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Abstract 

Background This study aimed to investigate the therapeutic effects of vibration therapy for improving upper 
extremity motor impairment, function, and disability recovery in people with stroke.

Design We followed the Preferred Reporting Items for Systematic Reviews and Meta‑Analysis guidelines. PubMed, 
EMBASE, the Cochrane Library Database, Physiotherapy Evidence Database (PEDro), China Knowledge Resource 
Integrated Database, and Google Scholar were searched from inception to May 31, 2024. Randomized controlled trials 
(RCTs) that evaluated the effects of vibration therapy on upper extremity motor impairment, function, and disability 
recovery post‑stroke were analyzed.

Setting and participants Participants with a diagnosis of stroke with hemiplegia (or hemiparesis) were recruited.

Methods Methodological quality assessment was performed using the PEDro quality score. Upper extremity motor 
impairment, function, and disability were the primary outcomes. Upper extremity motor impairment was measured 
using the Fugl‑Meyer Assessment scale and other methods. Upper extremity functions were evaluated using the Wolf 
Motor Function test or other tools assessing manipulative activities. Disability was assessed using the Functional Inde‑
pendence Measure, Barthel index, and other methods.

Results Overall, 30 RCTs including 1621 people with stroke were selected. Compared with the control, vibration 
therapy exerted significant effects on upper extremity motor impairment [standardized mean difference (SMD) = 1.19; 
p < 0.00001)], function (SMD = 0.62; p < 0.00001), and disability recovery (SMD = 1.01; p < 0.00001). The subgroup 
analysis revealed that focal vibration therapy (SMD = 2.14) had favorable effects on disability recovery compared 
with whole‑body vibration therapy (SMD = 2.0). Interventions lasting 4–8 weeks showed significant improvements 
in motor impairment (SMD = 1.19), motor function (SMD = 0.57), and disability (SMD = 0.84); additionally, the effects 
of vibration therapy combined with conventional rehabilitation (SMD = 1.03) were superior to those of vibration 
therapy alone (SMD = 0.21).
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Conclusions Vibration therapy may be a reliable rehabilitation program to improve upper extremity motor functions 
and disabilities. Furthermore, vibration therapy should be performed at the earliest possibility after stroke for at least 
4–8 weeks.

Trial registration The protocol of this study was registered with PROSPERO (Registration number: CRD42022301119).

Keywords Stroke, Upper extremity, Quality of life, Vibration therapy, Motor function, Disability

Background
Brief Summary Vibration therapy (VT) significantly 
reduces upper extremity (UE) motor impairment, 
enhances UE motor function, and improves disability 
outcomes in people with stroke. Combining VT with 
standard rehabilitation is recommended, starting as 
early as possible after a stroke and continuing for at least 
8  weeks. Both low and high vibration frequencies are 
effective, but focal muscle vibration is particularly benefi-
cial for disability recovery.

Feeding, dressing, and writing are the most common 
activities of daily living that require motor function and 
participation of the upper limbs [1, 2]. These activities are 
essential for maintaining independence and quality of life. 
Neurologic disorders such as stroke, which often results 
in hemiparesis, where one side of the body becomes weak 
or paralyzed, may lead to poor motor function, muscle 
weakness, spasticity in paretic limbs, and disability [1, 2].

Full recovery of motor function and disabilities of the 
upper limbs occurs in less than 20% of people with stroke 
undergoing rehabilitation programs [1, 3]. Hence, many 
of these people with stroke have poor motor function 
and disability in the upper limbs, affecting their quality 
of life substantially [4, 5]. This impairment often neces-
sitates long-term rehabilitation and support to manage 
daily activities [2, 3]. Consequently, independence and 
social participation can be significantly compromised for 
these individuals.

Compared with previous rehabilitation programs, 
vibration therapy (VT) stimulates muscle activity 
through the excitation of the tonic vibration reflex which 
activates efferent Ia, resulting in α-motor neuron excita-
tion to generate muscle fiber strength and induce motor 
function performance [6, 7]. This implies that weak mus-
cle activity and motor function in paretic limbs could 
be improved using VT. Recent studies investigated the 
effects of the whole-body vibration (WBV) on improving 
disabilities in the upper limbs for people with stroke by 
asking them to sit on a chair and place their hands on the 
WBV platform [8, 9]. After 4 weeks of the intervention, 
the people with stroke in the experimental group treated 
with WBV showed better motor function improve-
ments in the upper limbs than those in the control group 

undergoing a traditional rehabilitation program [8, 9]. 
Furthermore, several studies have developed focal muscle 
vibration (FMV) to improve motor function and disabili-
ties in people with stroke [10–12].

However, vibration force transmission from WBV 
or FMV to the targeted upper limbs is different being a 
complex process that could be influenced by various bio-
mechanical mechanisms and result in different outcomes 
according to the type of vibration application [13, 14]. 
Previous studies often used vibrations < 20 Hz for muscle 
relaxation and reduction of spasticity [15, 16]. Research 
also shows that vibrations in the range of 20–30 Hz can 
improve gait balance [17]. Since the resonance frequen-
cies of some important human organs are between 5 and 
20 Hz, previous studies have considered 20 Hz as a safety 
threshold for vibration frequency [18].

Hence, optimal vibration protocols to improve motor 
function and disabilities should be established with 
strong evidence before applying them to improve motor 
and functional recovery in individuals with stroke in 
the clinical setting [7, 19, 20]. Therefore, it is crucial to 
develop an optimal evidence-based VT protocol for 
improving motor function and disability recovery to help 
clinical therapists enhance upper limb recovery in people 
with stroke.

Despite the potential of VT, its use in the upper 
extremities (UEs) and benefits on function and disability 
recovery have rarely been discussed; furthermore, evi-
dence-based treatment effects are not well-established. 
Therefore, this meta-analysis aimed to investigate the 
effects of VT protocols on UE motor impairment, func-
tion, and disability recovery in people with stroke.

Methods
Design
The present study followed the Preferred Reporting 
Items for Systematic Reviews and Meta-Analysis guide-
lines [21]. The protocol of this study was registered with 
PROSPERO (Registration number: CRD42022301119) 
and the need for written informed consent was waived 
because of its retrospective design.
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Articles were screened and obtained through a com-
prehensive electronic search of online databases, includ-
ing PubMed, EMBASE, the Cochrane Library, the 
Physiotherapy Evidence Database (PEDro), the China 
Knowledge Resource Integrated Database, and Google 
Scholar, from their inception to May 31, 2024. Second-
ary sources included papers in related systemic reviews. 
No restriction regarding language or time of publica-
tion was applied. Two authors (HJC and CDL) indepen-
dently searched for relevant articles, screened them, and 
extracted data. Any disagreement between the authors 
was resolved through discussion. If a consensus was not 
reached, another team member (CHY), who served as an 
arbitrator, was consulted.

Search strategy
Our key search terms were “stroke” OR “cerebral vascu-
lar accident” OR “hemiplegia” OR “hemiparesis” AND 
“vibration” AND “upper extremity.” The search formulas 
for each database are detailed in Supplementary Table 1.

Selection criteria of the studies
Studies were eligible if they met the following criteria: 
randomized controlled trials (RCTs) that explored the 
effectiveness of VT for UEs; had adult participants with a 
diagnosis of ischemic or hemorrhagic stroke; the experi-
mental group underwent VT with or without post-stroke 
standard rehabilitation (SR) (SR referred to conventional 
physiotherapy or occupational therapy, which increased 
UE strength, improved joint flexibility, and enhanced 
function); the control group received placebo vibratory 
stimuli, SR, or a combination of both; and those that per-
formed a validated measurement of changes in UE motor 
impairment, function, or disability before and after the 
interventions. The definitions of these outcomes are pro-
vided in the g subsections below.

The exclusion criteria were studies that used an ani-
mal model, case reports or case series, and studies that 
were prospectively designed trials without a comparison 
group.

Outcome measures
UE motor impairment, function, and disability were 
the primary outcomes in the present study. UE motor 
impairment was measured using the Fugl-Meyer Assess-
ment scale [22, 23] or other tools assessing UE motor 
impairment. UE functions were evaluated using the Wolf 
Motor Function test [24] or other tools assessing manip-
ulative activities. Disability was assessed using the Func-
tional Independence Measure [25], Barthel index [26], 
and other tools.

Data extraction
The following data were extracted from each included 
trial (Table  1): characteristics of the study sample 
and design, including the group design, the age, sex, 
diagnosis, stroke type, and disease onset duration in 
individuals with stroke; characteristics of the interven-
tions (i.e., type of VT, treatment duration, and num-
ber of sessions); measurement time points; and main 
outcome measures. The follow-up duration was cat-
egorized into four types: immediate (< 1  month), 
short-term (≥ 1  month, < 3  months), medium-term 
(≥ 3  months, < 6  months), and long-term (≥ 6  months) 
[27]. When multiple time points were reported within 
the same timeframe, the longest period was selected 
for analysis. One author (HJC) extracted the relevant 
data from the included trials, and another author (CDL) 
reviewed the extracted data. Any disagreement between 
the two authors was resolved through discussion and a 
third author (CHY) was consulted if a consensus could 
not be reached. If a trial had more than one therapeutic 
or control intervention, each comparison was considered 
to be independent in the meta-analyses [28].

Assessment of bias risks and methodological quality 
of the included studies
Quality assessment was performed using the PEDro 
quality score to assess the risk of bias. Methodological 
quality (MQ) of all the included studies was indepen-
dently assessed by two researchers in accordance with 
the PEDro classification scale, which is a valid measure 
of the MQ of clinical trials [29]. The PEDro scale scores 
10 items including: random allocation (selection bias), 
concealed allocation (selection bias), similarity at base-
line, subject blinding (performance bias), therapist blind-
ing (performance bias), assessor blinding (detection bias), 
more than 85% follow-up for at least one key outcome 
(attrition bias), intention-to-treat analysis (attrition bias), 
inter-group statistical comparison for at least one key 
outcome, and point and variability measures for at least 
one key outcome. Each item is scored as either 1 for pre-
sent or 0 for absent, and a total sum score ranging 0–10 
is obtained by summation of all 10 items. Based on the 
PEDro score, the MQ of the included RCTs was rated as 
high (≥ 7/10), medium (4–6/10), or low (≤ 3/10) [30].

Data synthesis and analysis
We computed effect sizes for each study separately for 
the primary outcome measures (UE motor impairment, 
function, and disability). Primary outcome measures were 
defined as a pooled estimate of the mean difference in 
change between the mean of the treatment and the con-
trol groups. Analyses based on change scores (i.e., change 
from baseline) were performed to partially correct for 
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inter-participant variability [31]. If the included stud-
ies did not present data in the manner calculated in this 
study, the corresponding author of the respective publi-
cation was contacted to request the research data. If no 
response was received, the calculations were performed 
using the following method: change scores were extracted 
whenever the mean and standard deviation (SD) of the 
changes were available. If the exact variance of the paired 
difference was not derivable, a conservative estimation 
was performed by assuming an intra-participant correla-
tion coefficient of 0.7 between the baseline and post-test 
measured data [32]. If the SD was not reported, it was 
estimated by p-values or 95% confidence intervals (CIs). 
If the data was presented as medians (full ranges or inter-
quartile ranges), they were re-calculated algebraically 
from the trial data to estimate the sample mean and the 
SD [31, 33, 34]. Owing to the diversity of measurement 
tools among studies for UE outcomes, all the extracted 
outcome data were calculated as standard mean differ-
ences (SMDs) with 95% CIs for sufficient comparability 
of effect sizes. We categorized the magnitude of SMDs in 
accordance with the following version of Cohen’s crite-
ria [35]: trivial (d < 0.10), small (0.10 £ d < 0.25), medium 
(0.25 £ d < 0.40), and large (d ≥ 0.40).

Subgroup analyses were performed to identify poten-
tial factors that may affect treatment effects. These fac-
tors included the MQ level, disease stage, intervention 

design (i.e., monotherapy or adjunct therapy), inter-
vention parameters, and treatment duration. The dis-
ease stage based on the time period since the onset of 
stroke was classified as acute (< 3  months), subacute 
(≥ 3 months, < 6 months), and chronic (≥ 6 months) [27]. 
All subgroup differences were tested for significance, 
and an I2 statistic was computed to estimate the degree 
of subgroup variability. Potential publication bias was 
assessed using Egger’s regression asymmetry test [36]. 
This meta-analysis was performed using Review Manager 
Software 5.4 (The Nordic Cochrane Centre, Copenhagen, 
Denmark).

Results
Trial flow
Figure  1 presents a flowchart of the selection process. 
Through the electronic and manual literature search, 
we identified a total of 438 articles. After removing 
duplicates, we reviewed the titles and abstracts of 172 
studies to assess their eligibility; subsequently, 40 were 
considered to be relevant for full-text assessment. The 
final sample comprised 30 RCTs [8–12, 37–61], which 
were published between 2012 and 2024.

Study characteristics
Table  1 summarizes the study characteristics and 
demographic data of the participants with stoke in the 

Fig. 1 Flowchart of study selection. PEDro Physiotherapy Evidence Database
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included RCTs. In total, 1,621 participants who had a 
diagnosis of stroke with hemiplegia (or hemiparesis) 
were recruited, with a mean age of 60.4  years (range: 
43.0–77.0  years). Twelve RCTs [42–45, 47, 48, 53, 54, 
57–60] enrolled people with stroke who had acute 
onset stroke from a few days to 3 months, whereas the 
other 6 RCTs [9, 46, 51, 55, 56, 61] and 12 RCTs [8, 
10–12, 30, 37–41, 50, 52] enrolled people with stroke 
in the subacute (disease duration: < 6  months) and 
chronic stage (mean disease duration: 6–100  months), 
respectively.

Most of the included RCTs used VT as an adjunct 
therapy with SR [8, 10, 11, 37–40, 42–48, 50–54, 56–
58, 60, 61] or other active treatments [12, 40, 41, 55, 
59], whereas 6 RCTs [8, 9, 30, 42, 59, 61] used VT as 
monotherapy. Most of the included RCTs conducted an 
immediate or short-term follow-up within 3  months, 
four RCTs had a medium-term follow-up duration of 
12–18 weeks [10, 12, 37, 56], and only one RCT had a 
long-term follow-up period of 6 months [37].

Protocol of VT
A summary of the protocols for VT is presented in 
Table  1, and details of the protocol for VT are pre-
sented in Supplementary Table 2. Regarding the vibra-
tion mode, most of the included RCTs used FMV 
[10–12, 30, 38–43, 45, 47, 48, 50–53, 56, 57, 60, 61], 
whereas nine used WBV [8, 9, 37, 44, 46, 54, 55, 58, 
59]. The most frequently used brand for FMV research 
was Panasonic (n = 2) [43, 57], with the model being 
EV2610 (n = 2) [43, 57]. The most frequently used 
brand for WBV research was Novotec Medical GmbH 
(n = 4) [8, 9, 44, 58], with the model being Galileo Med 
M Plus (n = 2) [44, 58].

The frequency of the vibratory wave applied ranged 
from 3 to 500  Hz among the included trials. Generally, 
seven RCTs [8, 9, 44, 45, 54, 55, 58] used low-frequency 
VT (≤ 20 Hz), and the other 23 RCTs [10–12, 30, 37–43, 
46, 47, 50–53, 55–57, 59–61] employed a high-frequency 
VT (> 20 Hz). The duration of each vibration application 
ranged from 5 min to 3 h per training day. VT was mostly 
performed immediately following SR [8, 12, 37–39, 42, 
43, 45–47, 51, 52, 54, 57–59], although three RCTs [10, 
50, 56] used VT simultaneously with SR and two RCTs 
prescribed VT prior to each SR session [9, 11]. All peo-
ple with stroke received VT in the seated [8–10, 12, 30, 
41, 44, 45, 48, 50, 51, 54, 59, 61], supine [11, 40, 43, 47, 
51–53, 57, 61], or standing position [37, 46, 55, 58, 59]. 
In addition, nine RCTs [11, 39, 40, 44, 50–53, 61] had a 
treatment duration of less than 4 weeks (3–21 sessions), 
whereas 13 RCTs [8, 9, 12, 30, 37, 42, 43, 45, 47, 48, 54–
56, 60] and seven RCTs [10, 38, 41, 46, 57–59] employed 

4-week (12–28 sessions) and 8-week (18–48 sessions) 
interventions of VT, respectively. Furthermore, in most 
of the included RCTs, the people with stroke in the con-
trol group received no treatment related to VT, whereas 
11 RCTs [10, 11, 37, 39, 41, 42, 45, 50, 53, 56, 60] con-
ducted placebo VT for the people with stroke in the con-
trol group.

Risk of bias in the included studies
Individual PEDro scores are displayed in Supplemen-
tary Table  3. Overall, the MQ assessment revealed 
that 14 (46.7%) and 16 (54.3%) of the 30 included RCTs 
were classified as high [8, 10–12, 37, 39–41, 45, 50, 52, 
53, 56, 60] and medium [9, 30, 38, 42–44, 46–48, 51, 54, 
55, 57–59, 61], respectively, with a median PEDro score 
of 6/10 (range: 5/10–9/10). The inter-rater reliability 
of the cumulative PEDro scores was acceptable with an 
intraclass correlation coefficient of 0.88 (95% CI 0.74–
0.95). All of the 30 included RCTs used random alloca-
tion, similarity at the baseline, and point estimates and 
variability; 6 of the 14 high-quality RCTs [11, 12, 40, 52, 
56, 61] performed allocation concealment, whereas no 
medium-quality RCT did. Overall, the people with stroke 
and assessors were blinded to the study group allocations 
in 11 RCTs [10, 11, 37, 39, 41, 42, 45, 50, 53, 56, 60] and 
13 RCTs [8, 10–12, 37–42, 50, 52, 53, 56], respectively; 
in addition, therapist blinding was used in 2 high-quality 
RCTs [50, 53], indicating potential performance bias.

Effectiveness on UE motor impairment
Upper-limb motor impairment was assessed using the 
Fugl-Meyer Assessment scale (in 20 RCTs [8, 10, 12, 41, 
43–48, 51, 53–61]). The combined analysis showed that 
VT exerted significant effects on decreases in UE motor 
impairment with a pooled SMD of 1.19 (95% CI 0.84–
1.54; p < 0.00001; I2 = 87%) during the overall follow-up 
period regardless of the type of vibration, intervention 
mode, and disease stage (Fig. 2).

Results of subgroup analyses for the MQ level, dis-
ease stage, and intervention factors (i.e., treatment 
design, vibration type, vibration frequency, treat-
ment duration, and follow-up time) are presented in 
Supplementary Table  4. Significant differences in the 
effect of VT on UE motor impairment were observed 
between the subgroups based on the follow-up dura-
tion (I2: 90%; p < 0.00001) and treatment design (I2: 
91%; p = 0.0009). Vibration was effective across all 
disease stages, including acute (SMD = 1.35), suba-
cute (SMD = 1.25), and chronic (SMD = 0.64), with 
no significant differences between them. Both 
FMV (SMD = 1.07) and WBV (SMD = 1.39) showed 
significant effects, with no differences between 
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them. Vibration frequencies ≤ 20  Hz (SMD = 1.46) 
and > 20  Hz (SMD = 1.05) were both effective, with 
no significant differences between them. However, 
the benefit of adjunct therapy was significant, with an 
SMD of 1.18. Significant effects in favor of VT were 
observed in the immediate (SMD = 1.51) and short-
term follow-up periods (SMD = 1.12), but not in the 
medium-term follow-up period. Intervention dura-
tions of less than 4  weeks (SMD = 1.51), 4–8  weeks 
(SMD = 1.19), and 8  weeks or more (SMD = 0.89) 
showed significant improvements in motor impair-
ment. Additionally, people with stroke had better out-
comes (SMD = 1.32) in response to VT combined with 
SR than those who received VT alone (SMD = 0.39).

Effectiveness on UE motor function
UE motor function was assessed using the Wolf Motor 
Function test (5 RCTs [8, 11, 30, 40, 50]), Motor Activ-
ity Log (3 RCTs [9, 12, 42]), mobility index (2 RCTs 
[49, 58]), and active arm motion tests (3 RCTs [39, 41, 
52]). Meta-analysis results showed that VT obtained 
favorable effects on score changes in the Wolf Motor 
Function test (SMD = 0.55; p = 0.004), Motor Activ-
ity Log test (SMD = 0.90; p < 0.0001), mobility index 
(SMD = 0.78; p = 0.0009), and active arm motion 
tasks (SMD = 0.41; p = 0.01) compared with the con-
trol groups (Fig.  3). The combined analysis showed 
that VT exerted significant effects on increases in 
UE motor function with a pooled SMD of 0.62 (95% 

CI 0.43–0.81; p < 0.00001) during the overall follow-
up period regardless of the type of vibration, inter-
vention mode, and disease stage (Fig.  3). Subgroup 
analysis results showed no significant factor affecting 
treatment effects on UE motor function (Supplemen-
tary Table  4). However, only the 4–8  weeks duration 
(SMD = 0.57) demonstrated slightly superior outcomes 
in motor function (Supplementary Table 4).

Effectiveness on disability
A total of 16 RCTs reported disability outcomes that 
were assessed by the Functional Independence Measure 
(4 RCTs [10, 37, 47, 56]) and Barthel index (13 RCTs [38, 
42, 43, 45–48, 51, 54, 55, 57–59]). Meta-analysis results 
showed that VT had favorable effects on score changes 
regarding the Barthel index (SMD = 1.10; p < 0.00001) 
and the Functional Independence Measure (SMD = 0.69; 
p = 0.03) compared with the control groups (Fig. 4). The 
combined results showed that VT achieved significantly 
greater changes in disability indices with an SMD of 1.01 
(95% CI 0.69–1.33; p < 0.00001; I2: 84%) than the controls, 
regardless of the follow-up duration, intervention design, 
and type of vibration (Fig. 4).

Subgroup analysis results indicated significant dif-
ferences between the treatment designs (I2: 82.6%; 
p = 0.02) and vibration types (I2: 84.7%; p = 0.01; Sup-
plementary Table  4). People with stroke appeared to 
obtain favorable effects (SMD = 1.03) in response to VT 
combined with SR compared with those who received 
VT alone (SMD = 0.21). In addition, FMV (SMD = 2.14) 

Fig. 2 Forest plot showing the effects of vibration therapy on upper‑extremity motor impairment
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Fig. 3 Forest plot showing the effects of vibration therapy on upper‑extremity motor function

Fig. 4 Forest plot showing the effects of vibration therapy on disability
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appeared to achieve better treatment effects than 
WBV (SMD = 0.75). For disability, interventions last-
ing 4–8  weeks (SMD = 0.84) and 8  weeks or more 
(SMD = 0.87) yielded better results (Supplementary 
Table 4).

Side effects and compliance
No clinically relevant adverse events, side effects (e.g., 
pain), or serious complications were reported after VT 
interventions in the included RCTs. Furthermore, good 
tolerance and compliance for FMV therapy was reported 
by three RCTs [42, 50, 52].

Publication bias
The funnel plots of the effect sizes of each primary out-
come measure are presented in Supplementary Fig. 1. No 
substantial asymmetry was identified by visual inspection 
of the funnel plots for UE motor impairment, UE motor 
function, and disability. The Egger’s linear regression test 
for each main outcome did not indicate any evidence 
of obvious reporting bias among the comparisons (All 
p > 0.05).

Discussion
Regardless of whether people with stroke are in the acute, 
subacute, or chronic stage, FMV and WBV are effec-
tive for improving upper extremity motor impairment 
and enhancing motor function. Local vibration acts as 
a source of proprioceptive stimuli, inducing somatosen-
sory and sensorimotor improvements through corti-
cal reorganization, although disability benefits are only 
seen in the acute and subacute stages. VT can effectively 
improve upper limb motor impairments and function in 
people with chronic stroke. However, to enhance their 
independence in daily activities, a more comprehensive 
approach may be needed, potentially including improve-
ments in environmental adaptation and cognitive skills 
and addressing psychosocial factors. Neuroplasticity 
significantly declines in the chronic stage after stroke, 
which necessitates the use of multiple therapies to pro-
mote overall recovery. In this regard, adjunct therapy 
combined with VT is more effective than monotherapy, 
particularly in improving functional impairments in the 
chronic stage, and could help enhance recovery outcomes 
in poeple with stroke.

Disease stage, treatment design, and vibration type
In the disease stage, whether the person is in the acute, 
subacute, or chronic stage, using FMV or WBV is effec-
tive for improving motor impairment and enhancing 
motor function, with no difference between the two 
treatments. VT could be regarded as proprioceptive 
training that can induce meaningful somatosensory and 

sensorimotor functional improvements by means of cor-
tical reorganization [62]. However, in terms of disability, 
benefits are only noticeable in the acute and subacute 
stages.

The tools that are used to assess disability status (such 
as the Functional Independence Measure or Barthel 
Index) focus on overall functionality [25, 26], rather than 
on a single motor function. Previous studies have sug-
gested that specific training can significantly improve 
motor function in people with stroke but these improve-
ments do not necessarily translate directly into independ-
ence in activities of daily living [63, 64]. In recent years, 
some studies have started to focus on reablement, a 
rehabilitation approach conducted in the individuals’ liv-
ing environment to help them relearn and regain essen-
tial life skills [65, 66]. VT may effectively improve motor 
impairments and enhance motor function in people with 
chronic stroke, but improving their independence in daily 
activities may require a more comprehensive approach. 
In addition to rehabilitation, enhancing environmental 
adaptation and cognitive abilities and addressing psycho-
social factors are crucial considerations.

The treatment design of VT shows that adjunct therapy 
benefits are superior to those of monotherapy. Previ-
ous systematic reviews have also suggested that adjunct 
therapy is more effective than monotherapy in people 
with stroke. Neuroplasticity is higher in the early reha-
bilitation stage after a stroke, but in the chronic stage, 
the adaptability and self-repair capacity of the nervous 
system decrease significantly [67, 68]. Different therapies 
may have synergistic effects, enhancing overall recovery 
by addressing different mechanisms of stroke recovery 
[69]. Particularly for improving disability in the chronic 
stage, vibration therapy should be considered as part of 
adjunct therapy.

Vibration frequency, intervention duration, and follow‑up 
duration
Although both low (≤ 20  Hz) and high (> 20  Hz) fre-
quencies can improve motor impairment and enhance 
motor function, as well as disability, with no significant 
difference between the two strategies, it appears that low 
frequency offers better benefits. Previous studies have 
indicated that VT can stimulate the excitation of the neu-
romuscular system and muscle strength [8]. Vibration 
can enhance the function of the spinal cord and cerebral 
cortex by stimulating Ia afferent signals from muscle 
spindles [10, 40]. Previous studies have also suggested 
that low-frequency vibration interventions can trigger 
somatosensory feedback to improve limb function and 
alleviate spasticity symptoms in people with stroke [16, 
70].
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Intervention times of 4–8  weeks and longer than 
8 weeks are both effective for motor impairment, enhanc-
ing motor function, and disability, but intervention times 
of less than 4 weeks are only helpful for improving motor 
impairment. Previous meta-analyses on vibration also 
suggest that short-term vibration interventions are not 
helpful for reducing spasticity in people with stroke, with 
the effect size increasing gradually with the duration of 
vibration [18]. The effectiveness of training is closely 
related to the length of the training time; sufficient train-
ing time is necessary to achieve significant therapeutic 
effects [71]. Short VT intervention times may not provide 
adequate stimulation, thus limiting the effectiveness of 
the treatment.

Vibration intervention has significant effects in the 
short term (< 1 month and 1–3 months), but no sustained 
benefits were observed during the follow-up period 
of ≥ 3 months. Previous studies have indicated that insuf-
ficient training makes limb paralysis one of the major 
challenges faced by people with stroke after discharge 
[56]. People with stroke who frequently use the affected 
arm after discharge tend to experience better recovery 
in arm function [56]. Previous meta-analyses have indi-
cated that high-intensity training post-stroke is crucial, 
and the more intense the training, the better the effect. 
An important principle in motor learning is repeated 
practice; when neurons are activated for a long duration 
simultaneously, the connections among them become 
stronger [72]. This suggests that in people with stroke, 
maintaining therapeutic effects in the long term may 
require continuous training interventions.

Side effects and compliance
In this meta-analysis, no clinically relevant adverse 
effects were reported in the collected studies and the 
training protocols were well tolerated in two studies [50, 
53]. The impact induced by high dosage vibration was 
reported to increase the risk of deteriorating osteoporo-
sis, lower back pain, and complementary disability [73]; 
thus, the target location and direction of therapeutic 
equipment are crucial to prevent damage. Moreover, diz-
ziness or muscle soreness were noted in 2.4–3.6% of peo-
ple with stroke undergoing VT with stroke and cerebral 
palsy, respectively [74, 75]. WBV was reported to induce 
warm feet, dizziness, severe hip discomfort, and jaw or 
neck pain due to vibration [6]. A frequency higher than 
20 Hz accompanied with a greater G value caused reso-
nance, trauma, and dizziness, whereas that higher than 
30 Hz led to discomfort and damage of fragile bones [74, 
76].

Limitations
Our study had several limitations. First, function and 
disability are interrelated, and while clinical assessment 
tools have primary measurement goals, they cannot 
solely assess motor function or disability elements alone. 
The mixed type of outcome results may have been a con-
founding factor. Second, more than two motor function 
outcome measures were used in some studies, which may 
have affected the results of the analysis. To maintain low 
heterogeneity, the Fugl-Meyer Assessment scale results 
were considered important and selected for the analysis.

Conclusions
Our meta-analysis indicates that VT for improving upper 
limb function and disability recovery, especially when 
combined with SR, is both a reliable and safe therapeutic 
method. Initiating VT as early as possible post-stroke and 
a minimum of 4–8 weeks of VT is necessary to achieve 
improvements in upper extremity motor function after 
stroke. Both low and high vibration frequencies are effec-
tive, with FMV showing superior results compared with 
WBV, particularly for disability recovery. The effective-
ness of VT is also influenced by factors such as the type 
of vibration, intervention mode, and follow-up duration. 
Maintaining the therapeutic effects of vibration therapy 
in the long term may require continuous interventions 
for people with stroke.
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