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Remodeling of the chromatin
landscape in peripheral
blood cells in patients with
severe Delta COVID-19
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Kseniia A. Deinichenko1, Oleg D. Fateev1, Vladimir S. Yudin 1,
Sergey M. Yudin1, Vladimir E. Mukhin1, Svetlana V. Romanova1,
Aleksandra I. Nekrasova 1, Anastasia S. Zhdanova1,
Anastasia V. Tsypkina1, Ivan S. Vladimirov1,
Antonida V. Makhotenko 1, Anton A. Keskinov1,
Sergey A. Kraevoy1, Ekaterina A. Snigir 1,
Dmitry V. Svetlichnyy1* and Veronika I. Skvortsova2

1Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical
Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of
Russia), Moscow, Russia, 2The Federal Medical Biological Agency (FMBA of Russia), Moscow, Russia
COVID-19 is characterized by systemic pro-inflammatory shifts with the

development of serious alterations in the functioning of the immune system.

Investigations of the gene expression changes accompanying the infection state

provide insight into the molecular and cellular processes depending on the sickness

severity and virus variants. Severe Delta COVID-19 has been characterized by the

appearance of a monocyte subset enriched for proinflammatory gene expression

signatures and a shift in ligand–receptor interactions. We profiled the chromatin

accessibility landscape of 140,000 nuclei in PBMC samples from healthy individuals

or individuals with COVID-19.We investigated cis-regulatory elements and identified

the core transcription factors governing gene expression in immune cells during

COVID-19 infection. In severe cases, we discovered that regulome and chromatin

co-accessibilitymoduleswere significantly altered acrossmany cell types. Moreover,

cases with the Delta variant were accompanied by a specific monocyte subtype

discovered using scATAC-seq data. Our analysis showed that immune cells of

individuals with severe Delta COVID-19 underwent significant remodeling of the

chromatin accessibility landscape and development of the proinflammatory

expression pattern. Using a gene regulatory network modeling approach, we

investigated the core transcription factors governing the cell state and identified

the most pronounced chromatin changes in CD14+ monocytes from individuals

with severe Delta COVID-19. Together, our results provide novel insights into

cis-regulatory module organization and its impact on gene activity in immune

cells during SARS-CoV-2 infection.
KEYWORDS

scATAC-seq, single cell, COVID-19, transcriptional regulatory network, PBMC
(peripheral blood mononuclear cells)
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1 Introduction

Several COVID-19 investigations have revealed a complex

interplay between immune activation and the presence of specific

cell subsets associated with symptom severity. The course of the

disease varies significantly among COVID-19 patients. Some patients

develop asymptomatic forms, while others may experience severe

disease symptoms due to dysregulation of immune responses (10, 55–

58). It is crucial to understand the basic and detailed molecular

processes of the immune response against SARS-CoV-2, where high-

throughput methods, such as single-cell transcriptome profiling,

uncover gene expression characteristics of the cells to elucidate

phenotypic properties.

The severity of the COVID-19 changes is characterized by

quantitative and qualitative alterations in immune compartments.

Severe cases are usually accompanied by pronounced immune shifts

and lymphopenia (11, 26). Several investigations have reported that

the fraction of neutrophils, plasma cells, and classical monocytes

increases in the blood of COVID-19 patients (23, 25). Moreover,

severe patients had more pronounced shifts than individuals with

mild or moderate COVID-19. In addition, a decreased proportion

of T cells, natural killer (NK) cells, dendritic cells (DCs), and non-

classical monocytes has been identified in the PBMC of COVID-19

patients. Existing single-cell investigations of immune blood cells

have identified a decreased proportion of natural killer (NK) cells in

COVID-19 patients (12, 14, 15, 19, 35). However, there is a trend

towards an increase in proliferating NK cells (high MKi67) with an

increase in COVID-19 severity (19). In addition, multiple studies

have identified an elevation of B cell levels and a decrease in T cells

and DCs in severe COVID-19 patients (8, 19, 23, 35). Interestingly,

proliferative T cell subsets expressing MKi67 demonstrate distinct

associations with COVID-19 severity and a general trend towards

lymphopenia with an increase in symptom severity. A deeper

analysis found elevated levels of the activated CD4+ T cell subsets

(Th1, Th2, and Th17-like) in patients with severe COVID-19 (39).

Single-cell transcriptome investigations of PMBC have also

identified pronounced alterations in the composition and gene

expression of monocyte subtypes. In particular, CCL3, IL1RN,

and TNF-high CD14 monocytes are enriched in patients with

severe COVID-19 and may accompany inflammatory storms

(21). Subpopulations of monocytes with high levels of CCL8,

CXCL10/11, and IL6 are also elevated in PBMC with severe

COVID-19 (18).

However, all genes in the genome are expressed from a single

DNA sequence matrix, and precise gene regulatory programs define

cell phenotypes and responses to external environmental factors. To

investigate gene expression mechanisms, chromatin accessibility

profiling at the single-cell level is crucial for uncovering the origins

of cellular diversity. Analysis of chromatin accessibility in

peripheral immune cells convalescing from COVID-19 revealed

chromatin landscape changes associated with immunological

memory development (27). Moreover, cell type-specific regulatory

alterations revealed extensive remodeling of epigenomes in the

blood immune cells during SARS-CoV-2 infection. Particularly,

investigations have revealed elevated motif accessibility of the
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known myeloid regulators, KLF and CREB families, in individuals

with mild or moderate COVID-19. Furthermore, extensive

chromatin differences have been identified between seronegative

and seropositive CD14+ monocytes and B cells, indicating a switch

from inflammatory to adaptive immune response with the

formation immunological memory (20, 23, 33).

The chromatin landscape and alterations in immune cells in

response to the primary SARS-CoV-2 infection remain unknown.

Here we applied single-cell transposase-accessible chromatin with

sequencing (scATAC-seq) to decipher chromatin remodelingin the

peripheral immune cells of healthy donors and individuals with

COVID-19 (mild, convalescence, severe). In particular, here we

focused on the investigation of the specific proinflammatory

population of monocytes that were previously identified in

individuals with the severe/critical form of Delta COVID-19 (38).

We characterized the cell state based on the specific pattern of the

accessible chromatin landscape, described core regulators

governing the cell state, controlled the expression of specific

marker genes, and delineated the transcription control from cis-

elements. Our study facilitates a comprehensive understanding of

immune changes together with the underlying regulatory factors

leading to the formation of specific proinflammatory monocytes in

severe Delta COVID-19 patients.
2 Materials and methods

2.1 Sample collection

Patients were categorized into groups based on the severity of

their condition according to the World Health Organization

(WHO). Healthy individuals who tested negative for COVID-19

were recruited as volunteers after they provided informed consent.

Peripheral blood samples were collected from both COVID-19-

positive patients and healthy individuals in EDTA tubes and

processed within 4 h. Peripheral blood mononuclear cells

(PBMCs) were isolated using a Ficoll Paque Plus solution and

standard density gradient centrifugation. The isolated PBMCs were

then suspended in freezing media (90% fetal bovine serum, 10%

DMSO) and stored in a −80°C freezer.
2.2 Sample collection single cell RNA-seq
experiment workflow

To study the 3’ gene expression of single cells, libraries were

prepared using the Chromium Next GEM Single Cell 3’ Reagent Kits

v3.1 protocol (10× Genomics, Pleasanton, CA, USA) platforms.

Biomaterial quality control was performed using a Countess II FL

cell viability counter and analyzer (Thermo Fisher Scientific,Waltham,

MA, USA). Cell suspensions conforming to the protocol requirements

were used for library sample preparation. In the prepared Master Mix,

31.8 mL per sample, the studied suspension of cells (13.8 mL) and water
without nucleases (29.5 mL) were added. The mixture was stirred using

an automatic dispenser 10 times and applied to a chip to generate an
frontiersin.org
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emulsion. Then, the gel particles and oil were applied to the chip. The

loaded chip was processed at a chromium controller station. The

resulting emulsion was incubated for 45min at 53°C, for 5 min at 85°C

and stored at 4°C. The temperature of the amplifier lid was 53°C and

the volume of the mixture was 125 mL. The emulsion was cleaned after

incubation as follows: 125 mL of the Recovery Agent was added to

each sample; the tubes with the mixture were kept for 2 min and

carefully turned over, after which 130 mL of the lower pink phase was

briefly centrifuged and selected. The prepared Dynabeads Cleanup

Mix was added to each sample and kept at room temperature for 10

min, after which the magnetic particles were washed with 80% alcohol

and cDNA fragments were eluted using EB buffer. Amplification was

performed to obtain full-sized cDNA. After cDNA amplification,

magnetic particle purification was performed and quality control of

the purified cDNA was carried out using an automated Tape Station

4200 (Agilent, Santa Clara, CA, USA) electrophoresis systemwith a set

of D5000 (Agilent, Santa Clara, CA, USA) and a Qubit 4 fluorimeter

(Thermo Fisher Scientific, Waltham, MA, USA). For cDNA

fragmentation, 10 mL of the sample and prepared Fragmentation

Mix were used. After fragmentation, the samples were cleaned

bilaterally using magnetic particles. The adapters were then ligated:

50 mL of the prepared Adapter Ligation Mix was added to 50 textmu L

of the sample and incubated for 15 min at 20°C. The magnetic

particles were purified after ligation. The final stage of library

preparation was indexing PCR. A Chromium™ i7 Sample Index

Plate (10× Genomics, Pleasanton, CA, USA) was used for one-way

indexing. To 30 mL of the sample, 60 mL of the prepared Sample Index

PCRMix and 10 mL of the index were added. The number of cycles in

the indexing PCR was 12 for samples with cDNA concentrations of

4 ng/mL–25 ng/mL. After indexing, the samples were subjected to

double-sided cleaning on magnetic particles, and quality control of the

resulting libraries was carried out using a Tape Station 4200 with a set

of D1000 (Agilent, Santa Clara, CA, USA) and a Qubit 4 fluorimeter.

The finished libraries were sequenced with coverage of >200 million

readings per sample.
2.3 Single cell ATAC-seq
experiment workflow

To study chromatin accessibility at the single-cell level, nuclei

were isolated from cell suspensions, libraries were prepared using

the Chromium Next GEM Single Cell ATAC Reagent Kits v1.1

protocol and sequenced using the Illumina NovaSeq6000 and

NextSeq2000 platforms. Nuclei were isolated from PBMC cell

suspensions. Nuclei were isolated using the following method:

cells were pelleted and resuspended in 100 ml of lysis buffer (10

mM Tris–HCl pH 7.4, 10 mMNaCl, 3 mMMgCl2, 0.1% Tween-20,

0.1% Nonidet P40 Substitute, 0.01% Digitonin, 1% BSA, nuclease-

free water), incubated for 5 min and added 1 ml of wash buffer (10

mM Tris–HCl pH 7.4, 10 mMNaCl, 3 mMMgCl2, 0.1% Tween-20,

1% BSA, nuclease-free water), the nuclei were precipitated for 5 min

at 500 rcf at a temperature of 4°C, then resuspended in the prepared

Diluted Nuclei Buffer. Nuclear quality control was carried out using

a Countess II FL counter, a cell viability analyzer, and an EVOS
Frontiers in Immunology 03
M7000 microscope. For sample preparation of libraries, nuclei that

met the requirements of the protocol were used. The nuclei sample

under study was added to the prepared Transposition Mix (10 mL
per sample). The volume of the sample was calculated based on the

concentration of nuclei using the formula.

x =
10, 000 * 1:53

n
(1)

where n is the concentration of nuclei in the sample and x is the

required volume of the sample. The mixture was then incubated for

60 min at 37°C. Next, 60 ml of the prepared Master Mix was added

to the samples, mixed 10 times using an automatic dispenser, and

applied to the chip to generate an emulsion. Subsequently, the gel

particles and oil were applied to the chip. The loaded chip was

processed at The Chromium Controller station. The resulting

emulsion was then amplified. After amplification, the emulsion

was purified: 125 ml of Recovery Agent was added to each sample,

the tubes with the mixture were carefully inverted 10 times, then

briefly centrifuged, and 130 ml of the lower pink phase was collected,
followed by cleaning with magnetic Dynabeads MyOne SILANE

and Beckman Coulter SPRIselect Reagent magnetic particles. After

purification, indexing PCR was performed. We used the Single

Index Kit N Set A for the one-way indexing. To 40 ml of sample, 57.5

ml of the prepared Sample Index PCR Mix and 2.5 ml of index were
added. The number of cycles in indexing PCR was set to 9. After

indexing, the samples were subjected to double purification on

magnetic particles, and the quality of the resulting libraries was

controlled using a Tape Station 4200 with a high-sensitivity D1000

kit, an Agilent Bioanalyzer 2100 with a high-sensitivity DNA chip

kit, and a Qubit 4 fluorimeter. Ready-made libraries were sequenced

with coverage of > 250 million reads per sample.
2.4 scRNA-seq feature/barcode matrix
generation, QC, and filtering

The scRNA-seq data used for this study were obtained from

the Single-Cell Gene Expression Analysis Revealed Immune

Cell Signatures of Delta COVID-19 (38). Feature/barcode matrix

of single cell RNA seq data was generated using 10× Cellranger

v.6.0.1 (54). We demultiplexed the sequencing results using

the mkfastq command of the Cellranger tool. The sequencing

reads were aligned to the GRCh38 reference genome. Quality

control and filtration we performed in R v.4.2.0 using Seurat

v.4.3.0 (16). Feature/barcode matrix filtering was performed

by selecting cells with 200–2,500 genes and less than 15%

mitochondrial reads.
2.5 scRNA-seq dataset integration
and annotation

The feature/barcode matrix was normalized using the Seurat (16)

function, NormalizeData. We selected the top 2,000 variable genes

using the FindVariableFeatures and vst approach in the Seurat
frontiersin.org
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package. We performed a linear transformation of the data using

ScaleData, followed by the RunPCA function. To eliminate batch

effects between samples, we applied the Harmony package v.0.1.1.We

identified cell clusters using FindNeighbors and FindClusters

(resolution = 0.5) functions from Seurat. Cell type annotation of

the dataset was performed manually based on the expression of

marker genes, similar to previously published scRNA-seq data (38).
2.6 Preprocessing and quality control of
scATAC-seq data

We applied the Cell Ranger ATAC 1.2.0 pipeline (10× Genomics,

Inc.) to process sequencing results (fastq files) and filter out cells

based on quality metrics. According to the recommendations, we

retained cells for further analysis if the following metrics were within

valid values: 500–25,000 fragments fall in peak regions and at least

25% of reads in peak regions, TSS enrichment score greater than 1,

and nucleosome signal score less than 3. After filtering, 112,249 cells

were retained for subsequent analyses.
2.7 Normalization, imputation, and
dimensionality reduction of scATAC-
seq data

We applied the term frequency-inverse document frequency

(TF-IDF) method for data normalization with default settings, as

implemented in the Signac package. We selected top features with

“FindTopFeatures” Signac function and performed dimensionality

reduction with “RunSVD” function.
2.8 Cell type classification of scATAC-
seq data

To identify cell types in the scATAC-seq data, we constructed a

gene-activity matrix using a chromatin accessibility signal estimated

with the GeneActivity function from the Signac package with default

parameters. We performed cell type annotation on the scRNA-seq

data based on the estimated gene activity, relying on known immune

cell marker genes. We correlated the gene activity metrics obtained

with scATAC-seq and scRNA-seq and identified the corresponding

cell types based on the maximal correlation score.
2.9 scATAC-seq dataset integration
with CisTopic

We applied the CisTopic R package (7) to identify cell clusters

and patterns of chromatin accessibility. This method performs

Latent Dirichlet Allocation (LDA) using a manually set number

of topics. We identified the optimal number of topics using the

runModel function and defined 13 topics as the most suitable for

our data.
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2.10 Analyses of differential open
chromatin regions between cell types in
scATAC-seq

For each cell type, we identified differential open chromatin

regions with the Signac function “FindMarkers” using default

parameters (min.pct = 0.1). Regions that were differentially

accessible were considered if the adjusted p-value was ≤ 0:05.
2.11 Peak annotation and GO
enrichment analysis

Peak annotations have been performed with the CHIPseeker R

package using the “annotatePeak” function (from −3,000 to 3,000

bp from TSS). For GO enrichment analysis, we used the seq2gene()

function to assign genomic regions to the nearest genes. Next, the

enrichPathway() function was used to perform enrichment analysis

of the REACTOME pathways.
2.12 Motif enrichment analysis

We applied the PyCistarget (42) package and the run_pycistarget

function for motif enrichment analysis. PyCisTarget is working on

the delineation of the whole genome on segments, and the whole

genome, except regions of interest, is used as the background.
2.13 Footprinting analysis

We used the Signac package Footprint() function with JASPAR

2020 motif collection.
2.14 Detection gene-regulatory networks

To build enhancer-driven Gene Regulatory Networks (eGRNs)

from both scRNA-seq and scATAC-seq data, we used the SCENIC+

package (42). To generate pseudomultiome SCENIC objects

from scATAC-seq and scRNA-seq, we applied the create_

SCENICPLUS_object function with AnnData object from scanpy,

pycistopic object with scATAC-seq, and motifs generated by

pycistarget as input. We reconstructed the enhancer gene regulatory

network by using the run_scenicplus function.
2.15 Interpretation of SEI neural network
model predictions

Identification of significant motifs for determining the

regulatory activity of a genomic region was carried out by

decomposing the output prediction of a neural network by

backpropagating the responses of all neuron models for each

feature of the input signal using the DeepLIFT package.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1415317
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Akimov et al. 10.3389/fimmu.2024.1415317
DeepLIFT compares the activation of each neuron with a reference

and assigns a score for its individual contribution to the prediction,

identifying the signature of the particular features of the input data

that affect the prediction of the SEI neural network.
2.16 Identification of the network modules
and graph clustering

We selected a TGF beta related network focusing on the TGFB1

gene and its neighbors. To detect modules in the network, we applied

a community detection algorithm based on random walks. We used

an implementation from the igraph library (1) and the function

community_walktrap (steps = 4). The CellChat and Seurat R packages

were used to calculate the module scores. We used genes assigned to

the SPP1 and TGFB1 pathways from CellChatDB.human, provided as

part of the CellChat package [Jin et al., (17)]. Selected genes were

further used as inputs to the AddModuleScore() function from the

Seurat package with default parameters. We used an implementation

from the igraph library function community_walktrap(steps = 4). The

network subgraph for the TGFB1 gene performed graph clustering

with igraph.community_walktrap(n_steps = 10) from the igraph

package. Algorithm behind walktrap community rallies of random

walks. The general algorithm is based on the idea that random walks

on a graph prefer to “stay” within the same community because there

are only a few edges that lead outside a given community.
2.17 Gene network reconstruction
with CellOracle

Monocytes were selected from the Seurat scRNA-seq object and

converted to the Scanpy anndata object. The CellOrcale have been

applied to the monocytes according to the description at https://

morris-lab.github.io/CellOracle.documentation/. Network graphs

were visualized using the NetworkX library (https://networkx.org/).
2.18 scATAC-seq public data workflow

For integration and data analysis, we used the SnapATAC2

package (53). Gene activity, based on scATAC-seq peaks, was

obtained using the pp.make_gene_matrix function. Marker regions

for each cluster were defined using the snap.tl.marker_regions

function. The motif enrichment was computed using the

snap.tl.motif_enrichment function.
3 Results

3.1 The immune profile of SARS-CoV-2
viral infection statements

In this study, we investigated immunological shifts previously

observed in a cohort of patients with severe COVID-19 caused by the

Delta SARS-CoV2 variant (38). To complement single-cell
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transcriptome investigations, we performed scATAC-seq to profile

chromatin accessibility in PBMC from mild or severe Delta COVID-

19 and healthy (also convalescence after COVID-19) cohorts

(Figure 1A). For the analysis, we used 319,943 high-quality scRNA-

seq cells and 112,249 scATAC-seq cells. Furthermore, we performed

a detailed investigation and coupled analysis of the transcriptome and

scATAC-seq data to identify gene regulatory network properties and

the role of the underlying chromatin changes. We performed data

integration (see Materials and methods) with further annotation of

cell states. First, we integrated scRNA-seq and scATAC-seq samples

independently and annotated the cells according to the expression of

marker genes. Part of the cell annotation has been transferred from

the scRNA-seq data (Figure 1B, Supplementary Figure S1), and cell

type identification for scATAC-seq (Figure 1C, Supplementary Figure

S2) was performed based on the gene activity approximation via local

chromatin accessibility signal. In total, we identified 12 cell types that

expressed canonical lineage markers (Figure 1D, Supplementary

Figure S3). To estimate the similarity between gene expression and

chromatin accessibility, we performed a correlation analysis. Row and

column-based hierarchical clustering indicated corresponding

grouping of myeloid and lymphoid cell types based on gene

expression (Figure 1E) and chromatin accessibility measurements

(Figure 1F). Both methods demonstrate high-resolution power and

precisely demonstrate the common knowledge similarity of the cell

types. We also evaluated the agreement between direct gene

expression from scRNA-seq and approximate gene activity via

chromatin accessibility signals. Our results demonstrated high

concordance between both data types (Supplementary Figure S4).

Previously, we showed that the proinflammatory subtype of

monocytes (Mon IFI30) accompanies severe Delta COVID-19, and

this population yields high expression of IFI30, C15orf48, CXCL8,

CSTB, and SPP1 genes (38). We applied an unsupervised approach

that uses genomic intervals to discover coaccessible cis-elements and

stable cell states from the scATAC-seq data. Based on the clustering

results, we identified a specific group of cells with high chromatin

accessibility near Mon IFI30 marker genes (Figure 1D, Supplementary

Figure S5). This indicated an agreement between the gene expression

patterns and chromatin accessibility profiles. Applying region-based

cell clustering and topic modeling allowed us to avoid gene activity

estimation by scATAC-seq, which imperfectly corresponds to

transcriptome profiles due to possible distant or condition-specific

cis-regulations. Moreover, separation of Mon IFI30 cells into a separate

cluster purely based on the open chromatin profile provides additional

confidence in the transcriptome and chromatin accessibility

interconnections governing cell type-specific regulatory networks.

Using scATAC-seq, we gained new insights into the gene regulatory

mechanisms during COVID-19 in immune cells.
3.2 Immunological shifts of the PBMC
composition depending on the COVID-19
severity and virus variant

Previously, we characterized the immune landscape changes in

PBMC depending on the severity of COVID-19 symptoms and the

SARS-CoV2 virus variant. Our analysis showed that both lymphoid
frontiersin.org
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and myeloid compartments underwent significant compositional

changes. Moreover, the Mon IFI30 cell state almost exclusively

accompanies severe/critical COVID-19 caused by the Delta variant

but not the Wuhan-like virus (38). Here, we checked the agreement

between PBMC composition profiled using scRNA-seq and

scATAC-seq methods. We identified enrichment of Mon IFI30

cells for severe/critical Delta COVID-19 samples based on scATAC-

seq data (Figure 2A). However, we also traced Mon IFI30 in other

cohorts, but at much lower levels. We hypothesize that this indicates

clustering artifacts, which are also caused by the initially low

number of samples with severe/critical Delta COVID-19 (only

four individuals in our collection).

Next, we compared the cell type fractions recovered using

scRNA-seq and scATAC-seq. Correlation analysis indicated clear

similarities and agreement in the results between experimental

approaches that point to the biologically relevant clustering and cell
Frontiers in Immunology 06
type assignment (Figure 2B). We also investigated the cell state

composition that significantly changed between the study groups

(Figure 2C, Supplementary Figure S6). To this end, we performed cell

fraction analysis and calculated all pairwise differences across cohorts.

Similar to our previous study, scATAC-seq showed that both myeloid

and lymphoid compartments underwent significant compositional

shifts. Severe/critical Delta COVID-19 is accompanied by depletion

of classical CD14 monocytes and enrichment of Mon IFI30

(Figure 2C). In addition, only mild/moderate COVID-19 samples

were enriched for CD16 monocytes, and severe Delta cases were

accompanied by the depletion of classical Mon CD14. Our results

indicate serious shifts in the immune response and exhaustion of

compensatory mechanisms, especially in severe/critical COVID-19

cases caused by the Delta variant. Similar to previous results, we

identified depletion of NK and CD4 Naive cells with an increase in

COVID-19 severity.
FIGURE 1

Data analysis workflow and scRNA-seq/scATAC-seq integration. (A) We performed scATAC-seq of the PBMC samples from 12 healthy, seven
convalescence, six mild COVID-19, and five individuals with severe/critical Delta COVID-19, followed by computational analysis and integration with
scRNA-seq, reconstruction of the gene regulatory networks, and analysis of differential chromatin accessibility. (B) UMAP of scRNA-seq and cell-type
annotation. (C) UMAP of scATAC-seq data and cell type annotation. (D) Signal of the Chromatin accessibility signal for PBMC marker genes.
(E) Pseudobulk gene expression across different cell types using scRNA-seq. The gaps are correlation values with low significance level (p-value > 0:05).
(F) Pseudobulk-approximated gene activity Pearson’s correlation across cell types in scATAC-seq. Gaps are correlation values with low significance level
(p-value > 0:05).
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It should be noted that annotation of scATAC-seq yields fewer

cell types due to noise caused by the high dimensionality of the data

and dropout rate. However, with the current scATAC-seq data we

managed to recover the main trends in the composition of blood

immune cells across the study cohorts. Additional high-resolution

properties of scATAC-seq will help elucidate gene regulatory

differences across cell phenotypes.
3.3 Analysis of the cis-regulatory topics
across cell types

We applied cisTopic to identify groups of cis-elements

representing various regulatory programs governing cell states. Our

analysis shows that this approach precisely recovers distinct cell
Frontiers in Immunology 07
clusters and allows the characterization of regulatory loci, together

with operating transcription factors. To this end, we identified the

optimal number (Supplementary Figure S7) of regulatory themes

(topics) and their averaged representations in the cell clusters

(Figure 3A). We quantified the overlap of the 13 topics with

marker peaks (see Materials and methods) for each cell type and

identified a common and specific set of themes governing the

regulatory landscape of the cell subtypes. Topic 8 was mostly

specific to Mon IFI30. However, topic 10 was common for myeloid

cells, and topic 7 was the second most pronounced across monocytes

and other cell types (Supplementary Figure S8). Identification of both

shared and cell type-specific topics reflects distinct regulatory

programs, as measured by chromatin accessibility.

Next, we identified TFs that might operate in the regulatory

regions for each topic (Figure 3B). Motif enrichment analysis
FIGURE 2

Analysis of cell type abundance across the study cohorts. (A) Barplot with fractions of cell types across cohorts. (B) Heatmap showing Pearson
correlation of scRNA-seq pseudobulk gene expression and approximated gene activity from scATAC-seq across cell types. Gaps are correlation
values with low significance level (p-value >0.05). (C) Boxplots with cell fractions across the study cohorts. Pairwise comparisons were performed
using Wilcoxon rank-sum test. Significant changes (adjusted p-values < 0:05) are shown with stars. * stands for p-value < 0.05; ** stands for p-
value < 0.005; *** stands for p-value < 0.0005; **** stands for p-value < 0.00005.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1415317
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Akimov et al. 10.3389/fimmu.2024.1415317
showed that SPIB, NFE2L2, TEAD4, ETS1, IRF1, IKZF2, and

NKX3-2 are the main regulatory proteins for the common across

monocytes in topic 10. Interestingly, TEAD4 has been shown to be a

marker of severe COVID-19 (44). In addition, we identified higher

expression of the NFE2L2 factor in the Mon IFI30 cluster

(Supplementary Figure S9). We further investigated the

distribution of regulatory regions around transcription start sites
Frontiers in Immunology 08
(TSS), promoters, exons, and introns (Figure 3C). In particular,

myeloid topics 10 and 8 mostly operate within a distance of more

than 1 kB from TSS. Interestingly, topic 8 was enriched for BACH-

binding sites (Figure 3B), and BACH1 was overexpressed in Mon

IFI30 (Supplementary Figure S9).

Next, we investigated the association between the Mon IFI30

marker genes and the peaks from topic 8. First, we investigated the
FIGURE 3

Analysis of cis-regulatory topics. (A) Jaccard metric for overlap of cis-regulatory topics and cell type-specific marker peaks. (B) Top-enriched de
novo discovered motifs in cis-regulatory topics. (C) Normalized enrichment of cis-regulatory topics in genomic segments, as estimated using
cisTopic. (D) Intersection of the Mon IFI30 specific up/downregulated marker peaks with topic 8. We found that topic 8 strongly overlapped with
upregulated but not downregulated marker peaks. We also assigned scATAC-seq peaks and topic 8 loci to the closest genes and found a high
overlap with marker genes of the Mon IFI30 cell state. (E) Enrichment of the Reactome pathways based on the assignment of topic cis-regulatory
regions to genes. Colorbars show the −log(p.adjusted).
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overlap between topic loci and up/down peaks obtained in the

differential analysis of Mon IFI30 compared to all other cell types.

We identified that 4,505 upregulated (marker) Mon IFI30 peaks

were common to topic 8 (Figure 3D). The overlap of the genes

associated with topic 8 and the up/downregulated peaks was the

highest in the upregulated group. Finally, we used up/down Mon

IFI30 genes and identified the enrichment of the topic 8 regions in

the vicinity of the marker genes. This highlights that regulatory

elements from topic 8 indeed colocalized with the Mon IFI30

specific gene regulatory landscape. In addition, the association

was high for the upregulated peaks and genes, indicating the role

of the topic 8 regions in marker gene expression.

To understand the main biological processes associated with the

regulatory themes discovered with cisTopic, we performed a GO

enrichment analysis using ChIPseeker (Figure 3E). The most

pronounced in monocytes, topics 10 and 8, were associated with

previously reported gene alterations in COVID-19 (38), characterized

by neutrophil degranulation and platelet activation. Both topics (10

and 8) have similar associated GO categories with a difference in the

RHO GTPase cycle that is specific for topic 8. We hypothesized that

regulatory regions from topic 8 complement topic 10 and bring about

additional activation of the core processes elevated during COVID-

19, contributing to the development of severe respiratory forms with

exacerbations. Together, we identified groups of open chromatin

regions that are specific for the Mon IFI30 cell type that accompanies

severe/critical Delta COVID-19. These sets of regions showed high

agreement with marker genes and peaks of the Mon IFI30 cell type.

Moreover, myeloid-related regulatory topics also showed enrichment

for platelet activation and neutrophil degranulation, similar to

previous reports (24, 37, 38, 43, 49).
3.4 Transcriptional regulatory landscape
changes in the immune cells during
COVID-19

The primary focus of our study was the Mon IFI30 cell

subpopulation. Here, we performed scATAC-seq on four out of

nine PBMCs samples from individuals with severe/critical Delta

COVID-19 that have been previously studied using scRNA-seq

(38). To obtain a joint representation of the transcriptome and open

chromatin we applied the SCENIC+ package to gain insights into

the core transcription factors that govern cell states and control

regulatory regions. First, we identified that the SCENIC+ pseudo-

multiome approach captures biological representation and allows

splitting cell types into separate clusters with specific activity of the

core regulons (Supplementary Figures S10, S11). In addition, we

reconstructed gene regulatory networks with TF-gene and peak-

gene association and identified core TFs operating in these regions.

We detected the main activators governing Mon IFI30 cell state:

ZEB2, MITF, FOSL2, BACH1, and ATF3/ATF5 (Figure 4A).

Moreover, ETS3, IRF5, MAFB, and SPI1 were common for both

Mon IFI30 and Mon CD14. We also confirmed that core Mon IFI30

regulators were expressed in myeloid cells (Figure 4B). The majority

of these regulators were previously identified to be elevated during

COVID-19 (13, 38), and our analysis suggests their potential role in
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the establishment of the proinflammatory Mon IFI30 cell state. In

addition to activators, we identified regulators with predicted

repressor function (Supplementary Figure S12). For several of

these TFs, we also identified a complementary negative regulatory

role (MITF, FOSL2, and BACH1).

Previously, we identified that Mon IFI30 gene expression data

indicated the enrichment of the platelet overactivation and

neutrophil degradation signals (38). We performed GO

enrichment analysis based on the upregulated peaks in the severe/

critical Delta COVID-19 cohort, in contrast to the healthy

individuals (Figure 4C). We identified activation of neutrophils

and Toll-like receptor cascades in the myeloid compartment.

Overall, GO enrichment performed on the upregulated peaks

recapitulated results similar to those obtained with expression

data and topic-based analysis. In addition, cellular senescence,

programmed cell death, and WNT signaling are overactivated in

CD8+ Naive cells. CD8 cytotoxic cells demonstrated signatures of

interferon activation that can lead to the high regulatory activity of

EOMES in CD8 CT cells (Figure 4A).

Using SCENIC+, we effectively identified cell states from the

reconstructed gene regulatory network, coupled with motif

enrichment analysis of open chromatin. We applied a footprinting

approach to investigate motif-binding sites, together with the

chromatin accessibility profile. Bound to the DNA, TFs prevent

DNA cleavage in nucleosome-free regions, which is reflected in the

aggregation plot of the read distribution as a drop of the read

coverage centered at the binding site. We investigated footprinting

of the top up/down regulators (BACH1, FOSL2, CEBPB, ETV6,

CEBPB, SPI1, and FOS) of the Mon IFI30 state and confirmed their

active regulatory profiles (Figure 4D, Supplementary Figure S13). We

further analyzed the distribution of the BACH1 and FOSL2 target

regulatory regions (Supplementary Figure S14) and identified that

more than half of the cis-elements fell in promoters or were

concentrated near TSS (UTRs, 1st intron, 1st exon), indicating

proximal binding preferences of the TFs.

Altogether, coupled analysis of gene expression and chromatin

accessibility profile recapitulates core biological properties and

allows identification of the transcriptional regulators governing

cell state and phenotype formation.
3.5 Cis-elements regulating Mon
IFI30 state

The Mon IFI30 cell state is characterized by the expression of

the proinflammatory genes (SPP1, CSTB, IFI30, LGALS, and

CXCL8), and we identified an association of regulatory topic 8

with specific marker genes and differentially accessible regulatory

regions linking transcriptome and epigenome changes. Next, we

took a locus-centric approach, focusing on the core transcriptional

regulators operating in cis-regulatory elements. First, we identified

that Mon IFI30 marker peaks with a high fold change are usually

regulated with fewer TFs (Figure 5A). We hypothesized that loci

with a low number of regulators are more sensitive to perturbation

of the operating TFs. Mon IFI30 specific genes were in the vicinity

of the upregulated marker peaks with low numbers of predicted
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regulatory TFs. Moreover, peaks under the control of many TFs

tended to be more proximal (Supplementary Figure S15). This, in

turn, explains why promoters usually harbor regulatory

information as hubs that aggregate multiple input signals.

However, because promoters are usually under the control of

multiple TFs, the effect of a single perturbed regulator can be

compensated for, ultimately leading to changes in chromatin
Frontiers in Immunology 10
accessibility. In addition, the distribution of the marker peaks

around the TSS showed the prevalence of the downregulated

peaks to be proximal to the TSS (Figure 5B).

To investigate the most important upstream regulators of the

Mon IFI30 cell state, we took a closer look at the TFs that govern the

activity of maker genes. The reconstructed gene regulatory

networks predicted that the most expression-activating input cane
FIGURE 4

Joint scRNA-seq/scATAC-seq analysis revealed the core transcriptional regulators in each cell state. (A) Heatmap/dotplot with TF expression of
enhancer-driven regulons (color scale) considering the cell-type specificity of the regulons (dot size scale). (B) Pseudoexpression (estimated gene
activity) of the core transcriptional regulators (ZEB2, MITF, FOSL2, BACH1, ATF3, and ATF5) in the Mon IFI30 cell state across all cells. (C) Enrichment
of the Reactome Pathways for upregulated peaks between Delta COVID-19 and healthy individuals. The peaks were assigned to the closest gene.
(D) Footprint profiles for Mon IFI30 regulators (FOSL2, FOS, BACH1, ETV6, SPI1, and CEBPB) across cell types.
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from EGR2, MITF, SPI1, MAFB, BACH1, and NFE2L2, which are

specifically or highly expressed in Mon IFI30 (Figure 5C,

Supplementary Figure S9). In addition, several TFs have

demonstrated a repressor activity. For instance, KLF2, FOS, and

ETS1 were predicted to be negative regulators. Moreover, both

KLF2 and FOS were downregulated in myeloid cells coming from

individuals with severe Delta COVID-19 (Supplementary Figure
Frontiers in Immunology 11
S9). Interestingly, the expression of KLF2 was decreased in the

PBMC of individuals with the Delta COVID-19 variant

(Supplementary Figure S9). This is in line with the normal anti-

inflammatory role of KLF2, and its low expression can be partially

responsible for the development of COVID-19 exacerbation (2, 4).

Our analysis suggests that EGR2, MITF, BACH1, and NFE2L2 as

the main regulators of the marker genes (CD9, CD63, IL1RN,
FIGURE 5

Mon IFI30 cis-regulatory elements. (A) Scatterplot of the number of TFs operating in the Mon IFI30 marker peaks (as estimated using SCENIC+).
The highlighted genes represent Mon IFI30 expression markers. (B) Barplot showing the distribution of the Mon IFI30 marker peaks around TSS.
(C) Heatmap showing the contribution of transcription factors in the regulation of Mon IFI30 marker genes. (D) Distribution of Mon IFI30 marker
peaks by UTRs, exons, introns, promoters, and distal intergenic locations. The top enriched motifs within each segment are highlighted with logos.
(E) Enrichment of the Reactome Pathways for up/down marker peaks in Mon IFI30.
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CXCL8, and C15orf48). Both CD9 and CD63 are involved in

exosome formation (31), and COVID-19 plasma exosomes

stimulate pro-inflammatory responses that affect CD4/CD8 T

cells, and CD14+ monocytes. Plasma exosomes have been

hypothesized to serve as cargo for SARS-CoV-2 dsRNA (30).

Interestingly, both ATF5 and ATF3 were exclusively expressed in

Mon IFI30 and contributed to the regulation of core marker cell

type genes (IL1RN, C15orf48, and CLEC5A). Particularly, CLEC5A

can be stimulated by the SARS-CoV-2 spike protein and contributes

to the cytokine storm. scRNA-seq data are less noisy and

demonstrate that Mon IFI30 cells are specific to patients with

severe or critical Delta COVID-19. Thus, ATF3/ATF5 polarity

may reflect the heterogeneity within the population.

We further investigated the distribution of the up/downregulated

peaks around TSS and core gene elements, such as UTRs, exons,

introns, and identified regulatory motifs enriched across up/down

marker peaks (Figure 5D). For the upregulated peaks, we identified

the domination of the consensus sequence for TFs governing topic 8

activity. For the downregulated peaks, the STAT motif was

overrepresented in both proximal and distal peaks.

We also investigated how Mon IFI30 cell states differed across

cohorts. To this end, we performed separate monocyte clustering

using scVI (32). The clustering highlights biological differences

because we identified grouping first on the cell type and only after

based on cohort assignment (Supplementary Figure S20). We also

investigated how general Mon IFI30 marker peaks (identified based

on marker peak discovery using all cohorts) overlap with marker

peaks of Mon IFI30 found separately for each cohort. Our

analysis showed similarity across cell states as well as individual

differences because the Mon IFI30 state from each study cohort

partially overlapped with general marker peaks. Analysis of the

approximated gene activity yielded qualitatively similar results

(Supplementary Figure S21). Moreover, we identified that the

gene module activity of the Mon IFI30 markers discovered with

scRNA-seq was the highest for Delta COVID-19 as well as for the

scATAC-seq data (Supplementary Figure S24).

We further analyzed the core Reactome pathways associated with

Mon IFI30 specific regulatory elements (Figure 5E). Our analysis

showed that open chromatin Mon IFI30 marker peaks were enriched

for neutrophil activation, cytokine signaling, TLR activation, and

platelet aggregation. Region-based and transcriptome enrichments

highlight the convergence of regulatory and expression signals to the

phenotype associated with COVID-19 related exacerbations leading

to cytokine storm and thrombosis complications. In addition,

downregulated Mon IFI30 peaks are enriched for basic processes

characterized by inhibition of the cell cycle, nucleic acid metabolism,

and processing, which can indicate stress-induced changes leading to

myeloid blood cell dysfunction (6).

Taken together, our results suggest that Mon IFI30 open

chromatin alterations were strictly coupled with previously revealed

transcriptome changes. Joint analysis of scRNA-seq and scATAC-seq

revealed core TFs driving the formation of the Mon IFI30 cell state

that accompanies severe/critical Delta COVID-19 and represents one

of the core changes in peripheral blood immune cells during a

cytokine storm caused by SARS-CoV-2 specific variant.
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3.6 TGF-beta regulatory network
in COVID-19

Previously, it was shown that Delta COVID-19 is characterized by

a specific pattern of the ligand–receptor interactions (38). High activity

of the SPP1 and TGF beta ligand–receptor interacting pathways is

common for the Delta lineage, in contrast to the Claudin and Resitin

pathways for the Wuhan-like cases. Here, we performed a deeper

investigation of the TGF beta and SPP1 gene modules as the most

pronounced for the severe Delta COVID-19 (38), relying on the

CellChat ligand–receptor interaction database (17). First, we found

that Mon IFI30 cells had elevated module scores for TGF beta and

SPP1 pathways (Figure 6A). Moreover, TGF beta demonstrated a

gradual increase with the increase in COVID-19 severity.

Next, we investigated TGFB1 gene regulation in Mon IFI30. To

decode complex regulatory connections between multiple

regulators and TGFB1, we applied a gene network reconstruction

approach using CellOracle (46). Focusing on TGFB1, we splitted

TGFB1 centered network into regulatory modules by applying

graph clustering (Figure 6B). Three interconnected components

are identified. The purple module contained TGFB1 and its direct

regulators (CEBPD, NFE2, ETS1, and KLF10). The green and red

modules have strong interconnections mediated by FOS and EGR1.

The green module has a strong regulatory input orchestrated by

IRF7, STAT1, and IRF1, whereas the red module mainly contains

TFs related to inflammation and is represented by FOS, KLF4/

KLF6, EGR2, ZEB2, and MITF. Interestingly, many of the

mentioned TFs have been highlighted as high-impact regulators

that control the Mon IFI30 cell state (Figure 4A). We identified

positive and negative interconnections between regulators both

within and between defined communities that together point to

complex combinatorial regulation of the proinflammatory Mon

IF30 phenotype.

Furthermore, we focused on the possible expression output of

the TFs. We applied CellOracle to simulate the TFs perturbation

effect on the expression of Mon IFI30 marker genes (Figure 6C).

First, we selected TFs based on their high predicted activity with

respect to TGFB1 to capture which other Mon IFI30 specific genes

they may affect. We perturbed 42 TFs and identified the top

regulators based on the perturbation score. First, we estimated the

effect of each perturbed TF on the global expression shift of the

markers. Our analysis highlights KLF6, YY1, and RXRA as the top

activators, and BACH1 and ZEB2 as the most valuable repressors.

Next, we focused on TGFB1 and its TFs. Our analysis indicates that

RXRA, SPI1, ZBTB7A, CEBPB, EGR2, MITF, FOS, and MAFF are

the most important TGFB1 activators.

To decipher the regulatory relationships between cis-regulatory

elements and operating TFs, we focused on ATAC-seq peaks in the

vicinity of TGFB1. We reconstructed peak–gene associations with

SCENIC+ and selected different open regions targeting TGFB1

activity in Mon IFI30. We found a distally located enhancer

nearly 96 kb away from the TGFB1 gene (Figure 6D). Next, we

investigated the architecture of the TGFB1 regulatory region in

Mon IFI30 to decode its binding motif composition. To this end, we

applied the Sei model (29) and identified high scoring (prediction
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value > 0:9) classes of regulatory assays in monocytes (DNA-seq,

SPI1, STAT1). We used DeepLift (5) to highlight the importance of

each nucleotide for classification and complemented this with a

sequence conservation regulatory profile. Our analysis showed that

important regulatory motifs overlap with highly conserved

positions, indicating the functionality of the predicted regulatory
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elements within the TGFB1 enhancer. Our analysis indicated that

several TFs could operate as TGFB1 enhancers in Mon IFI30. Using

deep learning model, we highlighted the relevance of the

classification binding sites and identified high scoring matches to

GABPA, ETS-family, PRDM1, and STAT-family TFs. We also

examined the expression of candidate TFs across cohorts and
FIGURE 6

TGF beta gene regulatory network and in silico perturbation of Mon IFI30 cell state regulators. (A) Boxplot with aggregated scores for TGF beta and
SPP1 modules (obtained from the CellChat database). Significant differences are highlighted with p-values. Module score have been calculated for all
monocytes (Mon CD14, Mon CD16, and Mon IFI30). (B) Gene regulatory subnetwork centered on TGFB1. Modules of the network were estimated
using a community detection algorithm based on random walks. (C) Heatmap barplot with in silico perturbation of transcription factors in Mon IFI30.
Barplot shows the absolute perturbation effect on the expression of Mon IFI30 marker genes in a single computational knockdown of a TF.
(D) Chromatin accessibility signals across monocyte subtypes and cohorts. We identified two (highlighted with red frame) loci with significantly
elevated chromatin openness in Mon IFI30, and distally located regions present exclusively in Mon IFI30 (left red frame). The DeepLift method
highlights important regulatory nucleotides that overlap strongly with conserved sequences across mammalian positions.
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monocyte subtypes. Indeed, almost all subtypes of monocytes from

individuals with Delta COVID-19 were characterized by higher

expression of STAT1, PRDM1, EGR2, ATF5, NFE2L2, BACH1,

MAFF, MSC, PURA, GABPA, ETS2, ATF3, and ZEB2

(Supplementary Figure S16). Moreover, each study cohort was

characterized by a particular expression pattern of several TFs.

For example, individuals with moderate COVID-19 demonstrated

lower levels of FOSL2, MAX, MAFB, IRF1, RUNX3, and HIF1A in

CD14 and CD16 monocytes from other cohorts.

The discovered architecture of the TGFB1 enhancer indicates a

complex structure in which several TFs can experience cooperativity

or compete for the binding site. We also want to highlight that a

differential increase in DNA accessibility occurred in the severe/

critical Delta COVID-19 group. However, all the training regulatory

data in the Sei model do not rely on SARS-CoV2 infection and the

associated regulatory shift. Furthermore, Deep Neural Networks

learn regulatory DNA signals by relying on the collection of cis-

elements, which together represent joint activity profiles of TFs

expressed in the cell and their binding preference to DNA

sequences. However, we showed that the expression pattern of the

many regulatory factors significantly changed in the case of severe/

critical Delta COVID-19, which might make transfer of the

predictions obtained for far regulatory data biased towards the

composition of the Sei training set.

Altogether, we investigated the Mon IFI30 cell state in terms of the

underlying gene regulatory network and simulated the perturbation

response. Our analysis indicated that core transcription factors are

involved in the regulation of core marker genes. We delineated

complex interactions between regulators and the target gene TGFB1,

predicted core regulators having an effect on TGFB1 expression, and

deciphered the sequence composition of the distal cis-element

regulating the expression of the target gene via the combined activity

of several TFs with pronounced binding sites in the area.
3.7 Gene regulatory network governing
Mon IFI30 cell state

The gene regulatory network governs the phenotype and

properties of the cell type and defines the response to perturbations

by environmental factors. To estimate core regulators and their

relationship with target genes, we applied cell type-specific gene

regulatory network reconstruction from single-cell data using

CellOracle (46). To further explore the core regulators of the Mon

IFI30 cell state, we selected a subnetwork of marker genes and

controlling TFs (Figure 7A). Interestingly, we found that only five

TFs (ATF3, ATF5, BACH1, MITF, and FOSL2) regulated most of the

Mon IFI30 marker genes.

Mon IFI30 represents a highly pro-inflammatory cell state with a

significantly altered pattern of gene expression accompanied by a

specific set of marker genes. Next, we examined the impact of

perturbation of individual TFs or their combinations with respect

to gene expression changes. To this end, we simulated the regulatory

perturbation that switched off one or multiple TFs at a time

(Figure 7B). Our analysis yielded a high regulatory role of the TFs,

particularly in Mon IFI30 cells, and their regulatory impact on Mon
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CD14 was insignificant. According to our analysis, in silico knockout

of FOSL2, BACH1, ATF3, and MITF led to high expression shifts. In

particular, BACH1 perturbation strongly changed the expression of

ZEB2 and PSAP. Furthermore, ATF3 and MITF had highly

overlapping targetomes. However, the effects of MITF on CD63

was higher than that of ATF3, which is a stronger regulator of

ILR1N. Previous studies have found that both CD63 and ILR1N

correlate with COVID-19 severity (22, 41). Moreover, our analysis

points to a broad targetome role of FOSL2, which regulates the

expression of most Mon IFI30 marker genes. We further investigated

the combined effect of joint perturbation on BACH1, MITF, FOSL2,

and ATF3. The predicted expression shifts exceeded the effect of each

TF.We found that the triple in silico knockdown of ATF3, MITF, and

FOSL2 shifted the expression of the Mon IFI30 marker genes towards

Mon CD14 (Figures 7C, D). Ultimately, our predictions indicated

that triple downregulation of ATF3, MITF, and FOSL2 dramatically

decreased the level of the marker genes in Mon IFI30, making it close

to the classical Mon CD14 cells (Figure 7E).

In addition, in silico knockdown of BACH1, MITF, FOSL2, and

ATF3 did not alter the expression of several Mon IFI30 marker

genes. For example, CXCL8, IFI30, and CD9 levels remained

unchanged. We further investigated the direction of trajectories

within the myeloid compartment when ATF3, MITF, and FOSL2

were computationally switched off. Complex TF–gene interactions

recovered with CellOracle and complemented with regulatory

network modeling indicated a global gene expression shift from

Mon IFI30 towards classical Mon CD14 cells (Figure 7D). In

addition, the perturbation score indicates the global influence of

gene expression dynamics and demonstrates that the main changes

involve Mon IFI30 cells (Figure 7E).

Overall, computational reconstruction and modeling of the

gene regulatory network have identified the core governing TFs in

myeloid cells in healthy conditions and in the case of COVID-19.

Importantly, these results predict a novel association between

regulatory factors controlling transcription and target expression

markers of the proinflammatory Mon IFI30 cell state that

accompanies the severe form of Delta COVID-19.
4 Discussion

Our study reports single-cell transcriptome and chromatin

accessibility analyses of peripheral blood mononuclear cells

derived from samples of healthy people or individuals with

COVID-19. Here, we characterized the cis-regulatory level Mon

IFI30 cell subpopulation that we previously identified using scRNA-

seq in the PBMC of patients with severe/critical Delta COVID-19.

Specifically, based on scATAC-seq data, we identified a separate cell

cluster that corresponded to the Mon IFI30 cell state with highly

proinflammatory properties. Our joint analysis of both scRNA-seq

and scATAC-seq data allowed us to perform computational

reconstruction of the gene regulatory network, together with

associated open regulatory regions and controlling TFs. Several

other studies have shown important regulatory roles for various TFs

and their expression changes during COVID-19 of different

severities (40, 50).
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Complementary to other investigations, our study followed the

previously characterized subtype of Mon IFI30 cell state. Using

scATAC-seq, we identified a separate cluster of Mon IFI30 cells

based on the open chromatin pattern. Thus, we confirmed coupled

gene expression and chromatin accessibility changes that

accompany the monocyte phenotype switch for severe Delta
Frontiers in Immunology 15
COVID-19. We performed a detailed investigation of the cell

type-specific open cis-regulatory regions for Mon IFI30 using an

unsupervised LDA approach to group regions into regulatory topics

and to cluster cells according to the contribution of each topic to a

cell. In this way, we identified a Mon IFI30 state as a separate cluster

of cells characterized by the presence of a set of open regulatory
FIGURE 7

Master regulators of Mon IFI30 cell state. (A) Graph of the CellOracle gene network containing Mon IFI30 marker genes and core transcriptional
regulators. The nodes are colored according to the regulatory TF. The size of a node reflects the number of incoming and outcoming connections
for the regulators. (B) Heatmap with the TF perturbation response. The barplot on top of the heatmap shows an absolute expression shift across all
genes for every perturbation. In silico perturbations for single or multiple TFs (mentioned at the bottom of the plot). (C) Scatterplot of in CD14
monocyte expression values predicted in Mon IFI30 after joint knockdown of FOSL2, MITF, and ATF3. (D) Lineplot showing changes in the
expression of the Mon IFI30 marker genes after joint in silico knockdown of FOSL2, MITF, and ATF3. (E) UMAP plot of monocytes across the study
conditions with the direction of the vector fields upon joint perturbation of the FOSL2, MITF, and ATF3 TFs.
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elements associated with marker genes of the query monocytes. Our

in-depth analysis of the cis-regulatory elements coupled with the

identification of the binding sites for transcription factors allowed

us to identify potential master regulators governing the expression

of the marker genes. To strengthen this analysis, we reconstructed

the gene regulatory network and pruned it with motif enrichment to

focus on direct cis-regulatory effects (3). We discovered a high

impact of BACH1, NFE2L2, MITF, EGR2, FOSL2, CEBPA, and

CEBPB on the regulation of the core Mon IFI30 marker genes. GO/

KEGG-based investigation of the Mon IFI30 marker peaks revealed

extra neutrophil activation and elevation of the proinflammatory

cytokine signaling, confirming the previously identified

immunological shifts uncovered by scRNA-seq. Previous studies

of blood monocytes using scATAC-seq highlighted the altered

activity of CEBPD, CEBPB, and ATF4 in patients with severe

COVID-19 (52). However, SPI1, RUNX1/2, IRF4, STAT2, and

BCL11 motifs are overrepresented in chromatin-accessible

genomic areas of convalescent-specific monocytes (52). Our

investigations of open chromatin have identified that the Mon

IFI30 cell subtype accompanies severe Delta COVID-19 but not a

mild form of convalescence. Using scATAC-seq data, we

significantly complemented current knowledge not only about

gene expression activity but also shed light on the cis-regulatory

elements and controlling TFs orchestrating gene activity levels.

We uncovered TF-gene regulatory interactions and their

structure in the Mon IFI30 cell state and performed reconstruction

of the gene regulatory networks. This analysis revealed that ATF3,

FOSL2, MITF, and BACH1 are the core master regulators of the pro-

inflammatory Mon IFI30 state. Here, we identified the major role of

the combined perturbation of ATF3, FOSL2, and MITF in shifting

Mon IFI30 expression towards classical Mon CD14. Furthermore,

ATF3 was shown to be upregulated during COVID-19 (36), and

demonstrated elevation upon CXCL8 stimulation, which is

dramatically overexpressed during Delta COVID-19. In agreement

with previous studies, we also highlighted the elevation of ATF3,

CEBPB, FOSL2, and MITF with COVID-19 severity (28, 34). We

hypothesize that overactivation of TFs significantly contributes to the

development of severe COVID-19 and the formation of the

proinflammatory cell subtypes (47). We also investigated the

regulation of the TGFB1 expression by Mon IFI30 and identified

distally located enhancers under the control of GABPA and STAT

TFs according to cis-element deciphering using deep learning

modeling. Joint analysis of the single-cell transcriptome and

accessible chromatin data allowed us to identify TF–gene

regulatory interactions complemented by associations between the

location of the cis-regulatory elements and regulators orchestrating

enhancer activity obtained by analysis of the TF binding sites.

In summary, our investigation significantly improved the

understanding of the core immune shifts during COVID-19 of

different severities, depending on the virus variant. Moreover, we

investigated changes in gene expression in the context of alterations

in chromatin accessibility during COVID-19. Coupled analysis of the

scRNA-seq and scATAC-seq data identified TF-gene regulatory

interactions, together with the location of the cis-regulatory elements

and particular regulators orchestrating enhancer activity. Despite
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significant progress in understanding the role of transcriptional and

regulatory signals governing the formation of proinflammatory Mon

IFI30 cells, our study has certain limitations. Expansion of the sample

size by individuals with COVID-19 caused by other SARS-CoV-2

variants would be beneficial for understanding the general and variant-

specific properties leading to immune shift and uncoverong links

between the individual properties of the infectious agent and its

interactions with the host. We compared the identified Mon IFI30

chromatin landscape with PBMC samples from infants with acute

Omicron and pre-Omicron variants (51). Our analysis revealed that

PBMC from infants with acute Omicron and pre-Omicron COVID-19

demonstrated elevated chromatin accessibility of Mon IFI30 marker

genes (Supplementary Figures S25–S28). Moreover, we identified that

more than half of the Mon IFI30 marker peaks were shared with

monocytes from infants affected with COVID-19 (Supplementary

Figure S29), and BACH1, NFE2L2, FOS, and FOSL2 are the master

regulators of the cell state (Supplementary Figure S30). This

comparison brings additional contributions to the field and raises

additional questions about the similarities and differences brought by

different SARS-CoV2 variants that should be further investigated. In

addition, several previous scRNA-seq studies have investigated the

immune shift during infections caused by SARS-CoV-2 (10, 15, 25, 27,

45), HIV (21, 48), influenza (15), and sepsis (9, 21) and identified both

common similarities and specific cohort differences in gene expression

levels. Our investigation additionally contributes to the aforementioned

studies and provides new information based on the reconstructed

regulatory interactions and identified transcriptional master regulators.
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