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Abstract 

Protein –protein interactions (PPIs) play a crucial role in numerous biochemical and biological processes. Although 
several structure-based molecular generative models have been developed, PPI interfaces and compounds targeting 
PPIs exhibit distinct physicochemical properties compared to traditional binding pockets and small-molecule drugs. 
As a result, generating compounds that effectively target PPIs, particularly by considering PPI complexes or interface 
hotspot residues, remains a significant challenge. In this work, we constructed a comprehensive dataset of PPI inter-
faces with active and inactive compound pairs. Based on this, we propose a novel molecular generative framework 
tailored to PPI interfaces, named GENiPPI. Our evaluation demonstrates that GENiPPI captures the implicit relation-
ships between the PPI interfaces and the active molecules, and can generate novel compounds that target these 
interfaces. Moreover, GENiPPI can generate structurally diverse novel compounds with limited PPI interface modu-
lators. To the best of our knowledge, this is the first exploration of a structure-based molecular generative model 
focused on PPI interfaces, which could facilitate the design of PPI modulators. The PPI interface-based molecular 
generative model enriches the existing landscape of structure-based (pocket/interface) molecular generative model.

Scientific contribution This study introduces GENiPPI, a protein-protein interaction (PPI) interface-aware molecular 
generative framework. The framework first employs Graph Attention Networks to capture atomic-level interaction 
features at the protein complex interface. Subsequently, Convolutional Neural Networks extract compound represen-
tations in voxel and electron density spaces. These features are integrated into a Conditional Wasserstein Generative 
AdversarialNetwork, which trains the model to generate compound representations targeting PPI interfaces. GENiPPI 
effectively captures the relationship between PPI interfaces and active/inactive compounds. Furthermore, in fewshot 
molecular generation, GENiPPI successfully generates compounds comparable to known disruptors. GENiPPI provides 
an efficient tool for structure-based design of PPI modulators.
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Introduction
A vast network of genes is interconnected through 
protein–protein interactions (PPIs), which are critical 
components of nearly every biological process under 
physiological conditions and are ubiquitous in various 
organisms and biological pathways [1–4]. Modulating 
PPIs broadens the drug target space and holds significant 
potential in drug discovery. In humans, the estimated 
size of the interactome ranges from 130,000 to 930,000 
binary PPIs [5–7]. Despite considerable efforts, develop-
ing modulators of PPI targets, particularly those targeting 
PPI interfaces, remains challenging [6, 8–12]. Structure-
based rational design plays a vital role in identifying lead 
compounds for drug discovery [13–17]. Traditional drug 
targets and PPI targets exhibit distinct biochemical char-
acteristics (Table 1) [11, 18–22], further exhibiting differ-
ences in the physicochemical and drug-like properties 
of conventional drugs and PPI modulators (Table 1) [11, 
23–30]. Given the differences outlined in Table 1, devel-
oping molecular generative models tailored to different 
paradigms is crucial for designing drugs for various tar-
get types [10, 19, 31].

Generative artificial intelligence (AI) is capable of mod-
eling the distribution of training samples and generating 
novel samples [32, 33]. In drug discovery, generative AI 
can accelerate the process of drug discovery by gener-
ating novel molecules with desired properties. Several 
excellent review articles have summarized development 
in this field [16, 17, 34–41]. Molecular generative mod-
els in drug design can be broadly categorized into three 
categories: ligand-based molecular generative (LBMG) 
models, structure-based molecular generative (SBMG) 

models (focusing on pockets or binding sites), and 
fragment-based molecular generative (FBMG) models. 
Among these, SBMG models have garnered significant 
attention [17, 39, 42]. While key methods for structure-
based molecular generative models are well-documented 
[43–51], molecular generative models specifically tar-
geting PPI structures or interfaces are rarely reported in 
the literature. In recent years, classical machine learn-
ing [52–54], active learning [55], and deep learning-
assisted approaches have been explored to improve the 
screening and design of PPI modulators [56], and some 
ligand-based molecular generative models for PPI modu-
lators have been reported [57]. However, structure-based 
molecular generative models for PPI targets remain 
underexplored.

In this study, we developed GENiPPI, a structure-based 
conditional molecular generative framework designed 
for the generation of protein–protein interaction (PPI) 
interface modulators. The framework begins by utilizing 
Graph Attention Networks (GATs) to capture the sub-
tle atomic-level interaction features present at the pro-
tein complex interface. Convolutional Neural Networks 
(CNNs) are then employed to extract compound repre-
sentations in voxel and electron density space. Following 
this, a Conditional Wasserstein Generative Adversarial 
Network (cWGAN) integrates these features to train a 
model that generates compound representations target-
ing PPI interfaces. Finally, the CNN module and LSTM 
network decodes the molecular embeddings into SMILES 
strings. The framework is designed to capture the rela-
tionship between PPI interface with active/inactive com-
pounds, enabling the training of conditional molecular 
generative models specifically tailored to PPI interfaces 
(Fig.  1). Conditional model evaluation shows that the 
GENiPPI framework effectively captures the implicit 
relationships between PPI interfaces and active com-
pounds, generating compounds with drug-like properties 
that resemble those of active compounds targeting spe-
cific PPI sites. In terms of performance, GENiPPI outper-
forms other generative models such as LatentGAN and 
ORGAN, demonstrating superiority in the novelty, diver-
sity, and validity of the generated molecules. Additionally, 
in few-shot molecular generation, GENiPPI successfully 
generated compounds targeting the Hsp90-Cdc37 inter-
action with chemical properties similar to known disrup-
tors, proving effective even with limited labeled data. In 
conclusion, GENiPPI represents a potent deep learning 
framework for structure-based design of PPI modulators.

Results and discussion
Generation of molecules targeting the PPI interface
In this study, we introduce GENiPPI, a modular deep 
learning framework for the design of structure-based 

Table 1 Comparisons between PPI interfaces and binding sites

PPI interfaces Binding sites

Target properties

 Large surface area (1000–6000 Å2) Small surface (300-1000 
Å2) Hydrophobic

 Preference for Trp (W), Tyr (Y), and Arg (R) 
as PPI hotspot residues; subpockets

Large volume (~ 260 Å3)

 Shallow, flat, flexible Pocket, cliff

 Hydrophobic, featureless, undruggability Diverse properties

Chemical space

 MW ≥ 400 MW ≤ 500

 LogP ≥ 4 LogP ≤ 500

 HBA ≥ 4 HBA ≤ 10

 Number of rings: ≥ 4 HBD ≤ 5

 Ro4 Morelli s rules Lipinski s Rule of 5 (Ro5)

Quantitative estimate of drug-likeness scores

 QEPPI QED
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PPI modulators (Fig.  1). GENiPPI consists of four main 
modules: a Graph Attention Networks (GATs) module 
for representation learning of the protein complex inter-
face as the conditional vector [58–60], a Convolutional 
Neural Networks (CNNs) module is used to capture the 
molecular features of modulators as the primary input, 
Conditional Wasserstein GAN (cWGAN) module for 
conditional molecular generation takes the conditional 
vector and main input [61], and a molecular captioning 
network module for decoding molecular embeddings 
into SMILES strings (as shown in Supplementary Figs. 1, 
2, 3, and 4, respectively).

Our framework follows four steps to generate mol-
ecules targeting PPI interfaces. First, the GATs module 
extracts atomic-level interaction characteristics of the 
protein complex interface region, effectively captur-
ing the nuanced structural characteristics crucial for 

interaction. Then, the CNN module encodes the molec-
ular features in a three-dimensional space, incorporat-
ing voxel and electronic density information [62]. This 
ensures a robust representation of the molecular struc-
ture that is suitable for generational tasks.

Next, the cWGAN module then generates compounds 
targeting PPI interfaces by utilizing features from the 
protein complex interface to regulate the inputs [63]. 
This cWGAN module consists of three components: the 
generator, the discriminator, and conditional network. 
The generator takes a Gaussian random noise vector and 
the protein complex interface features to generate a vec-
tor in the molecular embedding space, The discriminator 
determines whether the generated molecular embed-
ding corresponds to a real or generated molecule, while 
the conditional network assesses whether the molecu-
lar embedding matches the protein complex interface 

Fig. 1 The generation of molecules targeting PPI. The 3D structural information of the protein–protein complex interface is represented as a graph, 
with feature representation of the interface region captured using a graph attention neural networks (GATs). The voxel and electron density 
of the compound are encoded by 3D convolutional neural networks (CNNs). Conditional Wasserstein generative adversarial networks (cWGAN) 
is trained to generate molecular embeddings conditioned on interface features. The generator takes interface features and random noise vectors 
to generate molecular embeddings, while the discriminator evaluates the probability that a molecule is real or generated. The condition regulates 
the generation of molecules constrained by specific protein–protein interfaces. Finally, long short-term memory (LSTM) networks decode 
the molecular representations into SMILES strings
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features. Finally, the molecular captioning network 
decodes the molecular embeddings into SMILES strings. 
This network comprises a 3D CNN that processes the 
molecular embedding followed by an LSTM (Long Short-
Term Memory) network, which sequentially decodes 
the learned embeddings into valid molecular structures 
in SMILES strings [64]. This step ensures that the gener-
ated molecular designs are usable in further drug design 
studies.

Conditional evaluation
To comprehensively assess the validity of the condi-
tions used as conditional molecular generative mod-
els targeting the protein complex interfaces. To do this, 
we conducted a detailed analysis using three distinct 
PPI targets: MDM2 (mouse double minute 2)/p53, Bcl-
2(B-cell lymphoma 2)/Bax (Bcl-2 associated X), and 
BAZ2B(Bromodomain adjacent to zinc finger domain 
protein 2B)/H4(histone). These targets were selected due 
to the availability of high-quality labeled data and their 
significance in cancer biology.

For each PPI target, we used the GENiPPI framework 
to generate 10,000 validated molecules and calculated 
the key drug-like metrics of the generated compounds: 
QED [27], QEPPI [28, 29] and Fsp3(fraction of sp3 car-
bon atoms) [65]. These metrics are essential indicators of 
drug-likeness, PPI-targeting drug-likeness, and molecu-
lar complexity, respectively. The aim of these calculations 
was to determine how well the generated molecules align 
with the drug-like properties of known active compounds 
and to evaluate the influence of conditional input on the 
generative process.

We then compared the QED, QEPPI, and Fsp3 distribu-
tions of the active compounds and generated compounds 
for MDM2/p53, Bcl-2/Bax and BAZ2B/H4 (Fig.  2). The 
results show that the drug-like property distributions 
of the generated compounds closely resemble those of 
the active compounds for all three PPI interface targets 
(Fig.  2a, b, c). This suggests that the conditional input 
derived from the PPI interface features plays a critical 
role in guiding the generation process toward biologically 
relevant compounds.

Interestingly, we observed differences in drug-like 
property distributions between the generated com-
pounds across different PPI targets (Fig.  2d, e, and f ). 
These findings demonstrate the effectiveness of the PPI 
interface in conditioning the molecular generative model. 
For instance, MDM2/p53 and Bcl-2/Bax have notably 
different interface architectures and binding hot spots, 
which likely result in the generation of compounds with 
distinct QEPPI and Fsp3 profiles. These findings under-
score the specificity of the conditioning framework, 
which adapts the molecular generation process to the 

target PPI interface, thus ensuring that the generated 
molecules are tailored to the unique features of each PPI 
target.

We performed independent t-tests to compare the 
mean QED, QEPPI, and  Fsp3 values between the active 
and generated compounds for each PPI target. The results 
indicated statistically significant differences between the 
generated and active compounds across various metrics 
(Fig. 3). For example, significant differences in QED and 
QEPPI were observed for MDM2/p53 and Bcl-2/Bax, 
suggesting that active compounds exhibit better drug-
likeness and PPI-targeting drug-likeness, while  Fsp3 
distributions remain comparable. However, in the case 
of BAZ2B/H4, the QED and QEPPI values were similar 
between active and generated compounds, with notable 
differences observed only in the  Fsp3 metric. The overall 
analysis confirms that while generated compounds can 
closely mimic the drug-like properties of active com-
pounds, especially in QED and QEPPI metrics for spe-
cific targets, significant differences exist, particularly in 
molecular complexity, depending on the PPI target.

Moreover, the drug-like properties of the generated 
compounds shifted relative to those in the training data-
set, indicating that the GENiPPI framework does more 
than merely reproduce the distributions of known mol-
ecules; it generates novel compounds that maintain drug-
likeness while exploring new regions of chemical space. 
This capacity to innovate within the bounds of known 
drug-likeness properties is a hallmark of successful gen-
erative models, as it enables the discovery of potentially 
more effective or optimized PPI modulators.

Model performance
To assess the performance of the GENiPPI framework 
and compare it with other molecular generative models. 
We benchmarked our method using the MOSES platform 
[66], a leading benchmark platform of molecular genera-
tion. We trained all models on the full training dataset 
and randomly sampled 30,000 molecules. The models 
and hyperparameters provided by the MOSES platform 
were used, including the Adversarial Autoencoder (AAE) 
[67], character-level recurrent neural networks (Char-
RNN) [68], Variational Autoencoder (VAE) [69], Latent-
GAN [70] and ORGAN [71]. To validate the quality of 
the molecules generated by the conditioned model, we 
compared them to molecules generated by the GENiPPI 
framework and the GENiPPI-noninterface framework, 
which lacks the conditioned module. Our results showed 
that molecules generated by the conditioned GENiPPI 
framework outperformed those generated by other mod-
els in terms of novelty and diversity. This improvement 
can be attributed to the conditioning module, which 
directs the model to focus on specific chemical spaces 
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associated with PPI interfaces. By conditioning molecu-
lar generation on relevant PPI features, the GENiPPI 
framework ensures that the generated molecules possess 
characteristics desirable for PPI inhibition. In contrast, 
models lacking this module, such as the GENiPPI-non-
interface, fail to maintain this level of focus, resulting in 
lower performance across novelty and diversity metrics.

As shown in Table  2, the GENiPPI framework dem-
onstrated advantages in uniqueness, novelty, and 
diversity over the GENiPPI-noninterface framework. 
Overall, the GENiPPI framework performed better in 
molecular generation. Compared to LatentGAN and 
ORGAN, GENiPPI offered superior results in terms of 
validity and diversity. While each molecular genera-
tive model has its strengths across various performance 
metrics, models tailored to specific tasks, such as those 
based on PPI structures, show advantages and inspira-
tions from the GENiPPI framework.

To further understand the similarities and differences 
between the molecular distributions generated by the 
GENiPPI framework and other models, we compared 
the distribution of molecular properties in the Test-
set, iPPI-DB inhibitor [72], and the generated molecu-
lar datasets from AAE, CharRNN, VAE, LatentGAN, 
GENiPPI-noninterface and GENiPPI (Supplementary 
Fig.  5). The generated compounds showed similar dis-
tributions of physicochemical properties to those in the 
training set. The QED values of the generated molecules 
were particularly close to those of the iPPI-DB inhibi-
tors, indicating that the GENiPPI framework effectively 
learns and applies the desired molecular characteristics. 
Notably, while most iPPI-DB inhibitors have QED values 
lower than 0.5, the majority of generated molecules from 
the GENiPPI framework exhibited QEPPI values higher 
than 0.5. This suggests that the GENiPPI framework not 
only captures the drug-likeness of molecules but also 
their PPI-targeting potential, which is essential for PPI-
related drug discovery tasks. This consistency in property 
distribution underscores the framework’s ability to model 
complex chemical spaces and generate biologically rel-
evant, novel compounds.

Chemical space exploration
To more comprehensively estimate the chemical space 
distribution of the model generated molecules in com-
parison to the active compounds from the training 
datasets, we evaluated the chemical drug-like space of 
the generated compounds by calculating t-distributed 
stochastic neighbourhood embedding (t-SNE) maps 
of MACCS fingerprints [73]. t-SNE is a widely-used 
dimensionality reduction method used for visualizing 
data points in two or three-dimensional space by map-
ping high-dimensional data to lower dimension [74, 
75]. This method clusters similar compounds, allowing 
for a clear understanding of how generated compounds 
occupy chemical space in comparison to active, known 
compounds.

The distribution of both generated and active com-
pounds in the chemical drug-like space was visual-
ized using t-SNE visualization (Fig. 4a–c). Our findings 
reveal that the generated drug-like compounds not 
only share the chemical space with the active com-
pounds, but are also homogeneously mixed in the two-
dimensional space. This observation indicates that the 
GENiPPI framework successfully generates compounds 
that occupy the same drug-like space as known active 
modulators, reinforcing the model’s capacity to pro-
duce viable drug candidates. Moreover, under the 2D 
topological fingerprints, the generated compounds 
exhibit a similar chemical drug-like space to that of 
the active. This similarity suggests that the generative 
model is effective in capturing key topological features 
of molecules that are critical for drug-likeness. How-
ever, relying solely on two-dimensional representa-
tions may not be sufficient to fully assess drug-likeness, 
particularly for PPI modulators, which often require 
more complex three-dimensional features for effective 
binding. Incorporating three-dimensional features into 
the compounds contributes to the design of promising 
drug-like compounds [30, 76]. To address this, we con-
ducted principal moments of inertia (PMI) shape analy-
sis on the generated compounds and compared them 
with drug-like compounds from DrugBank and iPPI-
DB (Fig. 4d). This analysis revealed that many approved 
compounds are either rod or disk shaped, and the gen-
erated drug-like compounds display a similar three-
dimensional shape distribution. Such shapes are often 

Fig. 2 Results of conditional evaluation. a The distribution of QED, QEPPI and Fsp3 for active compounds and compounds generated 
by the GENiPPI framework for MDM2/p53. b The distribution of QED, QEPPI and Fsp3 for active compounds and compounds generated 
by the GENiPPI framework for Bcl-2/Bax. c The distribution of QED, QEPPI and Fsp3 for active compounds and compounds generated 
by the GENiPPI framework for BAZ2B/H4. d The QED distribution of compounds generated by the GENiPPI framework for MDM2/p53, Bcl-2/Bax 
and BAZ2B/H4. e The QEPPI distribution of compounds generated by the GENiPPI framework for MDM2/p53, Bcl-2/Bax and BAZ2B/H4; f The Fsp3 
distribution of compounds generated by the GENiPPI framework for MDM2/p53, Bcl-2/Bax and BAZ2B/H4

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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crucial for the spatial complementarity required for tar-
geting PPI interfaces. Additionally, the PMI shape anal-
ysis suggests that the model is generating compounds 
with appropriate three-dimensional features that align 
with known drug-like shapes, further validating the 
robustness of the generation process. We also evaluated 

the plane of best fit (PBF) score of the generated drug-
like compounds, a parameter that describes the extent 
to which molecular scaffolds deviate from planarity. 
The PBF distribution of the generated library ranges 
from 0 to 2 Å (Fig. 4e), indicating that many generated 

Fig. 3 Independent t-test comparisons of QED, QEPP, and Fsp.3 values between generated and active compounds across three PPI targets: a 
MDM2/p53, b Bcl-2/Bax, c BAZ2B/H4
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drug-like compounds are derived from relatively planar 
molecular scaffolds.

Additionally, we assessed the ability of the model to 
generate PPI target-specific compounds using chemical 
space maps. To evaluate the overlap of drug-like chemical 
space, we utilized Tree MAP (TMAP) to create a 2D pro-
jection (Fig. 4f ) [77]. Each point represents a compound, 
colored by its target label, with dark and light colors 
denoting generated and active compounds, respectively. 
These results suggest that the GENiPPI model can gen-
erate compounds similar to the active compounds in the 
training set while introducing novel structures. Overall, 
the framework enriches and expands the chemical space 
of PPI-targeted drug-like compounds.

Few‑shot molecular generation
Due to the high associated with data collection, only a 
small amount of labeled biomedical data is typically avail-
able, presenting challenges for drug design and optimiza-
tion, which often faces the problem of limited data [78]. 
This scarcity of labeled data can diminish the practical 
performance of most deep learning frameworks in drug 
design. Addressing the challenge of generating molecular 
designs with limited labeled data has become a signifi-
cant focus in the few-shot generative community [79, 80]. 
Few-shot learning aims to train models using only a small 
number of examples while still enabling them to general-
ize effectively to novel tasks. This capability is critical for 
drug discovery, where only a few experimentally verified 
molecules are often available for new PPI targets. The 
GENiPPI model was applied to generate a virtual com-
pound library targeting the interaction interface between 
heat shock protein 90 (Hsp90) and cell division cycle 
37(Cdc37). By training the model on the PPI structure of 
Hsp90-Cdc37 (PDB ID: 1US7) and using data from seven 
disruptors, we sampled 500 valid compounds. The chem-
ical space similarity between active disruptors and gener-
ated compounds for Hsp90/Cdc37 was visualized using 
t-SNE projection maps (Fig. 5a), which revealed that the 

generated molecules were largely clustered around the 
active disruptors in chemical space. This result demon-
strates the effectiveness of few-shot learning in navigat-
ing through the targeted chemical space and generating 
compounds that are structurally similar to known active 
disruptors despite limited training data.

In order to further assess the chemical relevance of 
the generated compounds, we performed pharmaco-
phore-based matching using DCZ3112, a novel triazine 
derivative that disrupts Hsp90-Cdc37 interactions, as a 
reference molecule [81]. The top 5 generated molecules 
showed similar pharmacophore and shape features 
to DCZ3112 (Fig.  5b). The similarity of these features 
between DCZ3112 and the generated molecules indicates 
that the model was able to successfully learn the essential 
characteristics required for disrupting the Hsp90-Cdc37 
interaction, even with limited input data.

To further validate the model  s performance, we 
examined the interaction patterns between the gener-
ated compounds and the PPI interface by performing 
molecular docking. Previous studies have identified key 
hot spot amino acid residues at the PPI interface (PDB 
ID: 1US7) [81, 82], as shown in Fig.  5c. We performed 
molecular docking for prediction of the binding poses 
(Fig.  5d) of DCZ3112 with the Hsp90-Cdc37 complex 
using the UCSF DOCK6.9 program [83]. The structure 
of the Hsp90-Cdc37 complex with DCZ3112 highlights 
the hydrogen bond interactions with amino acid residues: 
Arg32A, Glu33A, Ser36A, Ser115A, Gly118A, Gln119A, 
and Arg167B (Fig.  5d), which are major contributors to 
protein–ligand interactions. Subsequently, molecular 
docking was also performed on the GENiPPI-generated 
compounds, alongside DCZ3112, and compounds with 
reasonable binding modes and higher binding affin-
ity were selected for interaction pattern analysis. The 
GENiPPI-generated compounds not only achieved a bet-
ter docking score than the active compounds but also 
reproduced the key interactions with the crucial resi-
dues of the PPI interface. This indicates that the model 

Table 2 Valid, unique, novelty and FCD of sampling SMILES after training. We sampled 30,000 SMILES each time

Model Valid Unique@1 k Unique@10 k Novelty FCD

Test TestSF

AAE 0.881 1.000 0.995 0.995 8.573 9.117

CharRNN 0.985 0.999 0.988 0.994 8.7564 8.952

VAE 0.834 1.000 0.996 0.994 7.703 8.141

LatentGAN 0.724 1.000 0.999 0.998 7.595 8.160

ORGAN 0.609 0.996 0.994 0.999 39.800 41.158

GENiPPI-noninterface 0.999 0.997 0.975 0.997 7.653 8.132

GENiPPI 0.999 0.998 0.977 0.998 7.450 7.884
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Fig. 4 Chemical space exploration. a t-SNE visualization of active and generated compounds for MDM2/p53. b t-SNE visualization of active 
and generated compounds for Bcl-2/Bax. c t-SNE visualization of active and generated compounds for BAZ2B/H4. d PMI ternary density plots 
of generated compounds, small molecule drugs from DrugBank, and iPPI-DB inhibitors. Top left: propyne, bottom: benzene, and the top right: 
adamantane. e Molecular three-dimensionality distribution of generated molecules visualized using NPR and PBF descriptors. f TMAP visualization 
of active and generated compounds for MDM2/p53, Bcl-2/Bax and BAZ2B/H4
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was able to accurately capture the binding preferences 
of the target PPI interface based on limited input data. 
The generated compounds formed additional halogen 
bonds, salt bridges and π-cation interactions, which were 
not observed in the reference disruptor. These additional 
interactions likely contributed to the improved binding 
affinity to the target PPI interface (Fig. 5e). In conclusion, 
by analyzing the interaction patterns between the gen-
erated compounds and the PPI interface, GENiPPI suc-
cessfully learned the implicit interaction rules between 
active compounds and the PPI interface. The ability to 
generate molecules that introduce novel interaction pat-
terns, while retaining key interactions, demonstrates the 
model s capability to innovate within the chemical space 
and design compounds with enhanced binding potential.

Conclusion
In this work, we developed the GENiPPI framework, 
which combines PPI interface features with a conditional 
molecular generative model to generate novel modulators 
for PPI interfaces. Through extensive conditional evalua-
tion experiments, we validated the ability of the GENiPPI 
framework to learn the implicit relationship between PPI 
interfaces and active molecules, demonstrating its capac-
ity to generate chemically diverse and biologically rel-
evant molecules. One of the key innovations of GENiPPI 
is its use of GATs to extract fine-grained, atomic-level 
interaction features from PPI interfaces. This allows the 
model to focus on critical interaction "hot spots" that are 
often difficult to target using conventional drug design 
methods. Additionally, by incorporating a conditional 
wGAN, the model is able to impose specific constraints 
on molecular generation, ensuring that the generated 
molecules are not only structurally novel but also align 
with the required PPI-targeting drug-likeness. Our com-
parative benchmarks and evaluation experiments across 
various settings demonstrate the practical potential of 
GENiPPI for rational PPIs drug design.

Despite these promising results, our framework has 
some limitations that can be addressed to improve its 
performance and applicability. First, the model has not 
been extensively tested across a large number of recep-
tor-ligand pairs of PPIs, which may affect its generali-
zation ability. This limitation arises from the relatively 
scarce data on drug-PPI target complexes compared 

to traditional drug-target dataset. The limited number 
of high-quality datasets for drug-PPI target complexes 
compared to traditional drug-target datasets poses a 
challenge. This scarcity of data remains a common issue 
in PPI-targeted drug discovery, largely due to the com-
plexity of characterizing PPIs experimentally, and under-
scores the need for more comprehensive and curated 
datasets. Furthermore, the current framework does not 
incorporate the 3D structural information of ligand-
receptor interactions in PPIs. Additionally, improve-
ments can be made in representation learning, balancing 
training speed, and enhancing the diversity of generated 
molecules.

Several potential directions could further improve 
GENiPPI and its application to PPI-targeted drug dis-
covery: (1) collecting and cleaning higher quality data 
pairs on receptor-ligand PPI complexes is essential. 
Improving the diversity and accuracy of the data used 
for model training can significantly enhance the model s 
ability to generalize to new, unseen targets. (2) inte-
grating molecular chemical language models and pre-
trained models of protein–protein structural features to 
fine-tune receptor-ligand PPI datasets, thereby enhanc-
ing model generalization, novelty and diversity of gen-
erated compounds. (3) The current framework could be 
further enhanced by integrating fragment-based molec-
ular generative models with 3D structural information. 
(4) Modifying the model architecture or combining it 
with deep reinforcement learning to optimize the gen-
erated compounds [84, 85]. By defining specific objec-
tives such as maximizing binding affinity or improving 
pharmacokinetic properties, reinforcement learning 
agents could iteratively refine the generated molecules 
to achieve more desirable drug-like characteristics.

In light of these potential improvements, our future 
work will focus on enhancing the GENiPPI framework 
by combining advanced representation learning methods 
and deep generative approaches.

In summary, the GENiPPI framework represents a 
significant advance in the field of PPI structure-based 
molecular generation. Its ability to integrate PPI interface 
features into a generative framework, combined with its 
performance in both few-shot learning and conditional 
evaluation experiments, highlights its potential as a pow-
erful tool for rational PPI drug design.

(See figure on next page.)
Fig. 5 Few shot molecular generation analysis. a t-SNE visualization of the distribution of active and generated compounds for Hsp90/
Cdc37. b Comparison of the pharmacophore of the generated molecules with the reference molecule(DCZ3112). c PPI interface region(green) 
of the Hsp90(palecyan)/Cdc37(lightpink) complex. d The complex structure of DCZ3112(green) and Hsp90(palecyan)-CDC37(lightpink) modeled 
by molecular docking (PDB ID: 1US7). e The binding poses of generated compounds(green) and Hsp90(palecyan)-CDC37(lightpink) modeled 
by molecular docking (PDB ID: 1US7). Hydrogen bonds are displayed as blue dotted lines, π-cation interactions are displayed as orange dotted lines
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Fig. 5 (See legend on previous page.)
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Methods
Datasets
We first investigated PPI targets with sufficient compound 
bioactivity data for training and evaluation of our model 
[86]. For this study, we selected 10 validated PPI drug 
targets that cover the binding interface (Supplementary 
Tables S1). These targets include E3 ubiquitin-protein 
ligase Mdm2, apoptosis regulator Bcl-2, BAZ2B, apop-
tosis regulator Bcl-xL, BRD4 bromodomain 1 BRD4-1, 
CREB-binding protein (CREBBP), ephrin type-A recep-
tor 4 (EphA4), induced myeloid leukemia cell differentia-
tion protein Mcl-1, and menin. Additionally, we randomly 
selected a subset of 250,000 compounds as additional 
inactive compounds from the ChEMBL dataset that was 
used as part of the training datasets [87]. A detailed data 
preprocessing can be found in Supplementary Note A.

Model strategy and training
Graph attention networks of protein–protein interaction 
interface
In this section, the representation learning of pro-
tein–protein complex interfaces is inspired by previous 
work on protein docking model evaluation [60], which 

introduced a double-graph representation to capture the 
interface features and interactions of protein–protein 
complexes (Supplementary Fig.  1). The extracted inter-
face region is modeled as two graphs ( G1 and G2 ), rep-
resenting the interfacial information and the residues 
involved in the two interacting proteins. A graph G is 
defined as G = (V, E, and A), where V is the set of nodes, 
and E is the set of edges between them, and A is the 
adjacency matrix, which maps the association between 
the nodes, numerically representing the connectivity 
of the graph. If the graph G has N nodes, the dimen-
sion of the adjacency matrix A is N ∗N  , where Aij > 0 if 
the i-th node is connected to the j-th node, and Aij = 0 
otherwise.

The graph G1 encodes the atomic types of all resi-
dues in the interface region, and its adjacency matrix 
A1 classifies the interatomic bonding types for all resi-
dues at the interface region. This representation only 
considers the covalent bonds between atoms of inter-
face residues within each subunit as edges. The defini-
tion follows as:

A1
ij =

{

1 if atom i and atom j are connected by a covalent bond or if i = j

0 otherwise

The graph G2 represents both covalent bonds (includ-
ing those captured G1 ) and non-covalent residue interac-
tions as edges. The adjacency matrix A2 for G2 accounts 

for both covalent bonds and non-covalent interactions 
between atoms that are within 10.0 Å of each other. The 
non-covalent atom pairs are defined as those whose dis-
tance is less than 10.0 Å. The definition follows as:

A2
ij =



























A1
ij , if i, j ∈ receptor or i, j ∈ ligand

e
−

�

dij−µ2
�

σ , if dij ≤ 10Å and i ∈ receptor and j ∈ ligand;

or if dj ≤ 10Å and j ∈ receptor and i ∈ ligand

0, otherwise

Here, dij represents the distance between the i-th and 
the j-th atoms of all residues in the interaction region. 
µ and σ are learnable, with initial values of 0.0 and 1.0, 
respectively. The function e−(dij−

µ)2
σ  decays as the dis-

tance between atoms increases.

The graph representation provides a flexible and 
intuitive way to encode interactive information and 
adjacent(local) relationships. For the node features, we 
considered the physicochemical properties of the atoms, 
using the same features as in previous work [60, 88, 89]. 
The initial feature vector of each node, with a length of 
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23, was then embedded into 140 features using a one-
layer fully connected (FC) network.

The constructed graphs are used as the inputs for the 
Graph Attention Networks (GATs). Each graph consists 
of adjacency matricesA1,A2 , node matricesN 1

mn,N 2
pq , and 

the node features, xin =
{

xin1 , xin2 , · · · , xinN
}

 andx ∈ R
F , 

where F is the dimensionality of the node features. For 
the input graph ofxin , the pure graph attention coeffi-
cients are defined as follows, representing the relative 
importance between the i-th and j-th nodes:

Here, x′

i and x′

j are the transformed feature repre-
sentations, defined as x′

i = Wxini  and x′

j = Wxinj .W  , 
E ∈ R

F×F are learnable matrices in the GATs. To satisfy 
the symmetrical property of the graph, eij and eji become 
identical by adding xTi Ex

T
j  and xTi Ex

′

i . The atten-
tion coefficient will only be computed for i and j where 
Aij > 0.

The attention coefficients are also calculated for the 
elements in the adjacency matrix. For the element pairs 
( i , j ), they are defined in the following form:

Here, aij represents the normalized attention coef-
ficient between the i-th and j-th node pairs, while eij is 
the computed symmetric graph attention coefficient. 
Ni denotes the set of neighbors for the i-th node, which 
includes the interacting node j with Aij > 0 . The goal is to 
define attention by simultaneously considering both the 
physical structure Aij and the normalized attention coef-
ficient eij of the interactions.

Based on the attention mechanism, the new features 
of each node are updated by considering its neighboring 
nodes. This update is a linear combination of the neigh-
boring node features and the final attention coefficient aij
:

Using the previously described GATs mechanism, we 
applied four layers of GATs to process the node embed-
ding information from the neighboring nodes and output 
the updated node embedding. For the two adjacency 
matrices A1 and A2 , we use a shared GAT. the initial 
input to the network consists of the atomic feature. With 
two matrices A1 and A2 , we compute x1 = GAT

(

xin,A1
)

 

and x2 = GAT
(

xin,A2
)

.

eij = xTi Ex
′
j + xTj Ex

′
i,

aij =
exp

(

eij
)

∑

j∈Ni
exp

(

eij
)Aij ,

x′′i =
∑

j∈Ni

aijx
′
j ,

To focus exclusively on the intermolecular interac-
tions at the interface of the input protein–protein com-
plex, we obtain the final node embedding by subtracting 
the embeddings of the two graphs. By subtracting the 
updated embedding x1 from x2 , we can capture aggre-
gated information about intermolecular interactions 
from the other nodes at the protein–protein complex 
interface. The output node feature is therefore defined as:

Afterward, the updated xout becomes xin and itera-
tively passes through the subsequent three GAT layers 
to further increase the information. After all four GAT 
layers updated the node embeddings, the embedding 
of all nodes in the graph are summed to represent the 
overall intermolecular interaction of the protein–protein 
complex:

Finally, fully connected (FC) layers were applied to the 
xgraph to obtain a [4, 4, 4] features vector representing 
the protein–protein interface.

Molecular representation
For each SMILES string, a 3D conformer is generated 
using RDKit [90] and optimized with the default settings 
of the MMFF94 force field. The molecular structure is 
then extracted into a 35 Å grid centered at the geomet-
ric center of the molecule using the HTMD package [91]. 
The atoms are discretized into a 1 Å cubic grid, and eight 
channels are used to compute voxelized information. 
Finally, the electronic density for the 9th channel is cal-
culated using the original molecule method in Multiwfn 
(Supplementary Fig. 2) [92].

Conditional Wasserstein generative adversarial networks
The generator takes a conditional vector and a noise vec-
tor sampled from a Gaussian distribution as inputs. The 
PPI interface features ([1, 4, 4, 4], vector shape) are con-
catenated with a noise vector of size [4, 4, 4, 9] and input 
into a 4-layer transposed convolutional neural network 
(CNN) with 256, 512, 1024, and 1024 filters, respectively. 
The first three layers downsample the array size using 
strided convolution (stride = 2). For all convolutions, a 
kernel size of 4 is used, and the Leaky ReLU is applied 
as the activation function after each convolution. Batch-
Norm3d is applied between the convolution and acti-
vation operations to normalize the values across each 
channel for each sample.

The discriminator consists of a 4-layer sequential 
convolutional neural network (CNN) with 256, 512, 

xout = x2 − x1,

xgraph =
∑

k∈G
xk .
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1024, and 1024 filters, respectively. The first three lay-
ers downsample the array size using strided convolu-
tion (strided = 2). As with the generator,, a kernel size of 
4 is used for all convolutions, and Leaky ReLU (α = 0.2) 
is applied as the activation. InstanceNorm3d is applied 
between the convolution and activation steps to normal-
ize the values across each channel for each sample.

The physical and spatial features of the compounds are 
derived from the molecular representation learning mod-
ule, while the PPI interface features are obtained from 
the GATs module of the protein complex interface. These 
features are used to estimate the matching probability 
between molecules and the PPI interface features (Sup-
plementary Fig .3).

Molecular captioning network
In this section, we describe the process of decoding the 
generated molecular representation into SMILES strings. 
Our approach is inspired by shape-based molecular gen-
eration [93, 94], which utilize a combination of convo-
lutional neural networks (CNNs) and Long Short-Term 
Memory (LSTM) networks to generate SMILES strings. 
Briefly, the molecular captioning network consists of a 
3D CNN and a recurrent LSTM networks. The molecu-
lar representation generated by the generator is first fed 
into the 3D CNN, and the output is then passed into the 
LSTM to decode the SMILES strings (Supplementary 
Fig. 4).

Model training
The conditional generative adversarial network is trained 
using Wasserstein loss. The loss functions for the genera-
tor 

(

G(0(z,c))
)

 and discriminator (D0(x)) are as follows:

Here, x and ⌋ represent molecular representations and 
PPI interface features, respectively, sampled from the 
true data distribution preal . The variable ‡ is a random 
noise vector sampled from a Gaussian distribution (pz) , 
and f0 is a function that evaluates the probability that a 
PPI interface feature corresponds to a molecular repre-
sentation. The terms λ and α are regularization param-
eters, both empirically set to 10. The λ term controls the 
effect of the gradient penalty on discriminator loss, while 
the α term controls the influence of f0 on the generator’s 
loss.

The model was trained for 50,000 iterations with a 
batch size of 8 (65 steps per iteration). The discrimina-
tor was updated after each step, while the generator was 

Lx0 = Eiyxx
[

−Dy(x)
]

+ Ezxx ,iyyx
[

Dyyyx

(

Gzy(z, c)
)]

+ �Eiy1

[

(

� ∇zxDy

(

x̂
)

�z −1
)2
]

,

Ixxx = Ezxx ,ixxyx
[

−Dz

(

Gzy(z, c)
)

− αlog
(

fu(Gu(z, c), c)
)]

updated every 30 steps. The network was trained using 
the RMSprop optimizer, with a learning rate of 1 × 10–4 
for both the generator and discriminator. During train-
ing, we monitored the similarity between real and gener-
ated molecular representations using Fréchet distances. 
The weights of the conditional networks were pre-trained 
using binary cross-entropy loss and were frozen dur-
ing GAN training. Training was performed on a single 
NVIDIA A40 GPU, and all neural networks were built 
and trained using Pytorch 1.7.1 [95] and Tensorflow 2.5 
[96].

Molecular generation
After training, the embedding information of the pro-
tein–protein complex interface is used to guide the model 
in generating novel molecules from the latent space. The 
maximum sampling strategy was applied in the LSTM, 
where the next token in the SMILES string is generated 
by selecting the one with the highest prediction probabil-
ity [93].

Evaluation settings
Conditional evaluation metrics
In this study, the primary objective was to evaluate the 
effectiveness of the proposed framework for protein–
protein interaction (PPI) interface-based conditional 
molecular generation. We sampled the same number of 
valid molecules for three PPI targets. For the generated 
compounds and comparison sets, we calculated the QED 
and Fsp3 values using RDKit, and the QEPPI values using 
the QEPPI package (https:// github. com/ ohuel ab/ QEPPI). 
The density distribution of these drug-likeness metrics 

was then plotted to compare the differences.
To assess the differences between generated and 

active compounds in terms of molecular properties 
(QED, QEPPI, and  Fsp3) across different PPI targets, we 
employed independent t-tests. The t-tests were used to 
determine whether there were statistically significant dif-
ferences in the means of these properties between the 
two groups for each PPI target. For each comparison, the 
significance threshold was set at p < 0.05. When data met 
the normality assumption, independent t-tests were used. 
The t-tests provided insights into whether generated 
compounds successfully mimicked the molecular charac-
teristics of active compounds, or if significant differences 

https://github.com/ohuelab/QEPPI
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remained, particularly in drug-likeness and molecular 
complexity.

MOSES evaluation metrics
To evaluate the performance of our proposed conditional 
molecule generation framework, we used the evalua-
tion metrics of validity, uniqueness, novelty and diversity 
provided by the MOSES platform, which are defined as 
follows:

Validity: Molecules defined as valid in the generated 
molecules.

Uniqueness: The proportion of unique molecules found 
among the generated valid molecules.

Novelty: The generated molecules are not to be covered 
in the training set.

FCD(Fréchet ChemNet Distance): To detect whether 
the generated molecules are diverse and whether they 
have chemical and biological properties that are similar 
with the real molecules [97].

Molecular shape
To evaluate the shape space of molecules, we used two 
widely adopted molecular descriptors to represent the 
three dimensions of molecular structure: principal 
moment of inertia (PMI) [98] and the best-fit plane (PBF) 
[99]. The PMI descriptor classifies the geometric shape 
of molecules based on the degree to which they are rod-
shaped (linear shape, such as acetylene), disk-shaped (pla-
nar shape, such as benzene), or sphere (spherical shape, 
such as adamantane). The normalized PMI ratios (NPRs) 
are plotted on a two-dimensional triangle to compare the 
shape space covered by different sets of molecules, allow-
ing for the evaluation and visualization of the diversity of 
molecular shape with a given set. The PBF descriptor is a 
three-dimensional measure that represents the deviation 
of a molecule from a plane. It is defined as the mean dis-
tance of each heavy atom from the best-fit plane passing 
through all heavy atoms.

Tree MAP
To explore and visualize the chemical space through 
unsupervised visualization of high-dimensional data, we 

Validity =
Nvalid

Ngeneralated

Uniqueness =
Nunique

Nvalid

Novelty =
Nnovel

Nunique

calculated MinHash fingerprint vectors for both active 
and generated compounds [100]. We then used tmap and 
faerun to construct two-dimensional projections using 
Tree MAP (TMAP) [101].

Protocol for few‑shot generation
Targeting the Hsp90-Cdc37 PPI interface is recognized 
as an important strategy for cancer therapy. The crystal 
structure of the Hsp90-Cdc37 protein complex (PDB ID: 
1US7) is available for molecular docking [102]. In addi-
tion, known Hsp90-Cdc37 PPI disruptors were collected 
for training in few-shot generative tasks. These disruptors 
include DCZ3112, Celastrol, FW-04–804, Sulforaphane, 
Withaferin A, Platycodin D, Kongensin A [103].

OpenPharmacophore(https:// github. com/ uibcdf/ 
OpenP harma copho re) was utilized to create pharmaco-
phore models and perform virtual screening. The pro-
tein structures were processed using UCSF Chimera 
[104], the program DOCK6.9 was used for semiflexible 
docking. Figures were generated using PyMOL [105]. A 
detailed docking protocol is provided in Supplementary 
Note B.
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