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Cytomorphology evaluation of bone marrow cell is the initial step to diagnose different hematological diseases. This
assessment is still manually performed by trained specialists, who may be a bottleneck within the clinical process.
Deep learning algorithms are a promising approach to automate this bone marrow cell evaluation. These artificial in-
telligence models have focused on limited cell subtypes, mainly associated to a particular disease, and are frequently
presented as black boxes. The herein introduced strategy presents an engineered feature representation, the region-
attention embedding, which improves the deep learning classification performance of a cytomorphology with 21
bonemarrow cell subtypes. This embedding is built upon a specific organization of cytology features within a squared
matrix by distributing them after pre-segmented cell regions, i.e., cytoplasm, nucleus, and whole-cell. This novel cell
image representation, aimed to preserve spatial/regional relations, is used as input of the network. Combination of
region-attention embedding and deep learning networks (Xception and ResNet50) provides local relevance associated
to image regions, adding up interpretable information to the prediction. Additionally, this approach is evaluated in a
public database with the largest number of cell subtypes (21) by a thorough evaluation schemewith three iterations of
a 3-fold cross-validation, performed in 80% of the images (n= 89,484), and a testing process in an unseen set of im-
ages composed by the remaining 20% of the images (n = 22,371). This evaluation process demonstrates the intro-
duced strategy outperforms previously published approaches in an equivalent validation set, with a f1-score of 0.82,
and presented competitive results on the unseen data partition with a f1-score of 0.56.
Introduction

Diagnosis of hematopoietic diseases such as leukemia, lymphoma, or
anemia, relies on differential bonemarrow (BM) cell counting.1 This proce-
dure is carried out by trained pathologists who evaluate cellular character-
istics of BM samples, after standardized protocols2 including visual
location, identification, and counting of cells, tedious and hardly reproduc-
ible tasks, even by trained technicians.3 BM samples are commonly ac-
quired by aspiration or biopsy, both minimally invasive procedures4 and
usually obtained from the posterior iliac crest because this site is superficial
and rarely complicated.5 The aspiration procedure extracts a sample of BM
fluid by a customized needle, whereas biopsy withdraws a sample from the
BM solid portion. BM aspiration specimens are important for differential
cell counting, cell morphology characterization, and more complex evalua-
tion schemes (cytogenetic analysis, molecular diagnostics, flow cytometry
evaluation),4 whereas BM histology biopsy is used to assess BM architec-
ture, i.e., the tissue structure relative to the cellular content, in addition to
hematopoietic cellular characterization.6 Recent hyperspectral/
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multispectral imaging advances provide further reproducible and automat-
able advantages with respect to BM cell evaluation and differentiation.
Such improvements are reached by combining conventional digital imag-
ing and spectroscopy tools,7 with device-independent and reproducible re-
sults, hardly obtained in microscopy image analysis.3 By means of Full
Spectral Flow Cytometry, InfraRed spectroscopy, and Spectral karyotyping,
hematopoietic cell differentiation and characterization become a more rel-
evant/frequent procedures to quantify intrinsic relations between cells and
more complex tasks, e.g., leukemia cell detection, treatment response pre-
diction, survival prediction, and minimal residual disease quantification.8

With these advances, spectral analysis has become the gold-standard for
cell-based patient management. However, despite such technological im-
provements, morphology-based cellular classification systems are still the
primal diagnosis reference9, mainly due to the high technology dependency
of spectral alternatives. Typically, classical microscopy image analysis al-
lows morphological cell subtype characterization in terms of whole-cell/
nucleus/cytoplasm characteristics, maturation levels, and cell differentia-
tion stage.10 Nevertheless, as explained before, both the description quality
4
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and the specialist experience end up by being bottlenecks because of the
large number of possible cell subtypes, the necessary time for the analysis,
and the associated inner inter- and intra-observer variability. The most im-
portant risk of manually counting cells lies on the possibility of a wrong or
missed diagnosis.11

These aforementioned drawbacks have been approached by several ar-
tificial intelligence (AI) strategies. These methodologies range from tradi-
tional machine learning (ML) algorithms to deep learning (DL)
approaches. However, a successful application of these approaches in clin-
ical scenario not only relies in highly accurate classification of particular
BM cells, but also in building a model which generates confidence among
medical specialists. To this end, model generalizability and interpretability
of AI approaches are commonly referenced as complementary conditions to
foster prediction trustworthiness.12 Importantly, such conditions are still
unmet by training data limitations that closely approximate clinical
scenario.

Related work and contribution

In case of classical ML strategies, segmentation, feature extraction, and
classification, are the usual pipeline. Segmentation has been approached by
thresholding different color spaces like RGB13 or HSV combined with
Otsu10 to delineate nucleus and cytoplasm, followed by a refining step
with watershed,14 or clustering15 or fuzzy16 algorithms. Segmentation has
been also improved by enhancing the object using pixel-gradient magni-
tude and orientation in combinationwith a common graph-cut algorithm.17

Likewise, myeloblast has been segmented by a conditional generative ad-
versarial network that generates pix2pix-based cell masks.18 Once potential
cells are segmented, features are extracted from them. Most works have
used mean intensity values of the segmented region, either red or green
channels14 from Lab color space.19 Other representations also add texture
descriptors such as gray-level co-occurrence matrix (GLCM),20 Gabor or
Fourier features,13 in combination with shape-related cell signatures ap-
proximated by morphology features.21 Recently, Hilbert-Huang transform
was applied to quantify acute lymphocytic leukemia with an empirical
mode decomposition, which reduces feature space dimensionality
reduction.22

These features feed classical classifiers to assign samples to one of the
available labels, including support vector machines (SVMs),23 particle
swarm optimisation SVM,24 random forest (RF),11,25 bagging ensemble,26

and multilayer perceptron.27 These approaches are highly interpretable
and have shown competitive results at classifying a limited number of
blood cell subtypes, in both public and private databases. Nevertheless,
these efforts have focused in discriminating leukemia-associated cells
from healthy ones,28 a simplification, quite far from the required popula-
tion characterization. Lately, these classical handcrafted and ML strategies
have been outperformed by developed DL methodologies.

These DL architectures have been adapted for the task of differentiating
multiple cellular classes, either a feature extractor along with SVM,29 eX-
treme gradient boosting (XGB), RF,30 or a classifier like the one proposed
by Thomas et al., with a Visual Geometry Group (VGG) network,31 Residual
Network (ResNet) presented by Fan et al., to identify leukocytes in blood
smear images,32 or detection transformer models.33 Other DL applications
use customized architectures to detect anemia,34 or combinations of deep
neural networks like VGG16 and mobileNet,35 Alexnet-GoogleNet-SVM,36

to classify up to five subtypes of cells. Likewise, fusion of randomly gener-
ated convolutional neural networks (CNNs)37 classify white blood cells,
whereas more compact CNNs have been used to identify particular leuke-
mia types,38 and white blood cells in peripheral blood.39,40 However,
these DL approaches and previous ones have been all evaluated with
small numbers of BM cell subtypes and few large databases.

Currently, after publication of larger databases, new DL architectures
have improved performance results in multiple subtypes, a closer scenario
to the herein presented investigation. Particularly, You Only Look Once ar-
chitecture was introduced to differentiate 15 classes in peripheral blood
images,41 training with 18,365 images and reporting a precision of 0.944
2

and an accuracy of 0.992. Moreover, Multiple Instance Learning for Leuko-
cyte Identification,42 an annotation-free DL strategy assigned labels from
weakly supervised models that detected different types of acute leukemia
with an AUC of 0.94. These binary classification approaches required few
white blood cell subtypes, as well as optimized convolutional networks43

with similar performance (f1-score = 0.94), or by duplet-CNNs44 with bet-
ter results, i.e., 0.97 in accuracy by separately training gradient boosting al-
gorithm CatBoost (Categorical Boost) and XGBoost (Extreme Gradient
Boost).

Other DLmethodologies have been applied to differentiatemultiple BM
cell subtypes. Specifically, Residual Next (ResNeXt) network45 reported an
overall f1-score of 0.5946 in the largest BM database. Afterward,
HematoNet applied a convolution/attention model to classify 17 cell sub-
types out of the available 21 and informed a f1-score of 0.86,47 by using a
combination of ConvNet and Transformer (CoAtNet). In the same database,
Ananthakrishnan et al.48 explored different strategies to classify the 21 sub-
types, including a CNN in combination with SVM and Xgboost, both
outperformed by a siamese network which reported an accuracy of 0.84
and f1-score of 0.81 for the validation set. A more recent work explored
the InceptionResNetV2 model as backbone of a CNN with ImageNet-
based weights over the same cell classes, obtaining a validation accuracy
of 0.96 in a single partition test, which also presents relative low precision
and recall values, 0.6 and 0.5968, respectively.49 In contrast, a subset of
seven cell subtypeswere differentiated by a DenseNet121modelwith an at-
tentionmechanism, obtaining an accuracy rate of 0.97. Other works, in pri-
vate image collections, inform competitive performances by discriminating
a fewer number of classes. Specifically, EfficientNetV2L, as backbone of a
CNN with ImageNet-weights,50 reported a mean AUC of 0.78 for 11 cell
subtypes, whereas the SqueezeNet architecture reduced the number of pa-
rameters by estimating each pixel entropy to classify five white blood cell
types with an accuracy of 0.99.51

Although these results look promising, their interpretability is still lim-
ited, even after showing activation maps.47,52 While these maps identify
which image areas are more relevant, since they do not provide any expla-
nation about how the model uses them, this strategy is still far from being
integrated to a clinic line of reasoning or decision.53 Furthermore, the oper-
ation of DL prediction is not only a legal and ethical requirement, but this is
also crucial towards boosting real DL clinical applications.12

Unlike previously described approaches, the herein introduced meth-
odology improves the performance of DL models when classifying a
large population of 21 cell BM subtypes, while it provides extra local/
regional interpretable information. These performance and interpretabil-
ity improvements are achieved by integrating DL networks and
pre-extracted cell image features associated with stain response, chroma-
tin and morphology changes, per each predicted class. To this end,
engineered shape, color, and texture features are extracted from seg-
mented cell regions (nucleus, cytoplasm, and whole-cell), and arranged
in square feature maps named region-attention embedding. Afterwards,
this feature arrangement trains a DL network that outperforms state-of-
the-art results when differentiating 21 BM cell subtypes, in the largest
publicly available database.46 Both ML and DL approaches demonstrate
the advantages of engineered features and region-attention embedding
when discriminating 21 BM cell subtypes, either by training classical ML
algorithms with the feature vector, or feeding ResNet-5054 and
XCeption55,56 architectures with the region-attention embedding. Addi-
tionally, the most relevant cell features/regions are highlighted by
masking the embedding with thresholded DL activation maps, granting in-
terpretability of DL cell subtype prediction. This process increases the
level of detail of post-hoc interpretations, and facilitate biological associa-
tions to the spatial attention maps.

In summary, themain contributions of the presentmethodology rely on:

1. A method that classifies BM cell subtypes (21 classes) with state-of-the-
art competitive results, by using previously designed DL architectures as
backbone in combinationwith a new region-attention embedding image
representation.
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2. A thorough experimental comparison of different classification strate-
gies, that demonstrates the aptness of the mixed feature/DL approach
to discriminate blood cell subtypes.

3. A fully repeatable evaluation process applied to an open access dataset
with the largest published number of labeled BM cell subtypes.46

4. A strategy that enhances DL interpretability and improvesDL-based clas-
sification of BM cells by engineering feature maps.

Materials and methods

Database

Experiments were conducted with different partitions of the public
image database “An Expert-Annotated Dataset of BoneMarrow Cytology in He-
matologic Malignancies (Bone-Marrow-Cytomorphology MLL Helmholtz
Fraunhofer)”,46 a collection containing 171,374 single-cell images coming
from BM smear samples of 945 patients with ages from 18 to 92 years,
stained with Grünwald-Giemsa/Pappenheim and diagnosed with different
hematological diseases. Single cell images of 250×250 pixels were ac-
quired with a brightfield microscope at ×40 magnification and oil immer-
sion. Each image was annotated by morphologists, providing labels for 21
classes, namely abnormal eosinophil (ABE), artifact (ART), band neutrophil
(NGB), basophil (BAS), blast (BLA), eosinophil (EOS), erythroblast (EBO),
faggott cell (FGC), hairy cell (HAC), inmature lymphocyte (LYI), lympho-
cyte (LYT), metamyelocyte (MMZ), monocyte (MON), myelocyte (MYB),
not identifiable element (NIF), other cell (OTH), plasma cell (PLM),
proerythroblast (PEB), promyelocyte (PMO), segmented neutrophil
(NGS), and smudge cell (KSC). As inferred from Fig. 1, the class distribution
of this database was highly unbalanced and therefore, a more challenging
context for the multi-class differentiation task: whereas only eight images
were available for the ABE class, 29,424 images were labeled as NGS.

Image pre-processing

A first step of this methodology involved identification of the whole-
cell boundaries and segmentation of the two main cellular components,
Single cell images
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Fig. 1. BM cell subtype distribution along the 171,374 images within the used
dataset (“An Expert-Annotated Dataset of Bone Marrow Cytology in Hematologic
Malignancies”46). The blue/gray circle ratio corresponds to the proportion of each
class in the dataset.
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i.e., nucleus and cytoplasm. Initially, nucleus segmentation was performed
as proposed by Tavakoli et al.,57 who applied different operations to sev-
eral color spaces, i.e., RGB, HLS, and CMYK. In summary, the whole
procedure was:

• Obtaining a color-balanced RGB image.58

• Transforming the color-balanced RGB image to CMYK and HLS color
spaces.

• Increasing nucleus contrast by operating K and M channels from the
CMYK color space as KM = (Kchannel −Mchannel).

• Reducing the intensities of other image components but the nucleus by
keeping minimum intensity M and S channels, from CMYK and HLS,
respectively.

• Operating nucleus contrast enhanced matrix KM and non-nucleus
element reduction matrix MS according to soft map = MS-KM.

• Applying Otsu thresholding algorithm to the soft map output to set the
final segmented nucleus.

Then, the cell was segmented as the difference between the S [satura-
tion] channel from the HLS color space and the Y [yellow] channel from
the CMYK color space, from the color-balanced version of each image.
Subsequently, the Otsu algorithm was applied to this difference to obtain
the segmentation of the whole cell. Finally, the cytoplasm mask was
obtained as a XOR operation between the nucleus and whole cell
segmentations.

Considering the presented approach is based on supervised steps and
color channel operations performed image to image, no further training is
required. Nevertheless, to evaluate the performance of this segmentation
approach, this was tested with a subset of 20 randomly selected images
per cell subtype (except for ABE with only eight images), whose nucleus
and cytoplasmwere manually segmented. The Dice coefficient and Jaccard
index, between manual and automatic segmentations, were computed for
the 407 test images. The obtained results showed a reliable nucleus seg-
mentation performance, a Dice coefficient of 0.86 and a Jaccard index of
0.78, while for the segmentation of the cytoplasm the Dice coefficient
was 0.71 and the Jaccard index 0.60.

Finally, considering that for feature extraction it is necessary to have the
entire region of interest (nucleus, cytoplasm and whole-cell), all images
with partial cell presentation were excluded from the experimental subset,
thus reducing from the available 171,374 to 111,855 cell images.

Feature extraction

Once cell, nucleus, and cytoplasmwere automatically segmented, three
different types of features were extracted for each cell region of interest
(whole-cell, nucleus, and cytoplasm), including: (i) shape characteristics
aiming to capture morphological signatures, (ii) color-based features to de-
scribe differences in terms of stain, and (iii) texture features which capture
high-frequency changes commonly associated to nuclear chromatin pat-
terns. These feature types were chosen by their known discrimination
power, broadly explored in BM cell segmentation,59 classification,25 or
both tasks applied in peripheral blood images.57,60

In summary, for each region of interest, eight shape features were ex-
tracted, namely convexity, compactness, elongation, eccentricity, round-
ness, solidity, area, and perimeter. Regarding color quantification, the
first five statistic moments were estimated for each channel of the RGB
color space, i.e., intensitymean, intensity variance, intensity kurtosis, skew-
ness, and entropy. Furthermore, five texture features (contrast, dissimilar-
ity, homogeneity, energy, and correlation) were also calculated using a
GLCM with a neighborhood size of one pixel and orientations varying at
0°, 45°, 90°, and 135°. Additionally, Minkowski–Bouligand dimension fea-
tures were computed, looking for capturing fractal nature variations of
each cell component.61

Finally, all above-described featureswere concatenated as a feature vec-
tor of 144 elements, while amin-max normalization strategywas applied to
reduce the range effect of each feature space in the classification process.
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Region-attention embedding

Asmentioned in the introduction section, BMcell subtypes are clinically
commonly described in terms ofwhole-cell/nucleus/cytoplasmcharacteris-
tics, maturation levels, and cell differentiation stage. Likewise, spatial rela-
tions defined by the elements within these regions are fundamental to find
out conceptual links. Attempting to capture these underlying concepts, the
presented methodology introduces a representation herein named the
region-attention embedding. The basic idea of this approach was to code spa-
tial cell relations at ordering engineered features within the feature vector
after the particular cell region, namely cytoplasm, nucleus, and whole-
cell. Specifically, as show in Fig. 2, features were sorted out by cell region
within the feature vector (1×144) and then presented to any DL network
as a squared matrix (12×12). This particular organization facilitates a
convolutional network learns ordinal relations between the different cell
components, and makes the network to concentrate on particular relevant
features. In contrast to visual transformer, the attention here was not ex-
haustively learned frommillions of connected small patches, but it consists
of a much smaller set of units of information with a reduced number of con-
nections, coming from the extracted features and the source regions. The re-
sult was then a soft attention learning with much less dependency on large
databases. Finally, the region-attention embedding enhances interpretabil-
ity of DL-based predictions, given the possibility of identifying relevant
associations between features and cell regions.

Classification

After feature extraction, the obtained characteristics were used to differ-
entiate the proposed 21 classes. Such task was carried out by two different
classification approaches which used the above-mentioned features in dif-
ferent organizations in combination with ML- and DL-based classifiers.

Regarding the classical ML approaches, different models were obtained
with RF and SVM (linear, radial basis function - RBF, and polynomial ker-
nel) classifiers, which were previously compared by Krappe et al.59 for
cell subtype differentiation, also explored by Dincic et al.61 for acute mye-
loid leukemia detection, even in peripheral blood smear,11 and as baseline
Fig. 2. Region-attention embedding organization scheme. Numeric labels present
the order of each feature vector type (shape, color, texture, fractal) after a
particular cell component (whole-cell, nucleus, cytoplasm), within the region-
attention embedding.
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to be compared with DL approaches.26 Specifically, these models were
trained by the above-described features, in a common vectorwise represen-
tation. All classifiers were optimized under a grid search scheme to reach
the best possible performance under the described conditions.

With respect to the DL strategies, these classifiers were combined with
the previously extracted features in a matrix-like presentation. To this
end, ResNet-50 and Xception architectures were modified by replacing
the input layer with a repeated version of the presented region-attention
embedding (12×12×3). These two networks have shown outstanding re-
sults in image-related tasks, including white blood cell classification using
pre-trained ResNet,62 and pre-trained Xception as feature extractor,63

followed by logistic regression.64 However, in contrast to such applications
of these networks, here both of themwere used to improve feature filtering
given by region-attention embedding.

Xception network
This variant of the Inception architecture replaced classical convolution

modules by depthwise separable ones, reducing the number of parameters
in the network and improving its efficiency. This DL-network is composed
by 36 convolutional layers structured into 14 modules, which are divided
into three main stages, as follows55:

• Entry flow: It normally took an input of 299×299×3, but here it was
modified to receive an embedding of 12×12×3, which is filtered out
by eight convolutional layers, ReLU activation, and max-pooling, which
provide reduced equivalent feature maps.

• Middle flow: Three depthwise separable convolution and ReLU activa-
tions were applied to the entry flow output. This process was repeated
eight times to generate 19×19×728 feature maps.

• Exit flow: Consisted in different units of ReLU activation, depthwise sep-
arable convolution, and max-pooling applied four times to the middle
flow output, followed by the global average pooling layer.

Finally, an optional fully connected layer with logistic regression was
applied to the 2048-dimensional vector to generate the output.

ResNet-50 network
A convolutional network based on a residual blocks, designed to incor-

porate connections from the first block input to the second block output.
These residual blocks resemble subnets, featuring Conv2D and
GlobalMaxPooling2D convolution layers along with an activation function.
Additionally, this architecture introduces the possibility of linking direct
connections between layers. This network comprises 50 layers of residual
blocks, consisting of a convolutional layer, 48 residual blocks, and a classi-
fier layer with a small filter of 1×1 and 3×3, all of which use ReLU activa-
tion functions.54

Improving DL-interpretability

Interpretability mainly refers to the possibility a human operator infers
a connection between automatic decisions and identifiable input
patterns.65 These connections have become crucial in DL-based medical
image analysis, because it is a common requirement for successfully plug-
ging AI models into the clinic.66 However, DL outcome is usually
interpreted by highlighting scales of the outcome relevance with activation
maps67 which are not conceptual but rather they establish a per patch level
of importance.12 In contrast, the analysis herein introduced not only re-
turned the cell region that mostly contributed to the subtype discrimina-
tion, but it also quantified the stain response and morphology/chromatin
changes within these regions, in terms of the extracted features. As illus-
trated in Fig. 3, features were selected by thresholding the class activation
maps coming from the Grad cam algorithm,68 and superimposing the re-
sulting mask to the correspondent region-attention embedding. Such
binary masks were obtained by setting to one (1) all values above 90% of
each activation map maximum and zero otherwise. Once the above-de-
scribed process was applied, the retrieved features were linked to each



Fig. 3. DL-prediction interpretability improvement process. This methodology extracted features associated to each cell-region: whole-cell, nucleus, and cytoplasm, and
mixed them in a squared matrix with a predefined organization (region-attention embedding). Finally, the strategy identified relevant features per class, and the feature-
source cell-region, by using the activation maps provided by Grad cam algorithm.
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cell subtype to associate them with stain response variabilities and mor-
phology/chromatin changes. Likewise, in terms of region interpretability,
this methodology used the location index of relevant features, which
established a connection between a feature and the cell region.

Overall, these two contributions in terms of local feature relevance and
cell region contribution, were alignedwithwhat clinical protocols use to re-
port and characterize each cell subtype, taking into account the content of
cellular regions.

Experimental setup and evaluation

Performance of the proposed methodology approach was assessed by
two experiments:

Experiment 1: Evaluating the selected engineered features to differentiate the 21
BM cell subtypes by ML strategies

This experiment applied different ML classifiers (RF and SVM with lin-
ear, polynomial, and RBF kernels) to evaluate the utility of applying the
proposed feature space to discriminate the 21 cell subtypes. Furthermore,
this experiment provided a baseline to compare classic classification ap-
proaches with DL-based ones.

All classifiers were trained with the whole image set and using the pa-
rameters obtained by applying a grid search scheme. In case of RF, param-
eters were set as follows: 700 trees, gini information criteria, and a
maximum of 30 features considered during the search for the optimal
split. For the SVM with RBF kernel, the regularization parameter was set
to 100, and the stopping tolerance to 0.001. On the other hand, for SVM
with a linear kernel, the regularization parameter was chosen to be 10,
and the stopping tolerance to 0.001. Likewise, for SVM with a polynomial
kernel, the degreewas 2, while the regularization parameter and the kernel
coefficient were 500 and 0.01, respectively.

Experiment 2: Evaluating DL performance with the region-attention embedding to
differentiate the 21 BM cell subtypes

In this experiment the introduced region-attention embeddingwas com-
bined with ResNet-50 and XCeption architectures to classify the available
21 cell subtypes. Improvement evaluation was performed by using the
same data distribution to train/validate both selected network models but
using original images and fine tuning on imagenet-based transfer learning.
For ResNet-50 and Xception architectures, the batch size was 32 and the
stochastic gradient descent, the optimizer. The chosen loss function was
the categorical cross-entropy, together with a learning rate of 0.001. Train-
ing process, from scratch, consisted of 1865 iterations over 40 epochs for
both architectures.
5

Statistical analysis and evaluation metrics

All classification experiments herein performed for both, ML and DL
strategies, were trained and tested by using different data subsets of the
above-described database. Particularly, the whole set of images was split
in two groups, 80% of the imageswas used to train and validate themodels,
and the remaining independent set of 20% to test. This partition scheme fol-
lows a stratified strategy inwhich partitions are set to ensure the same class
distribution on both, training/validation and test data groups, i.e., each cell
subtype is equally represented in training/validation and testing partitions.
Here, training/validation was performed under three iterations of 3-fold
cross-validation scheme. This validation strategy was implemented to re-
duce possible batch effect in the obtained results, and stood for amore thor-
ough evaluation of the presented approach.

The performance of all classifiers was assessed using five evaluation
metrics, namely accuracy, precision, recall, f1-score, and specificity.
Thesemetrics are reported in terms ofmacro andweighted performance av-
eraging schemes, for all models obtained in the validation, as well as in the
test. These averaging strategies are presented considering that classification
performance may be biased by the class distribution differences, so macro
averaging is presented assuming all classes equally contributed to the re-
ported averaged metric. Nevertheless, due to the high number of classes,
and the large unbalance between them, weighted-averaged is here used
as the main reference value in overall classification, because the contribu-
tion of each class to the average is weighted by the proportion between
the number of images and the whole dataset size.

Results

All herein presented classification experiments were conducted using
Python 3.9, along with Scikit-learn for ML and Keras packages with
Tensorflow as backend for DL. These experiments were performed on
Tesla T4 GPU, where the whole validation scheme took 4 h for ML algo-
rithms, and 9 h for running each DL model.

Experiment 1: Evaluating the selected engineered features to differentiate the 21
BM cell subtypes

As shown in Table 1, the best BM cell subtype classification results were
obtained by a SVM with a polynomial kernel, presenting an overall mean
weighted f1-score of 0.60. This clearly represented a major advance be-
cause these results are comparable with the ones reported in the original
database publication, with an f1-score of 0.59.45 Interestingly, other ML
classifiers out of SVM-polynomial presented similar results, including



Table 1
Comparison of training/validation performance for different machine learning classifier, while differentiation 21 BM cell subtypes. All classification results are presented in
terms of mean and standard deviation (SD), of accuracy, precision, recall, f1-score, and specificity.

Averaging Metric Classification approach

Random forest SVM linear kernel SVM RBF kernel SVM polynomial

Macro

Accuracy 0.27 ± 0.01 0.30 ± 0.01 0.33 ± 0.01 0.33 ± 0.01
Precision 0.35 ± 0.02 0.36 ± 0.02 0.37 ± 0.01 0.37 ± 0.01
Recall 0.27 ± 0.01 0.30 ± 0.01 0.33 ± 0.01 0.33 ± 0.01
F1-score 0.28 ± 0.01 0.31 ± 0.01 0.34 ± 0.01 0.35 ± 0.01
Specificity 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01

Weighted

Accuracy 0.56 ± 0.01 0.59 ± 0.01 0.61 ± 0.01 0.61 ± 0.01
Precision 0.55 ± 0.01 0.57 ± 0.01 0.59 ± 0.01 0.60 ± 0.01
Recall 0.56 ± 0.01 0.59 ± 0.01 0.61 ± 0.01 0.61 ± 0.01
F1-score 0.54 ± 0.01 0.57 ± 0.01 0.60 ± 0.01 0.60 ± 0.01
Specificity 0.95 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.01
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SVM-RBF and SVM-linear kernel, and RF, respectively with a weighted f1-
scores of 0.60, 0.57, and 0.54, all of which with a low standard deviation
(Table 1), demonstrated the robustness of the extracted features for the pro-
posed task. More detailed information, including micro- and macro-valida-
tion results, were also included in Table 1, where lower performance is
presented due to the class unbalance and limitation of the implemented
ML classifiers. Nevertheless, it is important to highlight that all results pre-
sented in Table 1, show only training and validation values according to the
herein proposed evaluation scheme. Hence, independent testing results by
using the best validation model show that SVM-polynomial achieves
weighted and macro f1-score of 0.60 and 0.36, respectively, with corre-
sponding weighted accuracy of 0.61 and macro accuracy of 0.35.

Experiment 2: Evaluating DL performance with the region-attention embedding to
differentiate the 21 BM cell subtypes

For the sake of clarity, results of this particular experimentwere split, on
the one hand, a classic classification problem is assessed, while on the other
results show the added interpretability of the presented strategy.

Regarding the classification performance at differentiating 21 BM cell
subtypes, the obtained validation results of ResNet-50 and Xception net-
works, in combination with region-attention embedding, were presented
in Table 2. In this case, the best performance was achieved by using the re-
gion-attention embedding with Xception architecture, which obtained
weighted f1-score of 0.82, while ResNet-50 presented lower performance,
with weighted f1-score of 0.67. The above-mentioned results outperformed
ML classifiers of experiment 1 (weighted f1-score of 0.6 andmacro f1-score
of 0.33), and previously published DL approaches validated using exactly
the same database, like ResNext architecture with reported f1-score of
0.5945, Siamese Network which presented a f1-score of 0.81,48 and
Inception-ResNetV2 with f1-score of 0.57.49 Additionally, as shown in
Table 2, there is a clear improvement of DL-based classification
Table 2
Comparison of training/validation performance for Xception and ResNet50 net-
works, at differentiating 21 BM cell subtypes. All classification results are presented
in terms of mean and standard deviation (SD), of accuracy, precision, recall, f1-
score, and specificity.

Averaging Metric Classification approach

Xception + Region-attention
embedding

ResNet50 + Region-attention
embedding

Macro

Accuracy 0.66 ± 0.25 0.46 ± 0.19
Precision 0.74 ± 0.25 0.55 ± 0.19
Recall 0.66 ± 0.25 0.46 ± 0.19
F1-score 0.69 ± 0.25 0.48 ± 0.19
Specificity 0.99 ± 0.01 0.98 ± 0.01

Weighted

Accuracy 0.82 ± 0.15 0.67 ± 0.14
Precision 0.82 ± 0.15 0.67 ± 0.14
Recall 0.82 ± 0.15 0.67 ± 0.14
F1-score 0.82 ± 0.15 0.67 ± 0.14
Specificity 0.99 ± 0.01 0.98 ± 0.14
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performance, by using the proposed architectures and region-attention em-
bedding representation together, against the same networks trained with
original images, where the best obtained f1-score was of 0.69, with an
Xception architecture.

In terms of macro-averaged performance, the obtained results with the
combination of region-attention embedding and Xception network also pre-
sented overall competitive values when compared to the state of the art (f1-
score of 0.69), regardless the highly unbalanced distribution of the dataset,
as shown in bold values within Table 2.

Regarding the testing performance for the two implemented networks
in an independent partition group, the inclusion of the proposed region-
attention embedding led to a weighted f1-score of 0.56, in combination
with Xception network, as presented in Table 3. This outstanding result
was obtained with an unseen set of test images, and this was still compara-
ble towhat was previously reported in the original database publication but
in a training-validation scheme. Additionally, the high overall specificity
for validation and testing, shown in Tables 2 and 3, corresponded to the
pairwise classification process performed between a particular cell subtype
vs. the remained ones, which is highly unbalanced. Furthermore, detailed
performance metrics per cell subtype are presented in Fig. 4, where the
best testing and validation results stood for the segmented neutrophils,
with mean f1-score = 0.89. This is an expected result considering that
such cell subtype had the higher number of images in the database (n =
14,649). In contrast, the cell subtype with the lowest performance
corresponded to abnormal eosinophil with f1-score = 0.33, which is the
class with seven images from a total of 111,855 images in the database.

In terms of interpretability of the presentedmethod, the obtainedmodel
found out patterns commonly associated with cytological information at a
local level, and it also associates them to a defined cell region (nucleus, cy-
toplasm, and whole-cell). As an evidence of such findings, shown in Fig. 5,
the most relevant region-attention embedding features were coupled with
Table 3
Comparison of test classification performance in an unseen data partition, for previ-
ously obtained Xception and ResNet50 models at differentiating 21 BM cell sub-
types, in a unseen set partition. All classification results are presented in terms of
mean and standard deviation (SD), of accuracy, precision, recall, f1-score, and
specificity.

Averaging Metric Classification approach

Xception + Region-attention
embedding

ResNet50 + Region-attention
embedding

Macro

Accuracy 0.32 0.30
Precision 0.34 0.34
Recall 0.32 0.30
F1-score 0.33 0.31
Specificity 0.98 0.98

Weighted

Accuracy 0.56 0.54
Precision 0.56 0.54
Recall 0.56 0.54
F1-score 0.56 0.54
Specificity 0.95 0.95



Fig. 4. Per-class validation performance of region-attention embedding in
combination with Xception network, in terms of precision, recall, and f1-score
(more detailed results available in Table A1 within the supplementary material).
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biological patterns, reported as clinically discriminant for a subset of five
cell subtypes, namely promyelocites, blasts, erythroblast, myelocytes, and
segmented neutrophils. Here, interpretability consisted in associating infor-
mation of a cell subtype prediction with particular stain patterns or
chromatine/morphology-related features. In fact, both local changes and
Fig. 5. Interpretable output of the presented combination of region-attention embedd
features within the region-attention embedding for five different BM cell subtypes (colu
right panel graphically show the cell region where the most relevant features are fou
(NR) region.
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the quantified biological characteristics worked as complement of the acti-
vation maps (region-based interpretations), which led to region relevance
maps as presented in the final column of Fig. 5. Particularly, as shown in
the first row of the table in Fig. 5, the nucleus Haralick dissimilarity, nu-
cleus area, and cytoplasm blue channel skewness were more relevant for
the promyelocyte class than any other region-attention embedding charac-
teristics (column 2). These features quantified higher nucleus size and local
textural heterogeneities associated with hyper-granularity within the nu-
cleus, both reported as a common signature of this cell subtype.69 A similar
association for the other cell subtypes will be presented in the discussion
section for extending the interpretability advantages of the presented
method.

In addition, as shown in Fig. 6, the per class representativity of the ob-
tained relevant features was independently supported by a Tuckey statistic
test, which revealed the pairwise cell subtype discriminancy of all available
features (n=144). Specifically, by setting the significance level p ≤ 0:05,
the relevance of certain features was demonstrated according to the fre-
quency of feature occurrence for a particular cell class. This occurrence
was exemplified in Fig. 6(b),where for the blast class (BLA column), the sin-
gle feature turned out to be crucial to differentiate this cell subtype against
the others, because a large part of the column shows low p-values. This is an
important result considering that there is an overlap between them and the
features that region-attention-based approach found as relevant, previously
presented in Fig. 5 (nucleus Haralick dissimilarity, cytoplasm convexity and
mean intensity of blue channel).

Data ablation

Considering that one of the current challenges in AI is to deal with re-
duced number of images for training/validating DL based strategies, a
data ablation experiment was additionally performed. In this test, the num-
ber of training images per cell subtype was consecutively reduced to 1000
and 2000, and a new validation of region-attention embedding was exe-
cutedwhen combinedwith Xception network, in differentiating the 21 clas-
ses. This experiment tests the robustness of the introduced approach under
ing and Xception network. This table presents a match between the most relevant
mn 2), and clinically discriminant morphology features (column 3). Images in the
nd, in a heat map scale going from highly relevant (HR) region to a non-relevant



Fig. 6. Feature relevance maps by applying pairwise subtype differentiation based on a Tuckey test, for: (a) nucleus area, (b) cytoplasm convexity, (c) nucleus Haralick
dissimilarity, and (d) whole cell Haralick energy. Here, the most significant differences are represented by lower p-values (<0.05), which means the darkest purple matrix
points.
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variable data size conditions, and it is then compared against the commonly
used image-based input for DL classification. To this end, the Xception net-
work was trained/validated by separately using both, original RGB images
and their corresponding region-attention embeddings. Specifically, for
image-based network feeding, data augmentation was applied by image ro-
tation and flipping, to meet a balanced version of the cell subtypes in terms
of the proposed number of examples per-class, n:{1000, 2000}. Addition-
ally, two different training strategies were applied, i.e., using RGB images
to train the network from scratch, and using transfer learning with
imageNet weights, both under a 40 epocs and fine-tuned training scheme.
In contrast, the region-attention embedding approach did not use any
data augmentation, because applying rotation and flipping image transfor-
mations may led to a biased model given by the rotation invariance of all
implemented features within the embedding. As presented in Fig. 7(e,f),
Xception network in combination with region-attention embeddings,
outperformed the corresponding network version trained/validated with
RGB images, when classifying 21 BM cell subtypes. Particularly, by using
region-attention embedding with Xception, trained with 1000 and 2000
images per-class respectively, the classification performance achieved
weighted f1-score of 0.72 and 0.73, respectively. Under the same data con-
ditions, but using RGB images and ImageNet-based transfer learning,
Xception network obtained a f1-score of 0.42 with 1000 images (see Fig.
7(b)), and 0.62 with 2000 images (see Fig. 7(d)), which evidenced no sta-
bility when working with such limited data, and supported the advantage
of using region-attention embeddings against RGB images. An extended
version of the obtained results in these complementary experiments is
shown in Table A3 within supplementary material.

Discussion

This work has introduced a new BM cell subtype classification strategy
built upon engineered features which fed two different DL networks
(ResNet-50 and Xception), and outperformed state-of-the art published
8

methodologies at classifying 21 classes from a public database with the
largest number of BMcell subtypes. Specifically, the particular organization
of the feature assembly, herein called region-attention embedding, set the
patterns that contributes the most to discriminate the 21 different classes.
This region-attention embedding is assembled in amatrix-like arrangement
of the extracted features, setting those from the same cell component are lo-
cated nearby to preserve regional coherence and to provide explainability.

As presented in Table 4, the introduced region-attention embedding
outperforms state-of-the-art approaches at classifying 21 BM cell subtypes.
Particularly, these results evidenced a performance improvement when
using Xception and ResNet50 in combination with region-attention embed-
ding, rather than a transfer learning approach with original cell images, be-
cause it presents an increment of more than 8% points in all metrics.
Regarding other published classification strategies, the original database
publication reported an overall f1-score of 0.57 by using a tuned ResNext
architecture for all the 21 cells, under a simple held-out experimental
setup, which is largely outperformed by the presented strategy with f1-
score of 0.82. Furthermore, independent validation results of this ResNext
were graphically summarized with no specifies, but with overall lower per-
formance values than obtained with the region-attention embedding. In
comparison with a more recent strategy by Ananthakrishnan et al.,48 who
addressed discrimination of all classes in the same database, the herein in-
troduced approach not only obtain a slightly higher validation accuracy
(0.82 vs 0.81), but it also provides a more thorough evaluation setup. Spe-
cifically, in that work, the implemented Siamese network was tested in a
single run over two partitions of the dataset (training and testing), while
with the region-attention embedding evaluation included three iterations
of a 3-fold stratified cross-validation, and a test in an unseen data partition,
thereby reducing the batch effect possibility. Actually, in similar held-out
experimental conditions, the Inception-ResNetV2 by Meem et al.,49 pre-
sented accuracy of 0.96, precision of 0.60, and recall of 0.5968, which
stand for unbalanced classification performance in 21 cell subtype differen-
tiation. In contrast, the region-attention embedding show highly stable



Fig. 7. Performance of Xception network by using images and the presented region-attention embedding, with 1000 and 2000 images per-class. Particularly, the bars present
accuracy, precision, recall, and f1-score, for Xception network trained with: (a) 1000 RGB images and imageNet weights, (b) 1000 RGB images from scratch, (c) 2000 RGB
images and imageNet weights, (d) 2000 RGB images from scratch, (e)1000 image equivalent region-attention embeddings, and (f) 2000 image equivalent region-attention
embeddings.
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classification metrics, with 0.82 for both, precision and recall. Finally, a
more recent work presented by Glüge et al.,70 a thorough evaluation of
DL-based classification was introduced by using a large list of networks,
all trained/validated with k-fold evaluation scheme. This validation strat-
egy provided similar evaluation advantages to the one herein reported,
but with lower overall f1-score of 0.762 ± 0.05 when compared to the
region attention embedding that achieves a f1-score of 0.82 ± 0.15.

Other strategies have presented higher BM cell subtype classification
performance, but overall tested with lower number of cell classes, or evalu-
ated in private databases. Particularly, Thipathi et al.,47 published
HematoNet as a network designed to classify 17 cell subtypes, which was
evaluated using the same database that the presented region-attention em-
bedding, but using single held-out partition scheme. HematoNet achieved a
f1-score of 0.86, by introducing the CoAtNet, a combination of both
ConvNet network and transformer attention layers. However, as informed
in the original publication, CoAtNet validation was performedwith a single
training/testing partition, which stands for an oversimplified representa-
tion of the sample space. In contrast, region-attention embedding evalua-
tion avoid biased training/testing process by applying three iterations of a
3-fold cross-validation, and by using the available dataset images, without
any data augmentation. In fact, data augmentation, as the most common
Table 4
Comparison of state-of-the-art techniques challenged by classifying 21 bone marrow ce
Marrow Cytology in Hematologic Malignancies (Bone-Marrow-Cytomorphology MLL H
the number of classes, implemented network and experimental strategy for validation, a
by the method presented in this work.

DL approach Experimetal configuration

Xception (images) Transfer learning Repeated 3-fold cross-validation
ResNet50 (images) Transfer learning Repeated cross-validation

ResNext45 Transfer learning Hold-out
Regnet_y_32gf70 pretrained on ImageNet 5-fold cross-validation

Siamese Network48 Hold-out
Inception-ResNetV249 Hold-out

Region -attention embedding + Xception Repeated cross-validation
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strategy to increase training images, is also recognized as a process that re-
duces model generalizability and increases overfitting possibility. In a sim-
ilar evaluation scheme, Ahmad et al.,71 introduced a white blood cell
classification method that uses entropy-controlled Deep Feature optimiza-
tion to extract the best latent space representation from multiple DL net-
works. This approach presented an accuracy of 99.6, at differentiating
five cell subtypes, which represented a reduced version of the herein ad-
dressed task. In terms of large number of classes, the works presented by
Hazra et al.56 and Wang et al.72 have shown to succeed in multiple subtype
classification, but still using private databases, and fewer cell subtypes. The
former with 12 cell subtypes reported a f1-score of 0.89 by using generative
adversarial networks and sequential CNN, and the second reported a f1-
score of 0.86 at differentiating 19 classes in non-open access image set,
and both evaluated using single hold-out evaluation. In contrast, region-
attention embedding evaluation includes higher number of classes 21, com-
ing from a large open acces dataset, which stands for a reproduciblemethod
and evaluation. Additionally, the presented evaluation scheme minimize
bias possibility in both training and testing processes, by applying three it-
erations of a 3-fold cross-validation, and by using the available dataset im-
ages, without any data augmentation. In fact, data augmentation, as the
most common strategy to increase training images, is also recognized as a
ll subtypes in the same image database, i.e., “An Expert-Annotated Dataset of Bone
elmholtz Fraunhofer)”.46 The performance of each method is presented in terms of
s reported in the correspondent publication. In bold, the validation results obtained

Precision Accuracy Recall f1-score

0.74 ± 0.11 0.74 ± 0.18 0.66 ± 0.16 0.69 ± 0.15
0.55 ± 0.17 0.56 ± 0.14 0.46 ± 0.22 0.48 ± 0.2

0.51 0.69 0.69 0.57
0.79 ± 0.06 – 0.75 ± 0.06 0.76 ± 0.05

0.84 – – 0.81
0.6 0.962 0.59 0.57

0.82 ± 0.15 0.83 ± 0.15 0.82 ± 0.15 0.82 ± 0.15
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process that reduces model generalizability and increases overfitting
possibility.

Although the presented results point out this technology is potentially
applicable, a crucial part of this discussion is that classification performance
is not enough to ensure translation to the clinical practice. Even though
image-based BM cell characterization reaches human-level performance,
spectral analysis andmorphology evaluation remain themore interpretable
techniques at identifying such hematopoietic elements. Importantly, in
comparison with those strategies, the herein presented approach is not lim-
ited by technology equipment and test panels, and also provides reproduc-
ible and interpretable results. These last advantages are fundamental
because AI model trust is a condition that depends on the evaluation thor-
oughness and interpretability of the algorithm outcome.12 In this regard,
the herein introduced work provides a more thorough evaluation of the
classification task, demonstrating competitive state-of-the-art validation re-
sults at classifying the 21 BM cell subtypes, under 3-fold validation scheme
and further test partition evaluation. As explained in the experimental setup
and evaluation section, validation results were obtained by a
cross-validation scheme, in contrast with the hold-out scheme of other pub-
lications whichmay be biased by particular data partitions (batch effect). In
addition, as shown in Table 3, another evaluation of this method, which
was much less-biased, consisted in classifying an unseen partition, i.e., to
set aside the test set from the beginning, resulting in a weighted f1-score
of 0.56, which is similar to the f1-score = 0.57 published by the database
owners but using a unique validation partition.

Additionally, it should be strengthen out that a crucial factor which im-
proved DL performance in the presented region-attention strategy relied in
the important dimensionality reduction executed by the introduced strat-
egy, where a 250×250×3 image input was transformed into 12×12
region-attention embedding. In fact, this low-dimensional space distilled
out discriminative image patterns, increasing cell subtype separability be-
fore DL-based classification. Furthermore, the embedded spatial informa-
tion in the input helped DL network to capture high level feature/spatial
relations that defined inter-class differences. Particularly, an additional ex-
periment in which feature organization within the proposed embedding
was randomly performed, showed a decrease of the 21 class performance,
i.e., a f1-score of 0.77. This interesting result suggests it is crucial to keep
the spatial feature dependence before the convolutional layers, because
this order captures not only local relations between engineered characteris-
tics, but also integrates region/spatial cell information to improve subtype
separability. Additionally, a second supplementary experiment that differ-
entiated the 21 BM cell subtypes, by using region-attention embedding
and a linear neural network (no convolution layers), also pointed out the
importance of DL convolutional layers for the proposed task. Specifically,
as presented in the validation results of experiment 2, Xception network
with a set of convolutional layers obtained a better validation performance
(f1-score= 0.82) than the presented with a linear neural network (f1-score
= 0.48). The hypothesis behind these performance differences is that con-
volutions capture complex spatial relations between pre-extracted
engineered features, as a result of the organization of the region-attention
embedding. Detailed results of these additional experiments were summa-
rized in Table A2 in the supplementary material.

BM cell subtype prediction interpretability

Presently, DLmodels have become a real actor inmanymedical applica-
tions, including BM cell classification,73 and leukemia cell detection.74

However, the role of these models as part of the clinical pipeline is still lim-
ited by the little-to-none understanding about how a particular prediction is
made, because DL strategies have been commonly presented as black
boxes.75 In fact, transparency has appeared as an important concept be-
cause interpretability is now a law requirement for approval of any DL de-
cision medical system, after the European Union's General Data Protection
Regulation law.76 In this context, DL model transparency has been 2-fold
tackled, either modifying the architecture of the networks, or providing
post-hoc explanation about how prediction is achieved,12 which are
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commonly based in tools that highlight specific image regions as a measure
of relevance.77 Nevertheless, very few of these interpretable approaches
have been applied to BM cell subtype differentiation, and currently
research is centered on classification rather than explainability ofmodel de-
cision. In contrast, the presented region-attention embedding offered both,
highly accurate classification and detailed information regarding most
discriminative features/cell-location per subtype. Specifically, as a post-
prediction interpretation strategy, the introduced approach use prior bio-
logical knowledge as complement for most popular alternatives which
used both, latent space explanations and attributionmaps. However, rather
than projecting high-dimensional latent spaces to two dimensions to give
prediction interpretations,78,79 the region-attention embedding allow a di-
rect feature/subtype association, similar to presented by Krappe et al.,25

who used knowledge-based hierarchical tree classifier to differentiate 16
leukemia-related cells from regular ones, in peripheral blood images. But
in addition, region-attention embedding enhances outcome explanation
in terms of the feature location, which is a further information source
working on top of prior knowledge used to constrain the tree. These
feature-type/cell–region–source combination presented a complementary
advantage, particularly in comparison with filter-relation interpretations
for Resnext50 proposed in 2019 by Prelberg et al., that only retrieve low-
level relevant features when classifying white blood cells into normal
B-lymphoid and malignant B-lymphoblasts.80

As complement, attribution maps offered interpretation by highlighting
regions of the input whichwere relevant for the outcome.81 However, these
spatial representation of relevance by itself, usually provided few informa-
tion about which pattern within salient regions helped the most to the
prediction.53 Importantly, this lack of detail within these methodologies
is covered by the presentedwork by using the spatial attributionmaps to lo-
cate pattern descriptors and locations in a single processing step, without
requiring major modifications to backbone network architecture. Particu-
larly, by modifying the DL structure, some methods predicted high-level
image concepts (semantic related features) to perform automatic tasks.82

These models, also known as concept learning models, have proved to be
more competitive when mixing hidden neurons and freely trained ones
extracting features from scratch,83 or by capsuling complex diagnostic con-
cepts in vectored structures instead of using scalar feature maps used in
CNN,84 but again missing the detail that herein introduced embedding is
providing.

Other works, also explored handcrafted feature explainability to im-
prove DL model transparency by indicating the most relevant patterns de-
fining cell differences, but focused on leukemia cell lineage
differentiation, like acute myeloid leukemia by Dincic et al.61 In detail,
these authors studied different morphological, fractal, and textural descrip-
tors to indicate the most relevant patterns defining cell differences, but lack
on detailed position for such discriminant patterns. For peripheral blood
images, a more balanced approach found accurate classification and
spatial-location explanation with compact classification model based on a
combination of attention layer and CNN blocks, that distinguished
promyelocytes from normal leukocytes, in a binary classification that uses
attention maps to facilitate model prediction interpretability.38 However,
herein implemented approach provides similar spatial awareness for
multi-class classification of BM cell population, enhancing subtype discrim-
ination interpretability, far from unspecific DL activation maps presented
by Matek et al.,45 and heavy attention maps.47

Unlike the previously published works, the introduced region-attention
embedding naturally offers both, local feature and cell region information,
identifying whether a DL model prediction is using nucleus/cytoplasm,
chromatin changes or cell shape, and discriminating among all possible
cell subtypes. To this end, the region-attention engineered features are par-
ticularly selected to quantify the above-described biological characteristics.
In addition, the feature location within the matrix-like structure allows to
track not only the most relevant characteristic, but also the correspondent
region of origin. As shown in Fig. 5, the proposed method output includes
a list of paired features/cell-regions, on top of the cell subtype prediction,
which enables a direct comparison against clinical discriminant features.
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This option reinforces AI trustworthiness, in contrast with previously works
in BM cell subtype classification, which are limited to show gradient based
attribution maps. Specifically, Gradcam and SmoothGrad algorithms used
byMatek et al.46 and Tripathi,47 show spatial relevancemaps that highlight
the regions thatmostly contribute to label prediction, but nothing about the
local patterns within such cell regions. Other approaches have used trans-
former-based attention to identify relevant regions within the cell, intro-
ducing B-cos Vision Transformer and B-cos Swin Transformer to reduce
attention map fragmentation and enhance model explainability.85 How-
ever, even when these approximations show more detailed relevance
maps, they have no description about the particular patterns/features that
attention modules are using from the highlighted regions, to reach the
cell subtype prediction.

Overall, interpretable information provided by the presented strategy
facilitates integration to the clinical workflow, because obtained features
are easily associated to biological concepts whichmedical experts are famil-
iar with. For instance, as shown in Fig. 5, the erythroblast predictionmainly
uses the cytoplasm Haralick entropy and whole cell characteristics like
mean intensity value of the red channel or Haralick energy. These charac-
teristics describe texture heterogeneity, a concept close to cytoplasm
hypergranularity, and low eosin stain response presented in basophilic cy-
toplasm. Regarding myelocytes, the most discriminative biological features
are relatedwith cytoplasm, a condition captured by themethod because the
frequency of cytoplasm features is higher than the one fromnucleus charac-
teristics. This finding is illustrated by the spatial heat map in the myelocyte
row within Fig. 5, where the nucleus is marked with a lower relevant value
than cytoplasm. In contrast, segmented neutrophil relevance map shows
the model uses nucleus features rather than cytoplasm ones. Particularly,
nucleus solidity appeared as the most frequent region-attention embedding
feature, which describes differences of segmented and lobulated nucleus
patterns. Furthermore, the relevance of the region-attention embedding
features was also validated by a Tuckey test (see Fig. 6), to determine
whether a feature defines statistical differences between pairwise cell sub-
types. Specifically, the relevance for some particular features is presented
in heat map matrices, where a lower intensity value (black) corresponds
to statistical significant differences between two defined classes. For exam-
ple, as depicted in Fig. 6(a), nucleus area appeared as a feature with statis-
tically significant differences which likely facilitated promyelocyte
identification, because PMO row/column showed low p-values when this
subtype was compared against the other cell classes. In the case of whole
cell Haralick energy as a determinant characteristic, Fig. 6(d) shows that
the EBO row/column was one of the very few composed almost entirely
by low p-values, i.e., whole cell Haralick energy presented a feature space
with promyelocytes separated from other cell subtypes. These quantitative
results provide an independent support to the feature relevance obtained
with the presented method, because the most frequent characteristics in
this Tuckey tables matches the selection by the region-attention embedding
based strategy.

Limitations of the proposed strategy come from its dependency to cell
region segmentation and the lack an independent dataset within the
evaluation process. Regarding segmentation, an accurate delimitation
of pre-defined cell regions (cytoplasm, nucleus, and whole cell) is a
major requirement for constructing region-attention embeddings,
which may affect the performance of the introduced approach. However,
as presented in Image pre-processing, the evaluation of the herein imple-
mented segmentation strategy demonstrated a high performance in rec-
ognizing such image components, reducing possible effects of a wrong
segmentation within the whole classification process. A second limitation
of the presented strategy, no independent dataset was used for a multi-
center validation, which is a common mistake in previously published
BM cell subtype classification works. However, herein presented evalua-
tion scheme included a test in an unseen partition of the dataset, which
represented a more exhaustive evaluation in comparison with previously
published works, and also stands a further step to demonstrate the gener-
alizability of the presented approach.
11
Conclusions

The herein introduced strategy improved BM cell subtype classification
by mixing DL architectures with engineered features, arranged in a region-
attention embedding. This method outperforms previously published ap-
proaches by classifying 21 different classes, while a thorough evaluation is
implemented on a large publicly available database. This approach provided
new levels of information in terms of local features and cell regions, that al-
lows for medical users to relate a model output with clinical features they
use for discriminating BMcells. Future effortswill be focused onmodel inter-
pretability assessment, because herein presented evaluation includes only
qualitative results based on matching region-attention embedding features
with published clinical features. This explainability analysis may be
enriched by including domain-expert perception of the provided relevant
cell subtype feature/region, which is a commonly used strategy to boost
model trustworthy. Nevertheless, interpretability and explainability, both
with different meanings, are still subjective by their dependency on the par-
ticular application, and propagation of the DL model uncertainty to their in-
terpretability validation. Furthermore, the lack of ground truth interpretable
patterns within the BM cell image context makes evaluation and quantifica-
tion of interpretability improvement a challenge which remains open.
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