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Abstract 

Background Functional mitral regurgitation (MR) is a common form of mitral valve dysfunction that often persists 
even after surgical intervention, requiring reoperation in some cases. To advance our understanding of the patho-
genesis of functional MR, it is crucial to characterize the cellular composition of the mitral valve leaflet and identify 
molecular changes in each cell subtype within the mitral valves of MR patients. Therefore, we aimed to comprehen-
sively examine the cellular and molecular components of mitral valves in patients with MR.

Methods We conducted a single-cell RNA sequencing (scRNA-seq) analysis of mitral valve leaflets extracted from six 
patients who underwent heart transplantation. The cohort comprised three individuals with moderate-to-severe 
functional MR (MR group) and three non-diseased controls (NC group). Bioinformatics was applied to identify 
cell types, delineate cell functions, and explore cellular developmental trajectories and interactions. Key findings 
from the scRNA-seq analysis were validated using pathological staining to visualize key markers in the mitral valve 
leaflets. Additionally, in vitro experiments with human primary valvular endothelial cells were conducted to further 
support our results.

Results Our study revealed that valve interstitial cells are critical for adaptive valve remodelling, as they secrete extra-
cellular matrix proteins and promote fibrosis. We discovered an abnormal decrease in a subpopulation of FABP4 (fatty 
acid binding protein 4)-positive proliferating valvular endothelial cells. The trajectory analysis identifies this subcluster 
as the origin of VECs. Immunohistochemistry on the expanded cohort showed a reduction of FABP4-positive VECs 
in patients with functional MR. Intervention experiments with primary cells indicated that FABP4 promotes prolifera-
tion and migration in mitral valve VECs and enhances TGFβ-induced differentiation.

Conclusions Our study presented a comprehensive assessment of the mitral valve cellular landscape of patients 
with MR and sheds light on the molecular changes occurring in human mitral valves during functional MR. We found 
a notable reduction in the proliferating endothelial cell subpopulation of valve leaflets, and FABP4 was identified 
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as one of their markers. Therefore, FABP4 positive VECs served as proliferating endothelial cells relates to functional 
mitral regurgitation. These VECs exhibited high proliferative and differentiative properties. Their reduction was associ-
ated with the occurrence of functional MR.

Highlights 

• This comprehensive single-cell atlas of the mitral valve from patients with functional mitral regurgitation pro-
vided insights into the involvement of specific endothelial cell subtypes in the pathogenesis of regurgitation.

• Our results revealed a decrease in proliferating subpopulation of valvular endothelial cells in functional mitral 
regurgitation.

Keywords ScRNA-seq, Functional mitral regurgitation, Valvular endothelial cell, FABP4
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Background
Mitral regurgitation (MR), a commonly occurring val-
vular disorder, is estimated to affect around 3% of the 
general population, impacting more than 176 million 
individuals on a global scale [1]. Functional MR result-
ing from left ventricular dysfunction, left atrial dilation, 
and pulmonary hypertension accounts for 65% of MR 
cases [2]. In structurally normal mitral valves, func-
tional MR can occur when mitral leaflet coaptation fails 
due to dysfunction in the left atrium (LA) or left ventri-
cle (LV). Even mild functional MR can result in adverse 
cardiovascular outcomes [3]. A randomized controlled 
trial showed that despite the temporary elimination of 
regurgitation by mitral valvuloplasty, the rates of heart 
failure-related adverse events and cardiovascular rehos-
pitalization remained high during follow-up. Up to 58.8% 
of patients experienced recurrent moderate-to-severe 
mitral valve regurgitation, suggesting that valve function 
may continue to deteriorate even after regurgitation is 
corrected [4]. A small retrospective study has shown that 
the midterm results for isolated surgical edge-to-edge 
mitral repair are not inferior to those of conventional 
repair techniques with annuloplasty [5]. This suggests 
that the mitral valve leaflets undergo alterations and that 
regurgitation cannot be compensated by solely repairing 
the annulus or subvalvular structures. Chaput et al. found 
that the leaflet area increases with the dilatation of the 
left ventricle. But in patients with functional MR, such 
adaptation is insufficient to meet the needs for increased 
leaflet area imposed by the tethered leaflet configura-
tion [6]. To accommodate hemodynamic changes caused 
by LV or LA dysfunction, mitral valve leaflets undergo a 
process called mitral remodelling [7]. Inadequate restruc-
turing of the leaflets plays an essential role in the devel-
opment of MR [8]. However, there is limited knowledge 
about the changes in valvular cells during this process. 
During this process, the loss or increase of certain com-
ponents in valve cells may result in inadequate leaflet 
adaptation.

Single-cell RNA sequencing (scRNA-seq) has emerged 
as a powerful tool for the reliable identification of closely 
related cell subtypes and the assessment of gene expres-
sion heterogeneity in individual cell subtypes in physi-
ological and pathological conditions [9]. To evaluate cell 
type variations during functional MR, we performed 
scRNA-seq of mitral valve leaflets from patients with 
moderate-to-severe functional MR and nondiseased 
mitral valve tissues collected from patients who under-
went heart transplantation [10].

Our first objective was to determine whether unbiased 
single-cell clustering could identify valve cell types, dis-
cover new cell phenotypes using established markers, 

and improve existing classifications. Our second objec-
tive was to investigate the potential of single-cell analy-
sis for elucidating the underlying mechanisms of leaflet 
adaptation. This study provides a foundation for inves-
tigating the mechanisms of valve remodelling and the 
potential therapeutic benefits of leaflet adaptation and 
inhibition of fibrosis for functional MR, a topic currently 
under ongoing debate in the field [11]. Despite the lack 
of research evidence, individuals exhibiting inadequate 
leaflet adaptation may gain increased benefits from leaf-
let enlargement. Previous clinical research has demon-
strated that patients with a less adequate augmented 
mitral valve are likely to benefit more from mitral valve 
replacement surgery than patients with an adequate 
augmented mitral valve. This phenomenon is known 
as proportionate functional mitral regurgitation [12]. 
Understanding the changes in valvular cells can help us 
better explain how the mitral valve adapts to hemody-
namic changes. Hopefully, this comprehensive single-cell 
map of the mitral valve will not only contribute to the 
treatment of functional MR but also potentially identify 
new therapeutic targets.

Methods
Collection of human mitral valve specimens and histology
The cohort comprised three individuals with moderate-
to-severe functional MR (MR group) and three non-dis-
eased controls (NC group). Regurgitant human mitral 
valve specimens were obtained from explanted hearts, 
while nondiseased control (NC) specimens were col-
lected from transplanted hearts with normal mitral 
structure and function [10]. The selection of these sam-
ples was based on the patients’ medical history and 
ultrasound results [13]. All 6 specimens were donated by 
patients who underwent cardiac surgery at Fuwai Hospi-
tal, Beijing (Human ethics approval number: FW-2022–
1658). Detailed information on the patients was provided 
in Tables S1 and S2 (Additional file 1: Table S1, S2). The 
functional MR diagnosis was validated through a com-
prehensive evaluation of echocardiographic, clinical, and 
pathological findings. The pathology specimens were 
evaluated by two pathologists at Fuwai Hospital. (Addi-
tional file  1:FigureS1). The use of human mitral valve 
specimens was approved by the Human Ethics Com-
mittee of Fuwai Hospital, Chinese Academy of Medical 
Sciences. Mitral valve specimens were collected in Dul-
becco’s modified Eagle’s medium (Gibco, 11,885,084) and 
kept on ice immediately after separation. Specimens were 
removed from each sample and fixed in 4% paraformal-
dehyde overnight. Then, the specimens were embedded 
in paraffin and cut into sections. The remainder of each 
sample was made into a single-cell suspension.
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Sequencing data processing
Raw gene expression matrices were generated for each 
sample by the Cell Ranger (version 3.1.0). Pipeline cou-
pled with human reference version GRCh38-2020-A. The 
output filtered gene expression matrices were analysed 
by R software (version 4.1.2) with the Seurat package 
(version 4.1.1). A custom R script was used to combine 
the expression data and metadata from all libraries cor-
responding to a single batch. The expression data matrix 
was loaded into a Seurat object along with the library 
metadata for downstream processing. The percentage of 
mitochondrial transcripts for each cell (percent.mt) was 
calculated and added as metadata to the Seurat object. 
Cells were further filtered before dimensionality reduc-
tion (nFeature_RNA-min. 200; nFeature_RNA-max. 
4000; percent.mt-max. 10%). Low-quality libraries iden-
tified were removed from the dataset. Split the dataset 
into a list of six seurat objects (NC1, NC2, NC3, MR1, 
MR2, MR3), normalize (expression values were scaled 
to 10,000 transcripts per cells and Log-transformed), 
and identify variable features for each dataset indepen-
dently. We calculated variable features by the FindVari-
ableFeatures function with selection.method = “vst” and 
nfeatures = 2000.

Statistical analyses
Statistical analysis was conducted using R (version 4.1.2). 
The Mann–Whitney U test was performed with Seurat 
(version 4.1.1). FindAllMarkers was used to identify dif-
ferentially expressed genes (DEGs) between the cell clus-
ters. The cell ratios of each group were compared using 
logit transformation, followed by Student’s t test (with or 
without Welch’s correction) or the Mann–Whitney U test 
according to the results of the normality test and variance 
homogeneity test. For differential expression and cellu-
lar transcriptomic signatures, p values were adjusted for 
multiple hypothesis testing using the Benjamini‒Hoch-
berg method. A p value < 0.05 was considered to indicate 
statistical significance.

Multiple dataset integration
First, we selected features that were consistently vari-
able across datasets for integration. Then we identified 
anchors using the FindIntegrationAnchors function, 
which takes a list of Seurat objects as input. We used 
these anchors to integrate the datasets together with 
IntegrateData. The integrated data were then used for 
subsequent analysis.

Dimensionality reduction
Effects of the variable (percent.mito) were estimated and 
regressed out using a GLM (ScaleData function, model.
use = ’linear’), and the scaled and centred residuals were 

used for dimensionality reduction and clustering. To 
reduce the dimensionality of the datasets, the RunPCA 
function was conducted with default parameters on lin-
ear-transformation scaled data generated by the Scale-
Data function. Next, the ElbowPlot and DimHeatmap 
functions were used to identify proper dimensions of 
each dataset.

Cell clustering and cluster identification
After non-linear dimensional reduction and projection 
of all cells into two dimensional space by UMAP, Clus-
tering was run using the FindClusters function using the 
original Louvain algorithm and 10 interactions. Cluster-
ing was performed at varying resolution values, and we 
chose a value of 0.5 for the resolution parameter for the 
initial stage of clustering. Clusters were preliminarily 
assigned identities based on the expression of combina-
tions of known marker genes for major cell classes and 
types.

Differential proportion analysis of cell populations or 
subpopulations was performed using central logit trans-
formation of cell ratios, and then t-tests between each 
group.

Differential expression genes (DEGs) identification 
and functional enrichment
First, we removed lowly expressed genes that had fewer 
than 10 cells with any counts. Then, we aggregated counts 
to the sample level by summing counts of each sample 
within each cell type. Pseudobulk differential expression 
analysis was performed by DESeq2 (v1.34.0). A DESeq2 
object was created by the DESeqDataSetFromMatrix 
function to prepare for running the DE analysis. DE anal-
ysis was performed by running the DESeq function with 
default parameters on the DESeq2 object created ear-
lier. Enrichment analysis for the functions of the DEGs 
was conducted using the clusterProfiler (version 4.2.2) R 
package [14].

Analysis of TF regulatory network
TF regulatory network analysis was performed using 
pySCENIC [15] (version 0.11.2). First, coexpression mod-
ules were inferred using a regression per-target approach 
(pyscenic grn function). Next, the modules with indirect 
targets were filtered using cis-regulatory motif discovery 
(pyscenic ctx function). Lastly, the activity of each regu-
lon in each cell was scored using the AUCell algorithm 
(pyscenic aucell function). The AUC scores for each cell 
were attached to the Seurat object. We identified regu-
lons that are specific to clusters using the regulon speci-
ficity score (RSS), and then selected the top 5 and top 20 
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regulons of each cluster. The top 20 regulons were visu-
alized using the Seurat VlnPlot function, and the top 5 
regulons were visualized using the pheatmap R package 
(version 1.0.12).

Assign cell‑cycle scores
We assigned each cell a score based on its expression of 
G2/M and S phase markers using the Seurat CellCycleS-
coring function. Then we visualized the co-expression of 
S.Score and G2M.Score simultaneously using the Seurat 
FeaturePlot function (blend = TRUE). The phase scores 
for each cell were calculated based on gene expression 
data using the cyclone function of the scran (version 
1.22.1) R package [16]. We visualized the phase scores 
using pheatmap (version 1.0.12) R package.

Gene set enrichment analysis (GSEA)
DEGs were analysed using the Seurat FindAllMarkers 
function (test.use = ’t’, min.cells.group = 0, min.pct = 0, 
logfc.threshold = -Inf ). Only significant genes (P < 0.05) 
and genes with an avg_logFC higher than log(1.5) or 
lower than − log(1.5) were used to perform GSEA. We 
performed GO gene set enrichment analysis with the 
gseGO function provided by the clusterProfiler (version 
4.2.2) package, Reactome pathway gene set enrichment 
analysis using the gsePathway function of the Reac-
tomePA [17] (version 1.38.0) package, and hallmark gene 
set enrichment analysis using the GSEA function of the 
clusterProfiler (version 4.2.2) package.

Cell–cell communication analysis
We used CellChat [18]  (v1.4.0) to infer cell–cell com-
munication based on a prior ligand-receptor interaction 
database. We loaded the normalized counts data of each 
group (NC/MR) separately that were extracted from the 
Seurat object into CellChat and followed the workflow 
recommended in CellChat to infer and visualize the cell–
cell communication network. Then, we merged the two 
CellChat objects together, compared the total number 
of interactions and interaction strength using the com-
pareInteractions function, and compared the number of 
interactions and interaction strength among different cell 
clusters with the netVisual diffInteraction function and 
the netVisual_ heatmap function. Finally, we compared 
the overall information flow of each signalling pathway 
using the rankNet function, and used the netVisual_bub-
ble function to compare the communication probabilities 
mediated by ligand-receptor pairs from some cell clusters 
to others.

RNA velocity analysis
We used velocyto [19] (v0.17.17) to calculate RNA veloc-
ity based on the ratio of spliced and unspliced reads. 
Loom files were generated using the ‘velocyto run’ func-
tion and were used for downstream RNA velocity analy-
sis using the scVelo [20]  (v0.2.5) package. We followed 
the scVelo analysis pipeline on the website (https:// 
scvelo. readt hedocs. io/ Veloc ityBa sics/) to estimate RNA 
velocity and visualize the results.

Trajectory inference
Trajectory inference was performed using the sling-
shot [21]  (version 1.8.0) R package with default settings 
for the slingshot function, and using the UMAP or PCA 
embeddings from the subclustering for each cell type. 
Results were visualized with the ggplot2 R package (ver-
sion 3.3.6). We used the expression count matrix and the 
trajectory information as input for the fitGAM function 
(nknots = 7) of the tradeSeq [22]  (version 1.8.0) pack-
age to fit the NB-GAM for each gene to smooth each 
gene’s expression in each lineage. Then, we visualized the 
expression pattern of a gene over pseudotime using the 
plotSmoothers function.

Isolation and treatments of valvular endothelial cells
Isolation of valvular endothelial cells (VECs) was per-
formed using a modified method described by Songia 
et  al. [23] and Gould et  al. [24]. Samples for primary 
cell isolation were obtained from patients undergoing 
cardiac transplantation at the cardiac surgery depart-
ment, Fuwai Hospital (Beijing, China). After obtaining 
the mitral valve samples, we proceeded to dissect the 
chordae tendineae and papillary muscles. The posterior 
leaflet of the mitral valve was selected for experimental 
purposes. Mitral leaflets were placed in 2 mg/mL type 
II collagenase (LS004176, Worthington Biochemical 
Corp.) in Advanced Dulbecco’s modified Eagle’s medium 
(DMEM, Gibco) containing 10% foetal bovine serum 
(FBS, Gibco), 1% Penicillin, and 1% Streptomycin solu-
tion (Gibco), and incubated for 20 min at 37 °C. Sterile 
cotton swabs were used to remove the endothelial layer. 
Following this, the cell suspension was centrifuged and 
resuspended, after which it was seeded into T25 culture 
flasks. After reaching confluence, the cells were washed 
and isolated using Dynabeads conjugated with CD31 
(130-091-935, Miltenyi). All experiments were performed 
on cultured cells between their third and fourth passages. 
The recombinant proteins used for cell treatment were 
FABP4 (RD172036100, Biovendor) and TGFβ1 (P01137, 
MedChemExpress).

For additional methodological details regarding molec-
ular biology experiments and pathological analyses, 
please refer to Supplementary Material 1.

https://scvelo.readthedocs.io/VelocityBasics/
https://scvelo.readthedocs.io/VelocityBasics/
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Results
Human functional MR mitral valve cell atlas
To clarify the cell composition within the functional 
MR mitral valve leaflets, we obtained high-quality data 
from three nondiseased control (NC) mitral valves and 
three functional MR samples obtained from six indi-
viduals using the 10X Genomics platform (Additional 

file  1: Table  S1, Fig.  1A). The data included 43,381 cells 
and 2011 genes were detected per cell (Additional file 1: 
Figure S2, Table  S2). Then, we performed graph-based 
clustering of the dataset and annotated the clusters using 
established marker genes (Fig. 1B, C) [25–27]. Cluster 3, 
identified as of  low quality, was excluded from further 
analysis. (Additional file  1: Figure S2C, D). Subsequent 

Fig. 1 Clustering and identification of cell types in nondiseased and functional regurgitated human mitral valves with scRNA-seq data. A Six 
mitral valves from three normal controls and three patients with MR were harvested, and scRNA-seq was separately performed. B The UMAP plot 
of the combined six samples shows clusters, sample types, individual patients, and cell types. C The gene markers and each cell type identified are 
shown in the violin plot. D Dot plot of the top 5 marker genes in VIC clusters. The dot size corresponds to the proportion of cells within the group 
expressing each gene, and the dot color corresponds to the expression level. E The number of cells measured in six specimens. F The composition 
of each cell type in the NC and MR groups. G Box plots comparing the proportions of each cell type between the two groups. MR, mitral 
regurgitation; scRNA-seq, single-cell RNA sequencing; UMAP, Uniform Manifold Approximation and Projection; VIC, valvular interstitial cell; VEC, 
valvular endothelial cell
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analysis revealed several distinct clusters, which could 
be assigned to valvular interstitial cells (VICs), valvular 
endothelial cells (VECs), lymphocytes (Lym), myeloid 
cells (Mye), and mast cells (Fig.  1C). Clusters 0, 1, 2, 3, 
4, 5, 10, and 11 contained VICs, which highly expressed 
COL1A1, COL3A3, SOX9, and LUM (Fig. 1C, D). Cluster 
8 contained VECs, which highly express PECAM1 and 
CDH5. Cluster 7 was composed of lymphocytes (CD3D, 
CD3E, and NKG7). Myeloid cells, characterized by high 
expression of C1QA, CD68, and LYZ, were found in 
Clusters 6 and 9. Cluster 12 was composed of mast cells, 
which highly express TPSAB1, TPSB2, and HOGD (Addi-
tional file  1: Figure S3A, B). The marker genes for each 
cluster are available in the supplementary table (Addi-
tional file 2, Major cluster DEGs). VICs accounted for the 
absolute majority of cells in both the diseased and nor-
mal specimens (Fig.  1E, F). However, when comparing 
the proportion of each type between normal mitral valves 
and their MR counterparts, the Wilcoxon rank sum test 
showed that there were no significant differences in the 
proportions of each cell type between the two groups 
(Fig.  1G). Therefore, we investigated the differences in 
cell subpopulations between the NC and MR groups.

As there was one female patient and two male patients 
in the MR group, we conducted a sex-related correlation 
analysis on the 3 patients in the MR group. The results 
showed that sex differences did not significantly impact 
gene expression within the MR group (Additional file 1: 
Figure S4). Considering the age differences, we also per-
formed age-related correlation tests on the children 
(< 18  years) and adult (> 18  years) subgroups within the 
MR group. Similarly, age did not appear to have a pro-
nounced effect on gene expression (Additional file 1: Fig-
ure S5).

Various VIC subtypes play different roles in valve 
adaptation to haemodynamic changes
VICs comprised the vast majority of cells in the mitral 
valve leaflets of the NC and MR groups, with percentages 
of 81.0% and 81.8%, respectively. A total of 31,170 VIC 
cells from all 6 samples were combined, and then inte-
grative unsupervised clustering was performed, result-
ing in the identification of five distinct clusters (Fig. 2A). 
The marker genes were identified in these VIC clusters 
(Fig. 2B, Additional file 1: Figure S6A).

As the largest VIC subcluster, VIC0 was identified as 
stress response-related VICs expressing NR4A2  [28], 
JUNB  [29], and FOSB  [30]. The enrichment analysis of 
DEGs revealed that VIC0 was related to different exter-
nal stimuli (Fig.  2C,Additional file  1: Figure S6B). VIC1 
expressed high levels of IGFBP3 and GUCY1A1, which 
are involved in nitric oxide (NO) signalling [31, 32]. 
Thus, VIC1 can be identified as NO-related VICs. VIC1 

also expressed high levels of the antioxidative stress 
gene CA3, along with NO, which has antifibrotic and 
anti-inflammatory effects within the mitral valve, indi-
cating the protective role of VIC1 [33, 34]. VIC2 highly 
expressed PRELP and FMOD, which are associated with 
proteoglycan generation [35, 36]. Other ECM-related 
genes, such as COL6A2,COL1A1, and COL1A2, were 
also the top markers of VIC2 (Additional file  1: Fig-
ure S6A), indicating a structural VIC phenotype. VIC3 
demonstrated high levels of GSN and PCOLCE2, which 
are implicated in fibrosis processes [37, 38]. Continual 
findings from the DEG enrichment analysis consistently 
highlighted the role of VIC3 in TGFβ signal transduction, 
a pathway associated with mitral valve fibrosis [39]. Thus, 
VIC3 may play a profibrotic role in the mitral valve. VIC4 
was characterized as an active VIC phenotype (aVIC, 
ACTA2high VIC) with relatively high levels of ACTA2 and 
MYH11. These cells could be myofibroblasts, as previ-
ously reported. Their activation indicates increased fibro-
sis activity [40]. The supplementary table contains the 
marker genes related to each subcluster (Additional file 3, 
VIC subcluster DEGs).

Each cell cluster exhibited different functions in the 
heart valve. Transcription factors (TFs) play important 
roles in the control of genes that cause crucial changes 
in valvular disease [41]. Consequently, we utilized sin-
gle-cell regulatory network inference and clustering 
(SCENIC) analysis to evaluate the TFs responsible for 
variations in gene expression among distinct cell clus-
ters [42]  (Fig.  2D). For example, EGR3, a differentiation 
regulator that mediates fibrotic gene expression [43], is a 
marker TF of VIC0. KLF7 is involved in the expression of 
proinflammatory factors and matrix metalloproteinases 
and is a marker TF of VIC3, demonstrating that VIC3 
promotes valvular disease [44]  (Additional file  1: Figure 
S6C). We analysed the high expression of TFs and down-
stream genes in various subgroups of VIC. The network 
diagram shows two high expression TFs of VIC1, MYRF, 
and EBF1, jointly regulate the expression of NR2F2 
(Additional file  1: Figure S6D). This gene is thought to 
mitigate fibrosis by inhibiting endothelial cell senescence 
[45]. These align with the association between VIC1 and 
nitric oxide (NO). Information on the highly expressed 
TFs in each VIC subpopulation and their downstream 
regulated genes is displayed in a supplementary table 
(Additional file 4,VIC_cluster_regulon) and network dia-
grams (Additional file 5,VIC_TFandTarget_network). We 
also analysed the highly expressed genes in each VIC sub-
population (Additional file 6,VIC_top5DEGs_regulon).

Contrasting the cluster compositions between the NC 
and MR groups highlighted a distinct increase in the rela-
tive representation of VIC0 (Fig. 2E), indicating a cellu-
lar stress response when regurgitation occurs. A large 



Page 8 of 23Wang et al. BMC Medicine          (2024) 22:595 

number of DEGs between the NC and MR groups were 
identified via pseudobulk DEG analysis (Fig. 2F, G). In the 
MR group, we identified a series of fibrosis-related genes, 
such as CCL26  [46], CXCL9  [47], S100A8, and S100A9  
[48]. We conducted an analysis of differential gene 
counts among various subpopulations of VIC (Additional 
file  1: Figure S6E). We observed that VIC2 exhibited 

the greatest number of DEGs associated with ECM 
components, such as PLA2G2A  [49], ENPP2  [50], and 
SEMA5A  [51] (Additional file 1: Figure S6F). The DEGs 
between the NC and MR groups are available in a sup-
plementary table (Additional file  7, VIC DESeq2 DEG). 
We next sought to identify VIC-specific dysregulated 
pathways during the development of MR via gene set 

Fig. 2 Dynamic VIC cluster in human mitral valve leaflet. A A UMAP plot of all VIC cells coloured according to cluster. B Dot plot of the top 5 marker 
genes in VIC clusters. The dot size corresponds to the proportion of cells within the group expressing each gene, and the dot color corresponds 
to the expression level. C The enriched GO terms for each VIC cluster. D Heatmap of TF regulons in each VIC cluster. E The proportion of each VIC 
cluster in six samples. F Volcano plot showing the DEGs between the NC group and MR group in VIC. G The expression level and regulon activity 
of the TFs STAT1, EGR2, and SREBF1 in each VIC cluster. H Enrichment plots for representative pathways dysregulated in VIC in the MR. The vertical 
lines in the enrichment plot indicate the members of the gene set appear in the ranked list of genes. VIC, valvular interstitial cell; UMAP, uniform 
manifold approximation and projection; GO, Gene Ontology; MR, mitral regurgitation; TF, transcription factor; DEGs, differentially expressed genes
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enrichment analysis (GSEA) (Fig.  2H). Consistent with 
the activation of VICs in MR, the inflammatory response 
pathway, as well as the stress and oxidative stress path-
ways, was significantly enriched in the VICs. On the 
other hand, the activation of the defence response path-
way also indicated the protective function of VIC during 
regurgitation. Reactome pathway analysis found that the 
expression of defence reaction-related pathways in VIC 
was increased (Additional file 1: Figure S6G). HE staining 
revealed thickening and fibrosis of the mitral valve in the 
MR group compared to the NC group (Additional file 1: 
Figure S1), which aligns with the results of previous stud-
ies [52]. Together, these findings demonstrate that VIC 
plays an important role in valve adaptation in response to 
haemodynamic changes.

Dynamic VEC cluster in human mitral valve leaflet
A total of 820 VECs from the NC and MR groups were 
grouped into three VEC subclusters (Fig.  3A, B, Addi-
tional file 1:Figure S7A). VEC0 made up more than half 
of the VEC subpopulation in both groups. Despite the 
expression of the same classical VEC markers, there were 
distinct gene expression profiles among the three sub-
clusters, indicating their different roles in MR develop-
ment (Fig.  3C). Based on the GO enrichment analysis, 
we defined three VEC subclusters (Fig. 3C and D). VEC0 
was identified as structural VECs because they express 
DCN, LUM, and APOE, which act as crucial regulators 
of valve integrity and participate in collagen fibrosis [36, 
53]. VEC1 was identified as protective VECs. High lev-
els of the protective genes POSTN (which protects VIC 
from apoptosis [54]) and COLEC11 (which has anti-
autoimmune effects [55]) were detected in VEC1 cells. 
KEGG enrichment analysis revealed that VEC1 was also 
enriched in antigen processing and presentation (Addi-
tional file 1: Figure S7B). VEC2 was identified as an IGFB-
P3Chigh VEC (expressing A2M, IGFBP3C, FABP4 and 
CLDN5). IGFBP3C (insulin-like growth factor binding 
protein 3) is closely related to the proliferation of adult 
cardiac progenitor cells [56]. FABP4 has a promotive 
effect on the proliferation of endothelial cells [57]. GO 
enrichment analysis (Fig. 3D, I) revealed that VEC2 can 
be identified as endothelium development-related VECs. 
Therefore, VEC2 is interpreted as proliferating endothe-
lial cells. The supplementary table contains the marker 
genes related to each subcluster (Additional file  8, VEC 
subcluster DEGs).

As revealed by SCENIC analysis, each subcluster had 
specific TFs. Sox15, an important marker of mesoderm 
progenitor cells [58], was highly expressed in VEC2. 
VEC1 was identified as a Smad6+ cluster, and the loss of 
Smad6 can be linked to disrupted endothelial cell junc-
tions [59] (Fig. 3E). GATA6, known to be involved in the 

protection of endothelial cells from undergoing apopto-
sis [60], showed greater expression and activity in Clus-
ter 1 than in the other clusters (Fig.  3F). This finding 
also proves the protective effect of VEC1 on other fac-
tors. Additionally, the activity and expression of FOXF1 
were unique to VEC2. This finding was linked to the cru-
cial role of VEC2 in the strong proliferating abilities of 
endothelial cells [61], suggesting that VEC2 may closely 
associate with the proliferation of endothelial cells. 
(Fig. 3F). We also analysed the highly expressed TFs and 
their downstream genes. HOXB3 is highly expressed in 
VEC2 and can regulate the expression of downstream 
KDM4A, which is closely related to the differentiation 
of embryonic stem cells into endothelial cells (Addi-
tional file 1: Figure S7C) [62]. Information on the highly 
expressed TFs in each VEC subpopulation and their 
downstream regulated genes is displayed in a supple-
mentary table (Additional file  9,VEC_cluster_regulon) 
and network diagrams (Additional file  10,VEC_TFand-
Target_network). We also analysed the highly expressed 
genes in each VEC subpopulation. We found that FABP4, 
a marker of VEC2, is associated with the upstream TF 
SMAD, which is closely involved in EndMT (Additional 
file 11,VEC_top5DEGs_regulon) [63]. This may indicate a 
potential relationship between FABP4 and EndMT.

By comparing the expression differences between the 
NC group and MR group, genes related to inflamma-
tion (HLA-DRB5) and fibrosis (PLA2G2A) were found 
to be increased in the MR group. SLC6A4 is a 5-HT 
(5-hydroxytryptamine) transporter protein that was also 
upregulated in the MR group. 5-HT plays an important 
role in the remodelling of mitral valves following ischae-
mic mitral regurgitation [64]. Moreover, differential 
expression of genes closely associated with EndMT was 
observed in the MR group (Fig.  3G), including TGM2  
[65], PROCR  [66], and MGST1  [67]. The TGF-β signal-
ling pathway is a key regulator of EndMT [68]. Two genes 
in this pathway, BMP6 and GDF7, were also differentially 
expressed in the MR group. The decrease in the propor-
tion of proliferating endothelial cells (VEC2) indicated 
that the EndMT process was related to the occurrence 
of MR. During this process, specific endothelial cell sub-
clusters detach from cell junctions, leading to delamina-
tion of the valve surface. These cells exhibit invasiveness 
and migratory capacity, allowing them to traverse the 
basement membrane into the valve interstitial tissue. 
Subsequently, the thickness and density of the mitral 
valve are increased to accommodate regurgitation [69]. 
The analysis of DEG counts revealed that VEC2 had the 
greatest number of DEGs (Additional file 1: Figure S7D). 
This indicates that changes in VEC2 are most strongly 
associated with MR. The DEGs between NC and MR are 
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available in a supplementary table (Additional file  12, 
VEC DESeq2 DEG).

For a more thorough examination of the pseudotime 
trajectories of the VEC subclusters, we utilized Slingshot 
to conduct trajectory analysis [21]. Considering the high 

level of IGFBP3C expression [56], Cluster 2 was identi-
fied as the origin of VECs. After mapping the subcluster 
to the pseudotime single-cell trajectory, there was a ten-
dency for transformation from VEC2 to VEC0 and finally 
to VEC1 (Fig.  3J,Additional file  1: S7E). Along the VEC 

Fig. 3 Dynamic VECclusters in human mitral valve leaflet. A A UMAP plot of all VECs coloured according to cluster. B A UMAP plot of all VECs 
according to phase. C Dot plot of the top 5 marker genes in VEC clusters. The dot size corresponds to the proportion of cells within the group 
expressing each gene, and the dot colour corresponds to the expression level. D The enriched GO terms of each VEC cluster. E SCENIC analysis 
of the expression of different TF regulons between each cluster. The data are coloured according to their expression levels. F The expression level 
and regulon activity of the TFs GATA6 and FOXF in each VEC cluster. G Differential gene expression of VECs in the NC group and MR group is shown 
in a volcano plot. H Comparison of the percentage of each cell type among the three clusters of VECs. I The enrichment scores of four different 
biological processes in each VEC subcluster. J Pseudotime single-cell trajectory reconstructed by slingshot for VEC. K Plot of marker and functional 
genes along the VEC2 trajectories. VEC, valvular endothelial cell; UMAP, uniform manifold approximation and projection; GO, Gene Ontology; MR, 
mitral regurgitation; TF, transcription factor; DEGs, differentially expressed genes
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lineage, protective genes (COLEC11  [55], POSTN  [70]) 
and immune cell infiltration-related genes (NSG1  [71], 
LEPR  [72]) were upregulated, while genes associated 
with fibrosis (A2M, IGFBP3  [73], CLDN5 and PIK3R3  
[74]) were downregulated (Fig. 3K). This finding was con-
sistent with the protective function of VEC1.

Dynamic myeloid clusters in the mitral valve
A total of 2922 myeloid cells from the NC and MR 
groups were divided into five subgroups (Fig. 4A, Addi-
tional file  1:Figure S8A). Myeloid0 highly expressed M2 
macrophage biomarkers such as DAB2  [75], MAF  [76], 
MERTK  [77], MRC1  [78], and STAB1 [79] (Fig. 4B, C). 
Additionally, Myeloid0 highly expresses LGMN, a gene 
specifically expressed by cardiac resident macrophages 
that contributes to acute inflammation resolution and 
organ function [80]. AREG, CCL3, TNF (tumour necro-
sis factor), and IL1B, which are biomarkers of M1 mac-
rophages, were highly expressed in Myeloid1 [81]. The 
proteins transcribed by the DEGs in Myeloid1 included 
inflammatory cytokines (IL-1B, TNF, C15orf48 [82], 
and BCL2A1 [83]), chemokines (CCL3, CCL4, CXCL2, 
and CXCL8), and HLA (Fig.  4B, C). Thus, Myeloid1 
and Myeloid0 can be identified as M1-like and M2-like 
macrophages, respectively. Panmarkers for monocytes 
(S100A8 and S100A9) were highly expressed in Myeloid4, 
indicating it is a monocyte-origin cluster (Fig. 4D). Mye-
loid3 showed high expression of STMN1 (cellular micro-
tubule dynamics) [84], TOP2A (DNA replication) [85], 
HIST1H4C (nucleosome assembly and DNA packaging) 
[86], and HMGB2 (DNA repair and gene transcription) 
[87]. In addition, the GO terms about cell mitosis were 
enriched in this cluster (Fig.  4E,Additional file  1: S8B). 
To validate this result, we derived phase S-scores and 
phase G2/M-scores for all Mφs based on the expression 
of corresponding marker genes using Seurat CellCycle-
Scoring. Our observation revealed that most Myeloid3 
cells exhibited either high S-scores or high G2/M-scores 
(Additional file  1: Figure S8C). Taken together, these 
results confirm that Myeloid3 plays a role in macrophage 
proliferation. MRC1 and FOLR2 were highly expressed 
in Myeloid2, which was annotated as FOLR2high tissue-
resident macrophages. These cells have low expression 
of inflammatory cytokines but are closely related to the 
complement system (Fig. 4B, C, Additional file 1: S8D). Li 
et al. [88] reported a subcluster in alveolar macrophages 
that has the same biomarkers (FOLR2 and SELENOP). 
This subcluster had a close relationship with exogenous 
antigen presentation, which was similar to the results of 
the GO analysis of Myeloid2 (Fig. 4E). The complement 
system plays an essential role in macrophage polarization 
[89]. Therefore, we identified Myeloid2 as complement-
related macrophages. S100A8 and S100A9 are associated 

with the infiltration of various immune cells in the pro-
gression of CAVD [90]. Based on the GO analysis, we 
named Myeloid 4 as  S100A8high macrophage. The marker 
genes for each subcluster are available in a supplemen-
tary table (Additional file 13, Myeloid subcluster DEGs).

According to the SCENIC analysis, each subclus-
ter exhibited specific TFs. Myeloid2 was found to be a 
 HOXA10+ subcluster, and the upregulation of HOXA10 
can be linked to the promotion of M2 polarization 
[91]  (Fig.  4F). These findings further demonstrated that 
Myeloid2 plays an important role in macrophage polari-
zation. BRCA1 is a DNA repair enzyme. The expression 
and activity of BRCA1 in Myeloid3 was higher than those 
in other clusters (Fig. 4G), providing further evidence of 
the proliferative effect of Myeloid3 [92]. Information on 
the highly expressed TFs in each Myeloid subpopula-
tion and their downstream regulated genes is displayed 
in a supplementary table (Additional file  14,Mye_
cluster_regulon) and network diagrams (Additional 
file  15,Mye_TFandTarget_network). The proportion of 
various myeloid subclusters between the two groups does 
not differ significantly; however, the expression of DEG 
still remains noteworthy (Fig.  4H). Myeloid cells in the 
MR group highly expressed SERPINB2 (Fig.  4I), which 
could be activated by GPNMB, a glycoprotein secreted by 
macrophages, which ultimately leading to the activation 
of fibroblasts in idiopathic pulmonary fibrosis [93]. The 
DEGs between the NC and MR groups are available in a 
supplementary table (Additional file 16, Myeloid DESeq2 
DEGs).

Dynamic lymphocyte clusters in the mitral valve
A total of 2106 lymphocytes from six distinct samples 
were stratified into five subclusters (Fig.  5A). We first 
examined the expression of highly conserved lymphocyte 
genes within these cells (Fig. 5B). Lym0 cells were found 
to belong to the  CD4+ T-cell subset, while Lym1 cells 
were identified as  CD8+ T cells. Interestingly, Lym2 and 
Lym4 were coexpressed in both  CD4+ and  CD8+ T cells. 
Furthermore, Lym3 was specifically classified as a natural 
killer cell based on its distinctive expression of KLRD1. 
Finally, we noted that pan-T-cell markers (CD3D and 
CD3E) were expressed across all remaining subclusters.

To further characterize these subclusters, we explored 
the DEGs in each subcluster (Fig.  5C, Additional file  1: 
Figure S9A). Lym0 was characterized by high expression 
of IL7R and KLRB1 (CD161), which are known markers 
of  CD4+ resident cells [94, 95]. Additionally, CD40LG, a 
protein that promotes the secretion of IgG by B cells, was 
highly expressed [96]. TXNIP, a scavenger of oxidative 
enzymes involved in regulating the activity of Th2 cells 
and the generation of  CD4+ memory cells, was also sig-
nificantly highly expressed in Lym0 [97]. Lym1 expressed 



Page 12 of 23Wang et al. BMC Medicine          (2024) 22:595 

Fig. 4 Dynamicmyeloid cluster in the human mitral valve leaflet. A A UMAP plot of all myeloid cells coloured according to cluster. B Dot plot of the top 5 
marker genes in myeloid clusters. The dot size corresponds to the proportion of cells within the group expressing each gene, and the dot colour corresponds 
to the expression level. C Heatmap of inflammatory cytokines, chemokines, and HLA in each cluster. D UMAP of myeloid canonical markers. E The enriched 
GO terms of each myeloid cluster. F SCENIC analysis of the expression of different TF regulons between each cluster. The data are coloured according to their 
expression levels. G The expression level and regulon activity of the TF BRCA1 in each myeloid cluster. H Comparison of the percentage of each cell type 
among the five clusters of myeloid cells. I Differential gene expression of myeloid cells in the NC group and MR group is shown in a volcano plot
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a range of cytotoxicity-associated genes, including NKG7  
[98], KLRD1, and the granzyme family (GZMB, GZMK, 
and GZMN) [99]. Inflammatory chemokines such as 
CCL4L2 and CCL5 were also highly expressed in this 
subcluster, indicating that these cells are proinflamma-
tory CD8 + T cells. Lym2 expressed genes encoding Met-
allothionein (MT) family proteins, a group of molecules 
closely related to T-cell activation and cellular oxidative 

stress [100, 101], as well as heat shock protein (HSP) fam-
ily proteins, confirming its role as a stress-related T cell. 
Lym3 expressed high levels of NK cell markers, includ-
ing XCL2, XCL1, TYROBP, FCER1G, and KLRD1. Lym4 
expressed microtubule-related genes such as STMN1, 
TUBA1B, and TUBB, which indicates that these cells are 
proliferating T cells. GO analysis also revealed that DNA 
replication and nuclear division were enriched in Lym4 
(Fig.  5D, Additional file  1: Figure S9B). The proportion 

Fig. 5 Dynamiclymphocyte clusters in the human mitral valve leaflet. A A UMAP plot of all lymphocyte cells coloured according to cluster. B UMAP 
of canonical lymphocyte cell markers. C Dot plot of the top 5 marker genes in the lymphocyte clusters. The dot size corresponds to the proportion 
of cells within the group expressing each gene, and the dot colour corresponds to the expression level. D The enriched GO terms of each 
lymphocyte cluster. E Comparison of the percentage of each cell type among the five clusters of lymphocytes. F SCENIC analysis of the expression 
of different TF regulons between each cluster. The data are coloured according to their expression levels. G Differential gene expression of myeloid 
cells in the NC group and MR group is shown in a volcano plot
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differences between the subpopulations of the two groups 
of cells were minimal, but the proportion of Lym4 in the 
MR group was slightly greater than that in the NC group, 
indicating increased cellular proliferation in the context 
of regurgitation (Fig. 5E). The marker genes for each sub-
cluster are available in a supplementary table (Additional 
file 17, Lymphocyte subcluster DEGs).

SCENIC and clustering analyses were subsequently 
performed to identify the TFs that could regulate the 
functions of different subpopulations (Fig.  5F). Among 
these TFs, RORC exhibited high expression levels in 
Lym0. In the context of infective endocarditis, RORC can 
be highly activated in VICs to stimulate the development 
of Th17 cells, which has been linked to autoimmunity 
and inflammation [102]. Furthermore, RORC has been 
found to be closely associated with the secretion of inter-
leukin-17 (IL-17), a cytokine that has been implicated 
in valve damage observed in rheumatic mitral valve dis-
ease [103]. IL-17A, a cytokine from the IL-17 family, is 
also highly expressed in Lym0 (Additional file  1: Figure 
S9C). Additionally, Lym0 exhibited high expression lev-
els of the gene encoding ZNF532, a zinc finger protein 
involved in the regulation of the extracellular matrix, as 
well as in the reduction of EndMT in laryngeal squamous 
cell carcinoma cells [104]. Information on the highly 
expressed TFs in each Lym subpopulation and their 
downstream regulated genes is displayed in a supple-
mentary table (Additional file  18,Lym_cluster_regulon) 
and network diagrams (Additional file  19,Lym_TFand-
Target_network). Despite the highly similar cell pro-
portions between the two groups, differential analysis 
revealed significant differences in gene expression pro-
files (Fig. 5E, G). The expression of inflammatory factors 
such as CCL3, CCL4, CCL20, and IL2 was increased in 
the MR group. This suggests that proinflammatory lym-
phocytes are present in the mitral valves of patients with 
MR. TP53INP1 inhibits the activation of cardiac fibro-
blasts and protects cardiac cells from damage [105, 106]. 
Thus, in MR, TP53INP1 may have a protective effect by 
preventing fibrosis. The DEGs between the NC and MR 
groups are available in a supplementary table (Additional 
file 20, Lymphocyte DESeq2 DEGs).

Loss of proliferating endothelial cells in the endothelium 
associated with the inadequate adaptation 
to regurgitation
In MR, the surface area of the mitral valve increases to 
accommodate the increased effective regurgitant orifice 
area (EROA) resulting from left ventricular dysfunc-
tion. Our results revealed a reduction in the popula-
tion of proliferating endothelial cells in the regurgitant 
group (Fig. 3H). To confirm this observation, we selected 
FABP4 as a marker for identifying the proliferating 

endothelial cell population, as shown in Fig. 3C. We per-
formed immunohistochemical staining on mitral valves 
from an additional 21 patients with MR and 12 patients 
with normal mitral valve function (Fig. 6A). Since severe 
MR is associated with a poor prognosis, intervention is 
often needed. Therefore, we chose to categorize these 
patients into three groups. Group A (n = 12) included 
patients with no or mild MR who typically do not require 
specific interventions for MR. Patients with moderate 
MR, whose treatment may vary depending on their clini-
cal situation, were classified into Group B (n = 11). Group 
C (n = 10) consisted of patients with severe MR. We 
observed the most significant decrease in  FABP4+ cells 
in the C group (Fig.  6B). We further validated whether 
the number of  FABP4+ cells could predict the degree of 
mitral valve regurgitation. We found that a proportion of 
 FABP4+ VECs less than 6.5% was often associated with 
severe regurgitation, with an area under the curve (AUC) 
of 0.913 (Fig. 6C).

In order to investigate the relationship between prolif-
erating endothelial cells and endothelial progenitor cells, 
we performed immunohistochemical staining using the 
classic endothelial progenitor cell marker CD34. The 
proportion of  CD34+ cells was also reduced in the MR 
group (Fig.  6D, E). Multiple fluorescence immunohisto-
chemistry (mIHC) demonstrated colocalization of CD34 
and FABP4 in the tissue (Fig.  6F). This suggests that 
VEC2 is associated with the endothelial progenitor cells, 
which might explain its strong proliferative and EndMT 
capabilities.

To investigate the potential involvement of EndMT in 
MR, we performed our study by employing multicolour 
immunohistochemical staining and used von Willebrand 
factor (vWF) as a marker for VECs and α-smooth mus-
cle actin (αSMA) as a marker for VICs (Fig. 6G, H). We 
found that EndMT was enhanced in the MR group.

Extensive cell–cell interactions in the mitral valve
Using CellChat, we investigated the cell–cell interaction 
network among the cell types identified in our present 
work. The number of cell–cell interactions between dif-
ferent cell types was decreased in most MR specimens 
(Fig. 7A). VEC released the most number of ligands and 
expressed the most number of receptors. Compared with 
those in NC specimens, VEC-VEC interactions were 
increased in MR specimens, followed by the VEC-VIC 
interactions, while myeloid-lymphocyte interactions 
were decreased (Fig. 7B).

In our subsequent analysis, we compared the flow of 
information within each signalling pathway between 
NC and MR specimens. Notably, pathways such as 
those involving PTN, MK, NOTCH, and VEGF (black in 
Fig. 7C) exhibited consistent patterns across both groups. 
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This coherence suggests their similar importance in the 
mitral valve under both conditions, indicating a limited 
role in regurgitation. In contrast, other pathways promi-
nently changed their information flow in MR specimens 
compared with NC specimens: (i) deactivation of path-
ways involving the mitigating valve fibrosis and osteo-
blastic differentiation-GRN [107], and tissue-reparative 
gene RESISTIN [108]), (ii) decrease (migration inhibi-
tor ADGRE5 [109]) (red in Fig. 7C, D), (iii) turn on (cell 

proliferation, cell survival, cell differentiation, and cell 
transformation positive regulator IGF [110], and apopto-
sis inhibitor EPHA [111, 112]), or (iv) increase (pro-fibro-
sis pathway PERIOSTIN [113]) (green in Fig. 7C, D). As 
VEC and VIC interacted frequently, the subcluster VEC2 
mainly play a role in MR valves; therefore, we compared 
the interaction probabilities mediated by ligand–receptor 
pairs among VEC2 and the subclusters of VEC/VIC and 
identified specific ligand–receptor pairs that were only 
enriched in NC or MR specimens, including as signifi-
cant signalling pathways (Fig.  7E). For example, in NC, 

Fig. 6 Loss of proliferating endothelial cells in the endothelium associated with inadequate adaptation to regurgitation. A Immunohistochemical 
staining of FABP4 in NC and MR specimens. B Quantification of the  FABP4＋ cell ratio in the endothelium per image (n = 12 in Group A, 11 in Group 
B, and 10 in Group C). C ROC curve for the predictive ability of  FABP4+ VECs on the severity of mitral valve regurgitation. D Immunohistochemistry 
results for CD34 in the NC and MR groups. E Differential expression of CD34 between the NC and MR groups in IHC. F Immunostaining of FABP4, 
CD34 and CD31. G Immunostaining of ACTA2 (αSMA) and vWF in the NC and MR groups. H Quantification of the percentage of positive cells 
per image (n = 3 per condition). Mean ± SEM, two-tailed t test. Group A indicates patients with no or mild MR; Group B indicates patients 
with moderate MR; Group C indicates patients with severe MR. ROC, receiver operating characteristic; NC, non-diseased control; MR, mitral 
regurgitation
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Fig. 7 Extensive cell–cell interactions in the mitral valve. A Overall intercellular communication between each pair of cell populations 
in the comparison of NC and MR. The width of bands corresponding to the number of ligand‒receptor pairs. B Heatmaps of the number 
of interactions between NC and MR, showing the outgoing and incoming signalling in each cell group in greater detail (the top coloured bar plot 
represents the sum of each column of values displayed in the heatmap (incoming signalling). The right coloured bar plot represents the sum 
of each row of values (outgoing signalling). C Significant signalling pathways were ranked based on differences in the overall information flow 
within the inferred networks between NC and MR. The overall information flow of a signalling network was calculated by summarizing all 
communication probabilities in that network. D Circos plots showing the inferred intercellular communication network among VEC2 and other 
cell subtypes in the NC and MR groups. E Comparison of the specific significant ligand‒receptor pairs between the NC and MR groups, 
which contribute to signalling among VEC2 and the subclusters of VEC and VIC types. The dot colour reflects the communication probability, 
and the dot size represents the computed p value. An empty space means that the communication probability is zero. p values were computed 
from a one-sided permutation test
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VEC2 especially secreted a variety of ECM proteins to 
interact with integrin in VIC3, VIC2, and VEC1. Previous 
studies have indicated that integrin [114]  interact with 
ECM components to enhance cellular adhesion. Thus, 
such interactions were necessary for valve cells in mitral 
valves to resist continuous hemodynamic stress. In the 
MR group, VEC2 cells showed high expression of ACKR1 
[115], and they received the pro-inflammatory cytokine 
CCL2 from other subclusters of VEC and VIC cells, indi-
cating that inflammation was induced in both VEC and 
VIC cells.

The regulatory role of  FABP4+ VECs in VEC proliferation, 
migration, and EndMT
To explore the function of FABP4 in VEC cells, we iso-
lated primary VECs from patients who underwent heart 
transplantation. Immunofluorescence staining for FABP4 
and CD34 was performed on VECs cultured to the third 
generation (Additional file 1:Figure S10A). A total of 1427 
cells were counted, resulting in 525  FABP4+ cells and 542 
 CD34+ cells. There were 436 cells co-expressing both 
markers, representing 80.4% of the  FABP4+ cells and 
83.0% of the  CD34+ cells (Additional file 1: Figure S10B). 
This demonstrates that the VEC2 subpopulation largely 
overlaps with CD34-positive endothelial cells, further 
indicating the association between VEC2 and endothelial 
progenitor cells. FABP4-positive VECs account for nearly 
40% of the total VECs, which is higher than the 10–20% 
proportion of VEC2 observed in bioinformatics and 
pathological results (Figs.  2H, and  6B), indicating that 
after a period of culture (3–4 generations), the propor-
tion of this subpopulation increases by more than 50% 
compared to the initial level, demonstrating the strong 
proliferative capacity of this subpopulation.

Subsequently, we treated VECs with FABP4 at concen-
trations of 25 and 100  ng/ml [116, 117]. We conducted 
a cell scratch assay and observed that FABP4 promoted 
VEC migration at 12 and 24 h after treatment in a con-
centration-dependent manner (Fig.  8B, C). Next, we 
assessed the impact of FABP4 on VEC proliferation using 
Ki-67 immunofluorescence and EdU (5-Ethynyl-2’-deox-
yuridine) staining. Our results demonstrated that FABP4 
also enhances VEC proliferation, and this effect is more 
pronounced at higher FABP4 concentrations (Fig. 8D, E, 
F, G). Then we used small interfering RNA (siRNA) to 
reduce FABP4 expression (Additional file 1: Figure S10C, 
D). We found that si-FABP4-2 reduced the expression of 
FABP4 by more than 70% after 48 h of transfection. We 
observed that the cell migration ability was significantly 
reduced after the expression of FABP4 was decreased 
(Fig.  8H, I). Similarly, Ki-67 immunofluorescence stain-
ing and Edu staining experiments revealed a marked 
reduction in the proportion of proliferating cells (Fig. 8J, 

K,Additional file  1: S10D, E). These indicate that the 
FABP4 may play a positive regulatory role in the overall 
migration and proliferation of VECs.

Finally, we investigated the impact of FABP4 on TGFβ-
induced EndMT. We divided cells into four groups: a 
normal control group, a group treated with 100  ng/
ml FABP4, a group treated with 10 ng/ml TGFβ1, and a 
combined intervention group in which both substances 
were applied simultaneously. We observed that although 
FABP4 at a concentration of 100 ng/ml appeared to have 
a limited effect on cell differentiation, there was a notice-
able trend towards enhanced promotion of EndMT when 
it was coadministered with TGFβ1 (Additional file  1: 
Figure S10F). Next, we investigated whether inhibition 
of FABP4 could attenuate TGF-β-induced EndMT. VEC 
was transfected by siRNA, and then the cells were treated 
with 10  ng/ml of TGF-β for 48  h. It was observed that 
the marker of EndMT, vimentin, increased after TGF-β 
treatment. However, in cells transfected with si-FABP4, 
vimentin expression decreased after TGF-β treatment 
(Fig. 8L, M). These indicated that the inhibition of FABP4 
can reduce TGF-β-induced EndMT of VEC. These find-
ings demonstrated the pro-migratory and pro-prolifera-
tive function of FABP4 on VECs. In addition, FABP4 also 
plays a positive regulatory role in EndMT.

Discussion
In this study, we employed scRNA-seq to profile the 
transcriptome of the mitral valve in both NC and MR 
specimens at a single-cell resolution. This investigation 
establishes a single-cell atlas of mitral valve, contributing 
to a better understanding of the changes at the single-
cell level in functional mitral regurgitation. Our cellular 
composition data revealed one VEC subpopulation in the 
NC specimens. VEC2 cells exhibited high expression of 
FABP4 and were identified as proliferating endothelial 
cells. A previous study showed that as the left ventricle 
underwent remodelling with cavity enlargement, the 
MV leaflet area increased to limit and reduce MR [118]. 
This increase in area was not only achieved by passive 
stretching but also the result of VEC activation through 
EndMT [119]. The trajectory analysis of valve endothelial 
cells revealed that VEC2 can differentiate into two other 
subtypes of VEC. Pathological and in  vitro experiments 
revealed that FABP4 and CD34 are co-expressed in such 
VEC subpopulation. These suggest that the proliferative 
capacity of VEC2 may be associated with endothelial pro-
genitor cells. These findings suggested that the loss of val-
vular proliferating endothelial cells may be an important 
factor contributing to the impaired adaptability of regur-
gitant mitral valves.

Using cell–cell interaction analysis, we found that 
several pathways were disrupted or maintained in MR 
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specimens. Then, we ascertained the central role of VECs 
in the pathophysiology of MV. VECs secrete and receive 
several factors that interact with other cell populations. 
Such VEC-based intercellular communication might be 
critical for sustaining haemostasis of the valvular micro-
environment in the NC and contributing to the pathol-
ogy of MR.

We isolated and cultured primary human mitral VECs. 
By using recombinant protein intervention and si-RNA 
intervention, we revealed that FABP4 promotes the 
migration and proliferation of VECs, similar to its func-
tion in vascular endothelial cells [116, 120]. Addition-
ally, inhibiting the expression of FABP4 is able to reduce 
the EndMT of VECs in vitro. Jin et al. have reported that 
FABP4, in cooperation with TGFβ, will promote EndMT 

Fig. 8 The regulatory role of  FABP4+ VECs in VEC proliferation, migration, and EndMT. A Representative images of human VECs from the cell 
scratch assay.B Quantitative analysis of the results of the cell scratch assay. C Representative images of human VECs from Ki-67 proliferation assay. D 
Quantitative analysis of the results of Ki-67 proliferation assay. E Representative images of EdU staining. F Quantitative analysis of the results of EdU 
staining. G Representative images of Western blotting. H Quantitative analysis of the results of Western blotting. A Scale bar, 500 μm. C Scale bar, 
50 μm. E Scale bar, 100 μm. Points in each group in B, D, F, H represent 7, 30, 6, and 10 biological replicates, respectively. The data were normally 
distributed and had equal variance. One-way ANOVA followed by Tukey’s multiple comparison test was used for multiple groups. A value of P<0.05 
was considered statistically significant
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in cervical cancer cells [117]. Further in-depth analysis is 
needed to explore the mechanisms by which FABP4 reg-
ulates VECs.

There are several limitations in this study. First, we 
integrated scRNA-seq datasets from three MR samples 
and three NC samples. These samples were obtained 
from heart transplant recipients. Thus, they may have 
exhibited molecular or cellular changes in the mitral 
valve related to cardiomyopathy. Second, the age and sex 
of the patients from whom the MR and NC samples were 
obtained were not well matched (Table  S1). Although 
there was no perfect sex match between the two groups, 
as there was one female patient in the MR group, we 
conducted a sex-related correlation analysis on the 3 
patients in the MR group. The results showed that sex 
differences did not significantly impact gene expression 
within the MR group. Considering the age differences, 
we also performed age-related correlation tests on the 
paediatric (< 18  years) and adult (> 18  years) subgroups 
within the MR group. Similarly, age did not appear to 
have a pronounced effect on gene expression. This is 
consistent with previous research findings [10].  How-
ever, considering the absence of samples from elderly 
individuals in this study, future research may include 
samples from older adults (> 50  years old) to further 
investigate the relationship between aging and mitral 
valve regurgitation. To address these limitations, future 
studies should include specimens from diverse sources. 
Furthermore, discrepancies in recovery rates among cell 
types may arise from their distinct characteristics and 
distribution patterns. It is also plausible that certain cell 
types are more vulnerable to digestive processes, result-
ing in increased cell loss. Therefore, our dataset might 
not accurately portray the precise cellular proportions 
within the human mitral valve. A potential solution to 
overcome this recovery bias is to digest the fibre layer, 
intermediate layer, and atrium/ventricle separately and 
adjust the processing time based on the sensitivity of 
each layer to the digestive solution. Finally, although 
clinical pathological validation and cell experiments can 
support the bioinformatics results, these experiments 
do not fully reveal the specific regulatory processes of 
this subcluster in MR. Further cell experiments, such as 
separating this cell subpopulation using techniques such 
as flow cytometry, have not been conducted. This is lim-
ited by the difficulty in obtaining and culturing primary 
VECs from the human mitral valve. Despite these limita-
tions and technical challenges, our study yielded several 
interesting and novel findings. In subsequent studies, 
we anticipate continuing to collect relevant samples for 
RNA sequencing or single-cell RNA sequencing of the 
chordae tendineae or papillary muscles of regurgitant 

mitral valves. This could further enhance our under-
standing of the functional aspects of mitral valve regur-
gitation. Moreover, we will further optimize the isolation 
and culture methods for primary mitral valve endothe-
lial cells. We will also use specific markers identified in 
this study (e.g. FABP4) for sorting and further exploring 
the functions of this specific subset. Moreover, given the 
advanced stage of development in large animal models 
for functional MR, we will conduct further large animal 
experiments to validate our findings [121].

Conclusion
In conclusion, we revealed the cellular and molecular 
landscape of the MR valves at the single-cell level. We 
found that the proportion of proliferating endothelial 
cells was reduced in the MR group. These cells highly 
express FABP4 and exhibit greater proliferation and dif-
ferentiation capabilities compared to other endothelial 
cells. This is associated with the occurrence of MR. The 
implications of these findings broaden our understand-
ing of functional MR progression and may offer potential 
pathways for the advancement of future treatments.
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