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Evaluation of the parameters such as tumor microenvironment (TME) and tumor budding (TB) is one of the most
important steps in colorectal cancer (CRC) diagnosis and cancer development prognosis. In recent years, artificial in-
telligence (AI) has been successfully used to solve such problems. In this paper,we summarize the latest data on the use
of artificial intelligence to predict tumor microenvironment and tumor budding in histological scans of patients with
colorectal cancer. We performed a systematic literature search using 2 databases (Medline and Scopus) with the
following search terms: ("tumor microenvironment" OR "tumor budding") AND ("colorectal cancer" OR CRC) AND
("artificial intelligence" OR "machine learning " OR "deep learning"). During the analysis, we gathered from the articles
performance scores such as sensitivity, specificity, and accuracy of identifying TME and TB using artificial intelligence.
The systematic review showed that machine learning and deep learning successfully cope with the prediction of these
parameters. The highest accuracy values in TB and TME prediction were 97.7% and 97.3%, respectively. This review
led us to the conclusion that AI platforms can already be used as diagnostic aids, which will greatly facilitate the work
of pathologists in detection and estimation of TB and TMEas instruments and second-opinion services. A key limitation
in writing this systematic review was the heterogeneous use of performance metrics for machine learning models by
different authors, as well as relatively small datasets used in some studies.
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Introduction

One of themost important problems in oncopathology is the accuracy of
diagnosis. A correct diagnosis determines the prognosis and the most effec-
tive patient treatment trajectory (PTT). TNM classification system is used as
a standard for stratification of colorectal cancer patients into prognostic
groups. However, survival rate is heterogeneous within the same tumor
stages. This compels us to use additional predictive markers.1,2 Among
the diagnostic methods, biopsy is a widely used and recommended proce-
dure for cancer diagnosis. Histopathological evaluation serves as the basis
for the definitive diagnosis of CRC, and routine tissue sections stained
with hematoxylin and eosin (H&E) are indispensable for predicting patient
life expectancy and choosing treatment tactics. There are several significant
prognostic factors that a pathologist should pay attention to when studying
tissue specimens. This causes considerable difficulty among pathologists
and results in a lack of consensus on interpretations of these parameters.
One of these factors is a detailed assessment of the tumor microenviron-
ment (TME) and the presence of tumor buds. Tumor budding (TB) is a
single tumor cell or a cell cluster consisting of 4 tumor cells or less. TB is
counted on H&E and is assessed in 1 hotspot (in a field measuring
0.785 mm2) at the invasive front. There are peritumoral budding (PTB,
tumor buds at the tumor front) and intratumoral budding (ITB, tumor
buds in the tumor center). PTB could only be evaluated by intestinal resec-
tion specimens, and ITB could also be evaluated by biopsy. ITB assessment
in pre-operative biopsies could help to select patients for neo-adjuvant ther-
apy and could potentially predict tumor regression.2 TB is an independent
predictor of rapid local spread, predictor of lymph node metastases, predic-
tor of survival in stage II CRC, and worsening patient prognosis.2,3,4 Tumor
budding is a phenomenon resulting from the loss of differentiation, uncou-
pling, and acquisition of more aggressive features of cells in the invasive
tumor margin.2,5 In this regard, the International Tumor Budding Consen-
sus Conference decided to include TB in guidelines and protocols for
colorectal cancer reporting.2

TME is characterized by a complex interaction between tumor cells,
immune cells as well as stromal cells. This interaction, among other things,
determines the malignant potential, the rate of progression, and the ability
to control the cancer development in each patient.6,7 The TME includes
parameters such as lipid microenvironment,8 tumor cells, blood vessels,
the extracellular matrix, fibroblasts, lymphocytes, bone marrow-derived
suppressor cells, signaling molecules,9 myxoid stroma, and evaluating the
tumor–stroma ratio (TSR). Adipocytes as the main component of the lipid
microenvironment can act as energy providers and metabolic regulators.
Thus, lipidmicroenvironment is able to promote the proliferation, invasion,
and resistance to therapy of CRC.8 Accumulation of fibroblasts and
myofibroblasts in tumor tissue leads to excessive production of collagenous
extracellular matrix—desmoplasia. Desmoplasia is also connected with
poor prognosis and resistance to therapy. Rapid proliferation of tumor
cells leads to ischemia and hypoxia. Ischemic and hypoxic cancer cells
secrete vascular endothelial growth factor (VEGF). Angiogenesis promotes
the migration of tumor cells into blood vessels, metastasis, and poor prog-
nosis. Tumor cells can induce normal fibroblasts to differentiate into
cancer-associated fibroblasts (CAF). CAF secrets variety of growth factors,
chemokines, cytokines, and metalloproteinases. It stimulates tumor
growth, angiogenesis, invasion, and metastasis. Lymphocytes are the
main immune cells of tumors—T- and B cells inhibit tumor growth.9 On
2

the contrary, tumors with extensive stromal component have poor progno-
sis. TSR is an independent poor prognostic factor in stage I–III CRC.10 High
myxoid stromal ratio connected with worse prognostic outcomes in CRC.11

Currently, therapeutic targets for CRC are inhibition VEGF (antiangiogenic
therapy), inhibition immune checkpoint (restore immune function
lymphocytes), adoptive cell therapy (utilizing the immune cells to achieve
anti-tumor effects). There are therapeutic targets such as tumor-derived
exosomes therapy, cancer vaccine, and oncolytic virus therapy. However,
the listed issues require further study.9 Additionally, it is worth saying
that a salient feature of mesenchymal CRC is the accumulation of
hyaluronan and it predicts poor survival. Several parameters can be used
to assess TME. In reviewed studies, we found that peritumoral stroma
(PTS) score,12 deep stroma score,13 adipocytes,8 CD8+ T cells and tumoral
spatial heterogeneity,14 tumor infiltration phenotypes (TIPs),15 tumor-
infiltrating lymphocytes (TILs),10,17 and tumor–stroma ratios (TSR)17,18

were used. AI technologies have enormous potential for use in assessing
and evaluating TME. Computer vision can automate or semi-automate
this process and also provide a second opinion for physicians.

Since a reliable objective morphological conclusion is crucial for the
following stratification of patients and optimal treatment trajectory, an
automatedmethod that increases the precision and objectivity of amorpho-
logical study would successfully fill this niche. The advent of validated
gold-standard for CRC diagnosis would significantly increase the detection
rate and standardization, making pathomorphological conclusions more
objective. In recent years, artificial intelligence capabilities have been suc-
cessfully used to solve such problems.19,20 AI analysis of a digital image can
reduce the time spent by pathologists on CRC diagnosis and eliminate or at
least reduce the differences in TB scores occurring among pathologists.21

In this study, we analyzed how artificial intelligence technologies are
used to identify TME and TB and how well is this topic covered in modern
literature.

Materials and methods

Search strategy, inclusion criteria

This systematic review followed the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) guidelines (see PRISMA
statements, Fig. 1). The detailed search strategy and review protocol has
been published in Prospero (ID CRD42022337237). The scope of the
review according to PICO process (Patient, Intervention, Comparison,
Outcomes) is as follows:

P− patients with colorectal cancer, in whom artificial intelligence was
used for the identification of tumor microenvironment and tumor budding.

I − identification of tumor microenvironment and tumor budding.
C − tissue histology.
O − identification of tumor microenvironment and tumor budding

using artificial intelligence.
We performed a systematic literature search using 2 databases (Medline

(PubMed) and Scopus) with the following search terms: ("tumormicroenvi-
ronment" OR "tumor budding") AND ("colorectal cancer" OR CRC) AND
("artificial intelligence" OR "machine learning" OR "deep learning"). At
first, 2 authors (OL and AK) independently reviewed headings and abstracts
to exclude irrelevant publications such as reviews, comments, papers in lan-
guages other than English, and articles which dealt with other malignancy.



Fig. 1. PRISMA statement.
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In case of disagreement between the authors, articles were retained for the
following step of selection. Then, the same 2 authors excluded articles that
were focused on artificial intelligence data without identifying TME or TB.
In case of disagreement, OL and AK sought to justify their decision to re-
solve the disagreement. In case of an unsuccessful attempt, a senior re-
searcher (TD) made the final decision. Our systematic review includes all
original articles from 2018 to August 2022 containing data on artificial in-
telligence for TME and TB identification in colorectal cancer. The following
raw data were extracted manually from the articles: number of patients,
methodology of TME and TB identification, sensitivity, and specificity of
a method. The experts of the Laboratory for Medical Decision Support
Based on Artificial Intelligence analyzed AI technologies described in the
articles based on the presented metric values including accuracy, sensitiv-
ity, and specificity, if they were stated in the studies. As a result, key fea-
tures of AI technologies, the most effective methods and approaches to
their development, as well as their areas of application for TB and TME
identification were defined.

Risk of bias and applicability concerns of the included studies were
assessed independently by 2 authors (OL and AK) using the Quality Assess-
ment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. In case of
disagreement between the authors, a senior researcher (TD) made the
final decision.

The primary outcome was evaluation of the artificial intelligence
applicability and metrics for tumor microenvironment and tumor budding
identification in CRC.

The secondary outcome was the analysis of used AI models’ architec-
tures in tumormicroenvironment and tumor budding identification in CRC.

Results

After applying all selection criteria, the final sample included 15 articles
related to the CRC. 7 of them investigated tumor budding16,21-26 and 9
tumormicroenvironment.8,10,12-18 All studieswere retrospective. The levels
of evidence articles were assessed using the Oxford Center for Evidence-
Based Medicine scale: 1b13,23; 2b.8,10,12,14-18,21,22,24-26 The median number
of CRC cases across all studies was 307. Most frequently, the study was
3

performed with H&E stain.8,10,12,13,16,18,22,25 However, some studies have
also included immunohistochemical (IHC)methods. TBwas assessed by an-
tibodies to pan-cytokeratin (PanCK),23,26 CK8-18,21 and cytokeratin.24

TME was assessed by antibodies to Ki67, CD3,15,17 CD4,15 and
CD8.14,15,17 According to the QUADAS-2 scale, the risk of bias in all studies
was assessed as low.

There was no uniformity in the reported results of predicting TB and
TME using AI.

This article provides a systematic reviewof publications on the use of ar-
tificial intelligence technologies to identify the tumor microenvironment
and tumor budding in colorectal cancer. Selected studies were published
between 2018 and 2022 and reflect current trends in AI application,
machine learning, and deep learning. All work focuses on the development
of machine learning models to identify and evaluate certain biomarkers for
diagnosing and predicting the development of colorectal cancer. Informa-
tion about the models described in the analyzed articles is presented in
Tables 1 (TB) and 2 (TME).

TB assessment

In this study, we summarized the data on the existence prediction of TB
and predictive value of TB scores (if these data were provided to the
authors).

TB assessment using convolutional neural networks (CNN) in the ana-
lyzed articles was performed by various methods. Banaeeyan et al. in
their study report an average intersection over union of 0.11 for TB, with
mean and weighted IoU 0.49 and 0.83 respectively ("the IoU metric mea-
sures the number of pixels common between the target and prediction
masks divided by the total number of pixels present across both
masks").22 Bergler et al. report 0.068 and 0.967 for precision and sensitivity
of TB estimated by AI respectively. At the same time, the minimum number
of false-negative and false-positive results during data validation were 144
and 58 131, respectively.23 In their study, Bokhorst et al. achieved a maxi-
mum score of F1-score of 0.36, with a recall of 0.72 when compared to the
hand-annotated TB.21 Performance measures for TB assessment in Lu et al.
study were the following: accuracy rate—0.89, precision—0.855,
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sensitivity—0.94, specificity—0.83, and negative-predictive value—0.933.
The sensitivity of AI model in assessing TB was 0.94, which was slightly
lower than that of pathologists (0.9765), however, this correlation was
not statistically significant (P=.031).25 When comparing automatic TB as-
sessment with the manual one, Weis et al. achieved an R2-value of 0.86.26

TME assessment

In this study,weconsider such indicators of TMEas the lymphocytes,8,12-
15 tumor-infiltrating lymphocytes (TILs),16,17 lipid microenvironment,8

cancer-associated stroma,8,13 tumor–stroma ratio (TSR),10,17,18 peritumoral
stroma (PTS),12 and tumor infiltration phenotypes (TIPs).15

TME assessment using neural networks was also performed by various
methods. According to Kather et al., neural networks precisely define tissue
classes, such as adipose tissue, background, debris, lymphocytes, mucus,
smooth muscle, normal colon mucosa, cancer-associated stroma, and CRC
epithelium. The overall identification accuracy was close to 99% on an in-
ternal testing set and 94.3% on an external testing set.13 Lin et al. obtained
an accuracy of 97.3% when identifying the same classes.8 Kwak et al. also
report high quality segmentation of their model, with test mean dice simi-
larity coefficient (DSC) of 0.892. DSC for adipose tissue, lymphocytes,
mucus, smooth muscle, normal colon mucosa, stroma, and colon cancer
epithelium were 0.938, 0.968, 0.841, 0.732, 0.928, 0.815, and 0.930,
respectively.12 Jakab et al. report sensitivity, specificity, and accuracy for
software-based tumor assessment of 67.1%, 86.5%, and 80%; stroma recog-
nition—64.6%, 78.3%, and 72.4%, respectively. Moreover, the intraclass
correlation coefficient (ICC) of prediction of the tumor–stroma ratio
(TSR) between the 2 observers was 0.945; between visual measurements
and software it was 0.759. The researchers also note that the ICC values
between all areas were comparable for both software and visual measure-
ments. This indicates similar performance of both estimation methods.10

Zhao et al. also trained AI to evaluate TSR and achieved high efficiency. At
the same time, the researchers note that a high correlation was achieved be-
tween CNN model prediction and the pathologist annotation.18 Pai et al.
compared mismatch repair-proficient (MMRP) and mismatch repair-
deficient (MMRD) tumors. As a result, differences were found between
MMRD and MMRP tumors in percentage of inflammatory stroma (P=.02),
mucin (P=.04), and tumor-infiltrating lymphocytes (TILs) per mm2 carci-
noma (P<.001).16 Moreover, all parameters were higher in MMRD tumors,
which is consistent with our knowledge about the features of this type of
tumor.27 As a result of cut-off of >44.4 TILs per mm2, the authors achieved
sensitivity of 88% and specificity of 73% in identifying MMRD tumors.16

Failmezger et al. in their study report anaccuracy of 85% for computation
of tumor infiltration phenotypes.15 CD8+ T cell point estimate and their
standard error using AI to be Recall, R (%)=74.2±0.7 and Precision, P
(%)=88.1±0.6. Moreover, the level of correspondence between the
segmentation outcome and that by manual counts was also assessed.
Spearman's rank correlation coefficientwas0.985,which indicates ahighde-
gree of consistency of the results.14

Kwak et al. set a new stromal microenvironment parameter—
peritumoral stroma (PTS)—to evaluate lymph node metastasis (P<.001).
PTS score is calculated as the sum of pixels of stromal tissue within the
tumor region boundaries/the sum of pixels of the tumor.12

Yoo et al. in their study proposed an analytic pipeline for quantifying
TILs and TSR from whole-slide images obtained after CD3 and CD8 IHC
staining. According to these and other TME parameters, the authors divided
all cases of CRC into 5 clinicopathologically relevant subgroups, that in the
future may allow determining the patient's prognosis without performing a
molecular tumor analysis.17

Applications of AI models in CRC diagnosis

In the reviewed studies, the models were aimed at object
detection,21-23,25 segmentation,12,14,22 classification,8,13 and
quantification16-18,26 of various types of tissues and areas of TB. In addition,
a number of works resort to the use of AI technologies not only for
6

automated detection of standard biomarkers, but also for identifying their
predictive capabilities: it has been shown that a deep neural network can
decompose a complex tissue into its constituent parts and give a predictive
estimate based on their ratios, which can improve the prognosis of patient
survival compared to the staging system of the Union for International
Cancer Control (UICC).13 The study of prognostic capabilities in colon
cancer was also carried out in relation to lymph node metastases,12 tumor
infiltrate phenotypes,15 and TSR.18 IHC stained14,15,17,23,24 or, in most
cases, H&E-stained medical images,8,13,16,18,21,22,25 were used as input
data. Weis et al. used images obtained by both methods.26 The choice is
due to the accumulated volumes of such data: these images are most
often used in medical practice for manual cancer diagnosis during the
analysis of biopsy and surgical material.

Data preparation methods for AI models

An important stage of research work on the use of AI technologies is to
prepare data for analysis by the model. Most often, researchers had several
dozens of whole-slide images of tumor tissue, which were subsequently di-
vided into several thousands of smaller images (patches) of a standardized
size, usually with an aspect ratio of 1×1.8,12,13,18,21,26 As a result of split-
ting images into patches, the calculations performed by the model during
analysis is simplified, and its speed is increased.8 In order to unify patches
with a height and width less than the target size, Kwak et al. supplemented
thembymirror reflection.12 To increase the number of training images and,
as a result, increase the stability of the network to variations in data sets and
improve the results, data augmentation was used in several works. For this,
horizontal and vertical image reflection, rotation and scaling,13,21,22 defor-
mation and blurring,21 brightness change,21 and histogram equalization
(an image processing method for adjusting contrast)12 were used. Another
important step inworkingwith datawas the exclusion of inappropriate and
distorted images: for example, with tissue folds, torn tissues, or without
tumor tissue.8,13

The specific issue in studies was often to determine if an object belongs
to the area of tumor budding. In Bergler et al.,23 TB was considered to be an
association of 4 or fewer tumor cells, while cells were considered connected
if the distance between themwas less than the average diameter of a tumor
cell. In Bokhorst et al., and Weis et al.,21,26 TB was defined as isolated epi-
thelial cells or their clusters, including not more than 5 such cells, located
near the invasive front of the tumor, but not touching the main tumor. In
some studies, in addition to the areas of TB, poorly differentiated clusters
(PDCs) were also used as detected biomarkers—according to the
researchers,16 TB/PDCs measure outperformed both automated counting
of TB areas and its manual detection. In Kather et al.,13 the problem of mis-
classifications between muscle and stroma classes, as well as between lym-
phocytes and detritus/necrosis was also described. Thus, to improve the
quality of the work of AI models, it is necessary to clearly define the criteria
for assigning identified objects to each group, and also consider the possi-
bility of creating a larger number of output classes of areas and objects,
which will be discussed more specifically in the next subsection.

Types of models and architectural solutions used

The data show that CNNs aremost often used for the analysis of medical
images8,12,13,16,18,21-23,26 in different variations. This choice on the part of
researchers is due to the fact that CNNs are designed specifically to work
with data with a spatial structure which is common to all images. The
main advantage is in the ability of CNNs to automatically extract hierarchi-
cal features from images of different types on different network layers. The
following CNN models were used: AlexNet,23 SegNet,22 U-Net,12

MatConvNet,26 and VGGNet (VGG1621,25 and VGG198,13,18). In the ana-
lyzed articles, the architecture of the models used from 826 to 47
convolutional layers.13 Model training did not always occur from scratch:
to save resources and time, many studies used models pre-trained on the
ImageNet dataset.8,13,18,23 Optimization of the "upper" layers of the net-
work for research purposes was carried out using the transfer learning
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methods, most frequently used one—stochastic gradient descent with mo-
mentum (SGDM),13,18,22 which ensures faster convergence of the model
to the optimal value. In Bokhorst et al.,21 stochastic gradient descent with
the Nesterov moment was used, which theoretically has somewhat better
characteristics, but it is impossible to compare these approaches in practice
due to the inconsistency of the model metrics chosen by different
researchers.

In Bergler et al.,23 at the first stage, potential tumor growths were
detected using classical image processing methods: threshold processing,
filtering (median filter), and morphological operations, that were also
used in Weis et al.26 This approach allows reducing image noise, removing
staining residues, and obtaining a large number of candidate objects. Thus,
the classical image processingmethods used in thework demonstrated high
sensitivity, but poor accuracy. The AlexNet CNN was applied to the
obtained results to distinguish between “true-positive” and “false-positive”
tumor bud candidates, which significantly increased the accuracy of detect-
ing TB cases, although it led to a slight decrease in the sensitivity. In this
study, the AlexNet model’s weights were retrained on all convolutional
and fully connected layers, while the pre-trained weights of the ImageNet
dataset were used as initialization. This architecture was chosen by Bergler
et al. as it has already been successfully aplied for similar tasks.23 The
AlexNet model also showed the best accuracy value (97.7%) among all 6
works using this metric and also showed the second-best sensitivity value
(93.4%) among the 6 works where this metric was considered.

SegNet model adaptation was applied by Banaeeyan et al.22 to detect
and segment tumor buds. The proposed architecture is an encoder–decoder
network with a pixel-level classification layer embedded in last layer. It
consists of 18 convolutional layers, each one followed by a batch normali-
zation and rectified linear unit layer. Binary TB class probabilities are ob-
tained by feeding the output of the latest decoder layer into a softmax
classifier. Dilated convolution was also applied.22 Since standard
convolutional networks were mainly intended for image classification
problems and not for dense prediction, extended convolution was proposed
to fill this gap by systematically aggregating large-scale context informa-
tion. This solution made it possible to provide an exponential expansion
of receptive fields and at the same time avoid losses in image resolution
or pixel coverage. Though, this study has significant limitations such as
very small sample size (only 58 images from 5 WSI) and assumption that
the main tumor front was known for the model.

Model based on the U-Net architecture was described by Kwak et al. for
the segmentation of TME-related features, as this architecture was initially
proposed to improve the performance of segmentation particularly for
biomedical images.12 The image segmentation process was conducted by
multi-threshold technique where threshold values were empirically se-
lected. Adam (Adaptive Moment estimation) algorithm was used for
cross-entropy loss minimization and the adaptive momentum algorithm
was used for smooth convergence. Model training was terminated by re-
searchers when the mean Dice similarity coefficient (DSC) for the valida-
tion dataset did not increase by at least 0.1% after 10 additional epochs
from its epoch with the best performance. In result, Kwak et al, achieved
relatively balanced classification performance for all of 7 observed TME
features, as DSC values for those features varies from 0.732 to 0.968.12

The training and test accuracy curves converged on approaching 56 epochs,
where training met criterion for termination.

Weis et al. used MatConvNet which is CNN-toolbox in MATLAB to de-
cide if a tumor bud candidate contained a single tumor bud or not.26

They constructed an 8-layer CNN consisting of 2 blocks of a combination
of convolutional, rectifier, and pooling layers and a fully connected layer.
The resulting CNN was trained for 10 000 epochs with a constant learning
rate of 10–5. The overall process of core analysis includes also color
deconvolution and k-means clustering, which were also implemented
with MATLAB built-in tools.

VGGNet models are most often used in observed studies. Bokhorst et al.
developed VGG-like network with 2 configurations: with 2 output classes
(background and peritumoral budding) and with 3 output classes (back-
ground, peri-, and intratumoral budding).21 L2 regularization was applied
7

because of the relatively small amount of data (total of 60 images) and
related risk of overfitting. For training, an adaptive learning rate scheme
was used, where the learning rate was initially set to 0.00001 and thenmul-
tiplied by a factor of 0.7 after every 5 epoch if no increase in performance
was observed. Procession of hard-negative mining also was performed,
which contain objects of negative classes and, as they were more demon-
strative for the model the model training process became more efficient.
The use of this technique has significantly reduced the number of false-
positive cases carried out by the network. As a result, the best results
were shown by the model with 3 output classes and hard-negative mining.
Even with any other modifications of the models, the one that had 3 rather
than 2 output classes showed more effectiveness.

Lu et al.25 used one of the modifications of CNNs, Faster Regional
Convolutional Neural Network (Faster R-CNN) on the basis of VGG-16
model. This architecture is formed by the fusion of Region Proposal Net-
work (RPN) and Fast R-CNN technologies, where the first allows determin-
ing hypotheses, and the second is used to process them and identify class
boundaries. This enables to use less data to extract high-precision informa-
tion about the image, their effective recognition and further segmentation.
By selecting the appropriate parameters and increasing negative examples
in the samples, the retraining of Faster R-CNN models can be reduced,
and the accuracy of object detection can be improved.25 For the same
tasks, the artificial addition of negative cases was used by Lu et al., where
tumor budding areas containing non-cancerous tissue cells were deliber-
ately selected and labeled as negative cases. Even when using smaller
amounts of training data, training results were better for samples with a
6:4 positive-to-negative feature ratio.

This problem can be also solved by increasing the output classes of
the network, according to which the identified objects are distributed.
Lin et al.8 where Lin et al. achieved the best value of accuracy (97.3%)
among the reviewed articles, the sections of histological images were
completely divided into 9 output categories. Thus, we can conclude that a
moderate increase in the number of output classes has a beneficial effect
on the efficiency of the model since it allows the algorithms to more accu-
rately classify the identified objects according to their classes. For that pur-
pose, Lin et al. constructed a classifier on the basis of VGG19model through
transfer learning. Kather et al.13 Zhao et al. also used VGG19 model for
which final classification layer was replaced by a 9-category layer corre-
sponding to 9 tissue classes.

In some studies, several CNN architectures have been tested
simultaneously. Kather et al.,13 evaluated the effectiveness of 5 models
for classification problems at the same time: AlexNet, SqueezeNet,
GoogLeNet, Resnet50, and VGG19. The latter architecture showed the
best result (98.7%) in this study and was used in further experiments,
while all other models (except for SqueezeNet) showed a proportion of cor-
rectly classified objects above 97%. It should also be noted that the VGGNet
models were used in studies with best values achieved for the following
metrics: area under the curve and sensitivity in detection problems,25 as
well as the proportion of correctly classified objects (accuracy) in classifica-
tion problems.8 However, due to the uneven availability of metrics for the
cited works, it is far too early to claim the absolute advantage of thismodel.

Even though several studies have suggested that better results can be
obtained using advanced neural networkmodels,13 like deep CNN architec-
tures as VGGNet, AlexNet, GoogLeNet, and ResNet, some of observed stud-
ies used machine learning algorithms built within medical software like
QuPath. Fischer et al. built a semi-automatedmethod for tumor budding as-
sessment based on a (immunopositive/immunonegative) threshold pixel
classifier built within QuPath by combining image downsampling, stain
separation using colour deconvolution, Gaussian smoothing, and global
thresholding within a single step.24 This classifier was used for identifica-
tion of connective discrete areas of immunopositivity as tumor buds were
defined by the area of immunopositivity. Yoo et al. also used QuPath for
identification of 2 types of objects by their quantitative features related to
shape, intensity, and texture. Aftermanual segmentation, the random forest
method developed with R was used to construct classifiers to identify lym-
phocytes, tumor, and stroma from IHC images.17 Jakab et al. used



O.A. Lobanova et al. Journal of Pathology Informatics 15 (2024) 100353
SlideViewer, digital pathology software, and its QuantCenter module with-
out developing any CNN architectures.10 Though it was still effective
enough for tumor tissue and stroma recognition.

In some studies, as in Pai et al.,16 several CNNs (though no information
about used CNNmodel were stated) were used simultaneously to analyze 4
subgroups of tumor tissue characteristics. A total of 3 neural networks
segmented the image into 13 regions and 1 more neural network detected
objects. The first neural network isolated layers of carcinoma (excluding
TB/PDCs), TB/PDCs, stroma, mucins, necrosis, fat, and smooth muscle.
The second neural network inside the identified stroma determined its
state: immature, mature, or inflammatory. The third neural network
segments carcinoma into the categories of low-, high-grade, and cricoid.
The fourth neural network detects TILs as objects in the carcinoma layer.
Theoretically, TB/PDCs could also be considered as objects in this algo-
rithm; however, due to noticeable differences in size between objects of
such a group, they were classified as a tissue region. The more detailed re-
sults of the segmentation algorithm had strong associations with adverse
pathological features and metastases, demonstrating the potential of deep
learning to provide an accurate assessment of CRC histological features.
As a result, the estimates of the identified characteristics either contained
minor errors or did not contain them at all. All pathologist-evaluators did
not reveal consistent errors in the work of the model.16
Table 3
Used algorithms and methods of data augmentation in tumor budding diagnosis of colo

Article Data augmentation me

Banaeeyan R. et al. Tumor Budding Detection in H&E-Stained
Images Using Deep Semantic Learning

Horizontal reflection, v
rotation, and scaling

Bergler M. et al. Automatic detection of tumor buds in
pan-cytokeratin stained colorectal cancer sections by a hybrid
image analysis approach

Median-filter to smooth
reducing noise

Bokhorst J. M. et al. Automatic detection of tumor budding in
colorectal carcinoma with deep learning

Random flipping, rotat
deformation, blurring,
(random gamma), and

Lu J. et al. Development and application of a detection platform for
colorectal cancer tumor sprouting pathological characteristics
based on artificial intelligence

–

Fisher N. C. et al. Development of a semi-automated method for
tumour budding assessment in colorectal cancer and comparison
with manual methods

–

Pai R. K. et al. Development and initial validation of a deep learning
algorithm to quantify histological features in colorectal carcinoma
including tumour budding/poorly differentiated clusters

–

Weis C. A. et al. Automatic evaluation of tumor budding in
immunohistochemically stained colorectal carcinomas and
correlation to clinical outcome

–

8

As an another tactic for themodel,Weis et al.26 tested themethodofman-
ual counting of TB areas, which involves concentration on the hotspots and
absolute counting of TB. However, the researchers did not reveal any associ-
ation between the obtained results and the actual clinical data.Meanwhile, a
significant correlation was shown by the detection of TB areas using spatial
clustering. In Failmezger et al.,15 the authors used the Ripley L-function to
identify spatial heterogeneity, which identifies the nearest cell neighbors at
a certain distance; this made it possible to classify various phenotypes of
tumor infiltration. In Gong et al.,14 the HDBSCAN clustering algorithm was
used to extract clusters of CD8+ T-lymphocytes, which can identify cluster
hierarchies based on the density and distances between objects.

Algorithms and data augmentation methods used in studies also
presented in Tables 3 (TB) and 4 (TME).

Discussion

The use of AI methods significantly reduces the time spent by patholo-
gists. According to Lu et al., it took the pathologists who used the AI
model significantly less time (0.03±0.01 s) tomake a diagnosis comparing
to those using traditional methods (13±5 s) (P<.01). However, there were
no statistical differences in the accuracy of detecting benign and malignant
lesions between these 2 groups.25
rectal cancer.

thods Algorithms

ertical reflection, - Encoder–decoder network with a pixel-level classification layer
embedded in its last layer (an adaptation of the original SegNet
model);
- A total of 18 convolutional layers, each one followed by a batch
normalization and rectified linear unit layer. The fully connected
layer is not embedded in the architecture;
- Every encoder has its own corresponding decoder and therefore the
decoder block contains 18 layers. Binary TB class probabilities are
obtained by feeding the output of the latest decoder layer into a
softmax classifier.

en the image by - Classical methods like thresholding, filtering, and morphological
operations for the detection of candidates.
- AlexNet model for distinguishment between “true-positive” and
“false-positive” tumor bud candidates.

ing, elastic
brightness
contrast changes.

- VGGlike network with 2 configurations: one with 2 output classes
(TB versus Background) and one with 3 output classes (TB, TG,
Background);
- L2 regularization and dropout layers added after the 2nd and 4th
max-pool layer;
- Multinomial logistic regression objective optimization (softmax),
using stochastic gradient descent with Nesterov momentum.
- Faster RCNN developed by fusing the region proposal network
(RPN) on the basis of Fast R-CNN;
- VGG16 framework for feature extraction, RPN for feature region
proposal and Fast RCNN network for boundary box classification and
regression;
- The semi-automated method based on a binary threshold classifier
built within QuPath (v0.2.3);
- A pixel classifier created in QuPath to identify connective discrete
areas of immunopositivity by combining image downsampling, stain
separation using colour deconvolution, Gaussian smoothing, and
global thresholding within a single step.
- CNNs were trained to segment each of 4 layers;
- The first CNN segmented tissue into carcinoma (exclusive of
TB/PDCs), TB/PDCs, stroma, mucin, necrosis, fat, and smooth muscle;
- The second CNN segmented stroma into immature, mature, and
inflammatory;
- The third CNN segmented carcinoma into low-, high-grade, and
signet ring cell carcinoma;
- The fourth CNN identified TILs within the carcinoma layer.
- 8-layer MatConvNet CNN model;
- Color deconvolution to separate the background and foreground
staining;
- k-means clustering for thresholding.



Table 4
Used algorithms and methods of data augmentation in tumor microenvironment diagnosis of colorectal cancer.

Article Data augmentation
methods

Algorithms

Kather J. N. et al. Predicting survival from colorectal cancer
histology slides using deep learning: A retrospective multicenter
study

Image color normalization with the
Macenko method, random horizontal and
vertical flips of the training images

- The classification layer was replaced and the whole network was
trained with stochastic gradient descent with momentum (SGDM);
- Evaluated the performance of five different CNN models: a VGG19
model, AlexNet, SqueezeNet version 1.1, GoogLeNet, and Resnet50.
VGG19 was the best performance model with suitable learning time.

Kwak M. S. et al. Deep convolutional neural network-based lymph
node metastasis prediction for colon cancer using
histopathological images

Image color normalization with the
Macenko method, histogram
normalization.

- U-Net architecture;
- Adam for minimizing the cross-entropy loss during stochastic
optimization;
- Adaptive momentum algorithm for smooth convergence.

Lin A. et al. Deep learning analysis of the adipose tissue and the
prediction of prognosis in colorectal cancer

– - VGG19 model trained by migration learning;
- Constructed a classifier called VGG19CRC to classify tumor and
non-tumor sections of colorectal tissue.

Gong C. et al. Quantitative characterization of CD8+ T cell
clustering and spatial heterogeneity in solid tumors

– - Software HALO (v2.2.1870.31) from Indica Labs (Corrales, NM) to
perform segmentation of digitized pathological images, using the
module “Indica Labs–CytoNuclear v1.6.”;
- Clustering algorithm Hierarchical DBSCAN (HDBSCAN). R
package “largeVis” was used for cluster analysis, in which a
variation of the HDBSCAN algorithm is implemented.

Jakab A., Patai Á. V., Micsik T. Digital image analysis provides
robust tissue microenvironment-based prognosticators in patients
with stage I-IV colorectal cancer

– - Slides were assessed and annotated using SlideViewer software 2.4
version and its 116 QuantCenter module (3DHistech, Budapest,
Hungary).

Failmezger H. et al. Computational tumor infiltration phenotypes
enable the spatial and genomic analysis of immune infiltration in
colorectal cancer

– - A proprietary machine learning algorithm for detection and
classification based on color, intensity, texture, object shape;
- 1d logistic fused lasso regression model based on each tile’s feature
vector;
- Ripley’s L function for determination the number of neighbors of
another type of cell within a certain distance.

Pai R. K. et al. Development and initial validation of a deep learning
algorithm to quantify histological features in colorectal carcinoma
including tumour budding/poorly differentiated clusters

– - CNNs were trained to segment each of 4 layers;
- The first CNN segmented tissue into carcinoma (exclusive of
TB/PDCs), TB/PDCs, stroma, mucin, necrosis, fat, and smooth
muscle;
- The second CNN segmented stroma into immature, mature, and
inflammatory;
- The third CNN segmented carcinoma into low-, high-grade, and
signet ring cell carcinoma;
- The fourth CNN identified TILs within the carcinoma layer.

Yoo S. Y. et al. Whole-Slide Image Analysis Reveals Quantitative
Landscape of Tumor–Immune Microenvironment in Colorectal
Cancers TIME Analysis via Whole-Slide Histopathologic Images

– - QuPath for analyzing digital pathology images;
- Quantitative features related to shape, intensity, and texture were
subsequently computed, and exported to R (www.r-project.org)
along with manually assigned labels;
- K-means–based consensus clustering using the R/Bioconductor
ConsensusClusterPlus package;
- Support vector machine classifier with Gaussian kernel was
constructed using the scikit-learn library of Python.

Zhao K. et al. Artificial intelligence quantified tumour-stroma ratio is
an independent predictor for overall survival in resectable
colorectal cancer

– - VGG-19 model;
- The final classification layer was replaced by a 9-category layer
(corresponding to 9 tissue classes).
- Training with stochastic gradient descent with momentum
(SGDM).
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TB assessment

Detection of all TB on H&E-stained whole-slide imaging is a rather dif-
ficult task, since tumor buds have a different shape and are very similar to
other cells, which greatly complicates their detection and segmentation.22

Peritumoral inflammatory infiltrate, reactive stromal cells on H&E, and
apoptotic corpuscles and cellular debris on pankeratin IHC can complicate
the TB diagnosis.2 Bokhorst et al. reported that only 20% of the total num-
ber of manually detected tumor buds was diagnosed by both pathologists in
H&E, and 27% of tumor buds were detected by both pathologists on IHC
(CK8-18). For the reference standard, the authors advise choosing tumor
buds that are chosen by the majority of votes in a group of specialists.21

These data show the urgent need for reliable mechanisms of assessing TB.
Fisher et al. state that 4 times more total bud numbers were detected

with CK staining than with the H&E method. The semi-automated method
detected 10 timesmore TB than the H&Emethod and 3 timesmore than the
CK method. The result is statistically significant (P < .0001). However, re-
searchers note the problem of false-positive results with the semi-
9

automated method, which is associated, firstly, with the designation of
any discrete CK-positive area as a bud, regardless of the signs taken into ac-
count during itsmanual assessment. The second reason is the designation of
tumor cells accumulated in the gland lumen as a bud. To solve this problem,
the authors tried to fill the gland lumen in QuPath; however, when staining
was not circumferential, such glands were mistaken TB by the semi-
automated method.24 Lu et al. note a similar problem: the high sensitivity
of the AI model leads to a decrease in specificity. The authors name the
main reasons for false-positive results, when other structuresweremistaken
for buds, and a low overlap rate due to the large area of malignant lesions
obtained by the AI model segmentation, including some benign areas.25

The number of spatial clusters of tumor buds (budding hotspots) was
highly dependent on the presence or absence of lymph node metastases
(P = .003 for N0 vs. N1-2). In this regard, the authors conclude that it is
the spatial TB clustering in hotspots (and especially the hotspots number)
and not the absolute TB number, suitable for assessing TB.26 Pai et al. sug-
gest using TB/PDCs as a tool for assessing TB since the algorithm measures
of this parameter showed stronger correlations with lymph nodemetastasis

http://www.r-project.org
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and distant metastasis (P=.004) thanwith TB (P=.04) and TB/PDC counts
(P=.06).16

Lu et al. argue that it is possible to sacrifice some specificity to increase
the sensitivity of cancer detection.25

TME assessment

Anti-tumor immunotherapy treatment has been successfully used to
treat patientswith CRC in recent years. However, the number of positive re-
sponses to therapy fluctuates, and for a more accurate selection of therapy,
it is necessary to study TME in detail.15 Gong et al. found that the number of
high-density CD8+ T-cells clusters, especially round and elongated ones is
significantly higher in patients who respond well to treatment. In such
high-density clusters, most false-negative results occur due to the limita-
tions of segmentation algorithm. However, in these areas cell density is
much higher compared to others, despite the underestimation.14 Kather
et al. report that misclassifications of structures occurred mostly between
lymphocytes and debris/necrosis, since necrosis is often infiltrated by
immune cells.13

In their study, Failmezger et al. propose to investigate tumor infiltration
phenotypes (TIPs) along with established classifications for CRC, e.g., by
consensus molecular subtypes or the MSI status. There is 2 TIPs: TIP
inflamed represent patterns where tumor cells and immune cells are
co-clustered and TIP excluded represent patterns where immune cells are
segregated from tumor cells. However, the authors note that the role of
TIP as a prognostic or predictive biomarker has yet to be explored.15

Kwak et al. in turn suggest using the peritumoral stroma score ([stromal tis-
sue within the tumor region boundaries]/[tumor area]) as a prognostic
biomarker to assess lymph node metastases.12

Jakab et al. suggest evaluating invasive front and whole tumor areas
alongwith hotspot areas because these patterns are independent prognostic
factors for overall survival (OS). Moreover, carcinoma percentage and car-
cinoma–stroma percentage are independent predictors of local recurrence
and distantmetastases.10 Zhao et al. in their study also note the significance
of the TSR score for OS prognosis.18 However, Kather et al. report thatmost
frequent structure classification errors occurred between the muscle and
stroma classes as was expected since muscle and stroma have a fibrous
architecture. This may cause further difficulties in determining TSR.13

Lin and colleagues studied the effect of present adipose tissue (ADI) on
CRC prognosis. They found negative feedback between ADI and immune
infiltration scores, such as lymphocyte infiltration signature score and
TILs regional fraction.8

Analysis of the use of CNNs and deep learning

As it can be seen from the reviewed articles, the conclusion can bemade
that CNNs and deep learning are relatively accessible tools for diagnosing
and predicting the CRC course in patients on the basis of histological
images.10,13 Due to the adaptation to the spatial structure of the data,
CNNs can solve tissue classification problems better than specialized
equipment for histological tissue classification13 and traditional machine
learning methods.18 The quality of AI model predictions is comparable to
the quality of manual assessment or even higher: implementation of a
semi-automated method surpassed manual assessment approximately 2.5
times in tumor clusters detection, and when implementing deep learning
algorithms, the estimated potential was even higher.24 Even with a compa-
rable quality of diagnosis by a model and a clinical specialist, the average
time required for a model to make a diagnosis based on a single image is
far less compared to those for a specialist. In Lu et al.,25 it was determined
that detecting a tumor-sprouting model takes an average of 0.03 s, while it
takes 13 s for a pathologist to perform the same task. It is worthmentioning
that this time does not include time spent for scanning specimens and
supposes a comparison of 2 already scanned slides. In Weis et al.,26 the
convolution layer accuracy was evaluated by 4 pathologists specializing
in the gastrointestinal tract and not involved in algorithm training: all 4
evaluators did not reveal consistent errors in the model.
10
A common gap in the reviewed articles is the insufficient justification
for the choice of model—most often the choice of CNN model is presented
as a given. Speaking about specific models, the best results of the metrics
given in the studies were shown by the VGGNet model, namely its varia-
tions—VGG16, which was used for feature extraction,25 and VGG19, used
for the problem of tissue classification8 and tissue–stroma ratio
evaluation.18 The number in these model names indicates the number of
convolutional layers used which is the only difference between variants
of VGGNet models. The main difference of VGGNet from other CNN archi-
tectures is smaller receptive field (3×3), which allows the network to focus
on more local image details, get more generalizable features and reduce
over-fitting. VGGNet models also known for their relative simplicity and
uniform architecture which allows them to be widely used in many areas,
including digital pathology. Though VGGNet models have huge number
of parameters, about 138 million, what can make the calculations quite
expensive. Used in Bergler et al.,23 AlexNet is one of the first CNN architec-
tures and a prototype of VGGNet, which inherits the concept of using ReLU
(Rectified Linear Unit) activation functions from AlexNet. In comparison to
VGGNet, it has a larger receptive field size in the earlier layers (11×11 and
5×5) and smaller receptive field size (3×3) in the later layers. In the same
time, AlexNet also contains a large number of parameters (about 62 mil-
lion); it lacks scalability and is not optimized for parallel calculations.

In Bergler et al.,23 authors also suggest that using a more advanced
model, such as Google's Inception V3, can further improve the classification
of tumor clusters, thereby reducing the number of false-positive cases.
There was no Inception models used in observed studies, though Kather
et al. evaluated the effectiveness of several CNNmodels for classification in-
cluding GoogLeNet, which is actually the first version of Inception model
with a total of 22 layers. The main innovation of this architecture is the
use of inception modules, which use multiple filter sizes in parallel to cap-
ture different levels of image information. However, despite the higher
computational efficiency of GoogLeNet, which analyzed a dataset of 100
000 images approximately 2 times faster, the VGGNet architecture still
showed slightly better accuracy metrics in Kather et al. study.13 Thus,
GoogLeNet model was not properly explored later in the article and this
gap should be addressed in future studies, as well as exploring the capabil-
ities of Inception models in digital pathology. Later versions of Inception,
such as V2, V3, and V4, introduce additional optimizations like factorized
convolutions to further reduce the number of parameters significantly,
what will also lead to reductions in time and financial costs for CNN
calculations. Kather et al.,13 also put forward plans to use a model of the
Mask R-CNN type; in Lu et al.,25 the Faster R-CNN network proved to be
effective as it shows assessment results similar to manual evaluation by
senior pathologists in much shorter time period.

Currently, pathologists are often required to pre-contour areas of TB and
confirm diagnostic results with systems despite Yoo et al. study, where fully
automated method that requires no manual input on HE-stained WSI was
developed, though it does not contain CNN architectures.17 Therefore, AI
platforms can be used as diagnostic aids, but, so far, they cannot completely
replace pathologists and fully automated workflow for TB detection is still
to be developed. In the future, elimination of the limitations and establish-
ment of uniform standards for image coloringmethods andmetrics for eval-
uating the effectiveness of AI models will enable to adapt such technologies
for its more effective use in practical diagnostics. Nevertheless, even at the
current stage of development, AI models may be of value in helping pathol-
ogists to diagnose and predict the course of CRC in patients.16,18,25,26

Limitations

The following limiting factors of research were mentioned in the ana-
lyzed articles: the insufficient volume of training data sets (medical images
with samples of tumor budding areas),13,16,22 labor-intensive work on
image labeling, and the human factor in its implementation, the limitations
of models to predict only one indicator,8,14 high sensitivity of the models
and, as a result, a large number of false-positive cases.14,24,25 As part of
the work, some assumptions were also made due to limitations in model
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operation and the high complexity of their training. These assumptions in-
clude the designation of the main tumor front as known,22 and the prefer-
ential selection of images with a well-defined disease morphology.12 The
global lack of medical laboratories digitalization also makes it difficult to
further implement AI technologies due to the incomplete digitization of
medical data flows in the laboratories.

A key limitation in writing this systematic review was the heteroge-
neous use of performance metrics for machine learning models by different
authors. More often than others, the traditional concept of object propor-
tion classified correctly by the model (its accuracy) was used—it was
encountered in 5 works out of 15 selected.8,10,12,13,25 The sensitivity and
precisionmetrics were used in studies10,16,23,25 and studies14,23,25,26 respec-
tively. The specificity,10,16,25 recall,14 area under the curve,25 and
intersection-over-union (IoU)22 metrics were used less frequently. Thus,
no unambiguous conclusion can be drawn about the effectiveness of
approaches in developing models for identifying TB areas. Also, we had de-
ficient basis to recommend architectures for different future research
settings, as very few studies presented information about specimen type
and CRC stage and they often differ in the form of description of the data
used for models training.

Due to the high heterogeneity in the studies with regards to methodol-
ogy (heterogeneous use of performance metrics for machine learning
models), it was not possible to perform a meta-analysis. Thus, the authors
conducted a qualitative narrative synthesis of the obtained data.

Conclusion

To date, AI models may be of value in assisting pathologists in making a
diagnosis of CRC when evaluating parameters such as TME and TB. How-
ever, modern methods are yet not enough for self-diagnosis without medi-
cal supervision. One way to improve the results of AI models can be to
increase the amount of input data and the number of output classes. This
issue is currently more relevant than ever and requires further investiga-
tion, especially in implementing more advanced CNN architectures such
as Google Inception versions, which has not yet been done and described
in public domain. The other key prospect is a development of fully auto-
mated workflows, which will not require manual input to significantly re-
lief pathologists and will help to avoid human factor. A key limitation in
writing this systematic review was the heterogeneous use of performance
metrics for machine learning models by different authors, as well as a
relatively small number of samples used in some studies.
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