural network, especially in the marked regions. The display window is [−900, 2000] HU.
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Fig. 4. 
Absolute difference images relative to the original HR image from the Tibia dataset. The 

display window is [0, 900] HU.
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Fig. 5. 
Visual comparison of SRCT Case 2 from the abdominal dataset. The display window is 

[−160, 240] HU. The restored anatomical features are shown in the red and yellow boxes. 

(Zoomed for visual clarity).
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Fig. 6. 
Absolute difference images relative to the original HR image from the abdominal dataset. 

The display window is [100, 280] HU.
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Fig. 7. 
Visual comparison of SRCT Case 3 from the real dataset. The display window is [139, 1913] 

HU. The restored anatomical features are shown in the red and yellow boxes. (Zoomed for 
visual clarity).
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Fig. 8. 
Visual comparison of SRCT Case 4 from the real dataset. The display window is [139, 1913] 

HU. The restored bony structures are shown in the red and yellow boxes. (Zoomed for 
visual clarity).
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Fig. 9. 
The test convergence curve of GAN-CIRCLE on the Tibia dataset. (a) The influence of 

different filter sizes, (b) The influence of different layers, (c) The influence of different 

training patch sizes, and (d) Average PSNR results over GAN-CIRCLE on the Tibia dataset 

with respect to the parameters λ1, λ2, λ3. Note that the parameter λ = 0 (λ = ∞) indicates 

that the SR model was only optimized with respect to the corresponding loss.
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