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Abstract 

Background  Bovine mastitis significantly impacts the dairy industry, causing economic losses through reduced milk 
production, lower milk quality, and increased health risks, and early detection is critical for effective treatment. This 
study analyzed milk electrical conductivity data from 9,846 Chinese Holstein cows over a two-year period, collected 
during three daily milking sessions, alongside smart collar data and dairy herd improvement test results. The aim 
was to conduct a comprehensive genetic analysis and assess the potential of milk electrical conductivity as a bio-
marker for the early detection of bovine subclinical mastitis.

Results  The results revealed significant phenotypic and strong genetic correlations (-0.286 to 0.457) between milk 
electrical conductivity, somatic cell score, milk yield, activity quantity, and milking speed. Logistic regression models 
yielded area under the curve values ranging from 0.636 to 0.697 and odds ratio values from 9.70 to 10.69, demonstrat-
ing a certain predictive capability of milk electrical conductivity for identifying subclinical mastitis. Various factors 
influencing milk electrical conductivity, including lactation stage, environmental conditions, age at first calving, parity, 
and body condition score, were identified. The random regression model demonstrated moderate to high heritability 
of milk electrical conductivity (0.458 to 0.487), particularly during the early to mid-lactation periods, with all estimates 
exceeding 0.35 However, after day 275 of lactation, the heritability decreased to below 0.2. Notably, shifts in genetic 
factors affecting milk components were observed around 60 and 270 days into lactation, with increased environmen-
tal sensitivity to milk electrical conductivity during these periods.

Conclusions  This study demonstrates that milk electrical conductivity is influenced by multiple factors, such as age 
at first calving, parity, and body condition score, and exhibits significant phenotypic associations with somatic cell 
score, milk yield, activity quantity, and milking speed. Although milk electrical conductivity showed moderate to high 
heritability and potential as a predictor for subclinical mastitis, its low genetic correlations with SCS limit its effec-
tiveness as a standalone indicator. Future research should focus on combining EC with other indicators to improve 
the accuracy of mastitis detection.
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Introduction
Bovine mastitis, an inflammation of the mammary gland, 
is among the most common and economically detri-
mental diseases affecting dairy cows. Its occurrence is 
strongly influenced by both environmental factors—such 
as pathogens, environmental conditions, and manage-
ment practices—and genetic factors [1–4]. The most 
commonly utilized indicators for selecting mastitis resist-
ance are clinical mastitis incidents for direct selection 
and somatic cell count (SCC) for indirect selection [5, 6]. 
However, the increasing scale of dairy farms complicates 
the management of mastitis detection due to greater 
workloads for milking staff and frequent turnover of per-
sonnel [2, 7]. In many large-scale Chinese dairy farms, 
SCC measurements are typically performed monthly 
as part of the dairy herd improvement (DHI) program, 
which can result in delays in mastitis detection [8, 9]. 
Consequently, farmers are exploring more direct and 
effective methods for detecting mastitis.

Milk electrical conductivity (EC) has emerged as a 
promising tool for early mastitis detection, as bacterial 
infections in the udder alter the concentrations of anions 
and cations (K + , Na + , Cl-), leading to an increase in EC 
[10, 11]. With the advancement of digital and mechanized 
farm management tools, EC can now be automatically 
measured during milking sessions using sensors inte-
grated into automatic milking systems, providing multi-
ple daily readings. This capability has made EC a widely 
accepted method for early mastitis detection in mod-
ern dairy management practices [12]. Despite numer-
ous studies highlighting a strong positive correlation 
between EC and clinical mastitis incidence [13–15], pre-
vious research on the heritability and genetic parameters 
of EC as an indicator for mastitis has been constrained 
by small sample sizes and models that inadequately cap-
ture genetic variability across lactation stages. Moreover, 
there is limited research on the EC characteristics of Chi-
nese Holstein cows [16, 17]. Random regression test-day 
model, which offers a more precise analysis of genetic 
and environmental influences across different lactation 
stages, has been extensively applied for genetic evalua-
tion of dairy production traits, resulting in more reliable 
genetic evaluations [18–20]. The model requires repeated 
measurements of multiple traits over time for each cow 
and a large dataset to accurately model individual and 
population-level variances [20]. As a result, the random 
regression model is particularly well-suited for analyzing 
the genetic characteristics of daily measurement data col-
lected through automated milking systems in dairy cows.

This study aims to achieve three objectives: first, to 
quantify the association between EC and milk production 

traits in Chinese Holstein cow; second, to explore the 
genetic characteristics of the EC trait using a random 
regression model; and third, to evaluate the feasibility of 
using EC as an indicator for diagnosing bovine mastitis. 
This research is expected to help reduce the incidence of 
mastitis and support the high-quality development of the 
dairy industry.

Materials and methods
Animals, diets, and feeding
The data used in this study were derived from 9,846 
Holstein cows, housed in three medium- to large-scale 
contemporary dairy farms located in Jiangsu Province, 
China. These cows were accommodated in free-stall 
housing within a double-row barns, with bedding made 
of dried bovine manure. They were fed a total mixed 
ration (TMR) and were milked and fed three times daily.

Phenotype collections and preparations
This study collected data from 9,846 Holstein dairy cows 
using milking machines and smart collars, recording data 
across three daily intervals (6:00, 14:00, 21:00) through-
out 2021–2022. The milking machine recorded various 
parameters, including the EC at each milking session—
first (EC_1), second (EC_2), third (EC_3)—as well as the 
daily average EC (EC_ave) and average milking speed 
(MS). The MS was defined as the ratio of milk produc-
tion to the time spent per milking session. The smart col-
lars recorded the activity quantity (AQ) of cows in the 
barn before each milking session, capturing a total of 
1,889,318 data records, with AQ defined as the number 
of steps a cow taken per hour. The system could gather 
multiple parameters such as EC, milk yield (MY), and 
MS for each milking session, while cow activity data was 
recorded bihourly via the smart collars. Additionally, 
SCC data from DHI over the two-year period contrib-
uted 76,554 records. Both the milking information sys-
tem and smart collars were products of Afimilk company. 
Furthermore, body condition scores (BCS) for all 9,846 
cows were assessed following the method of Wildman 
et al. [21], focusing on the degree of flesh over the lum-
bar, pelvic, and tailhead regions. The BCS ranged from 1 
(extremely thin) to 5 (extremely fat), with increments of 
0.25 points.

After data collection, rigorous quality control meas-
ures were implemented based on specified criteria: 1) 
first calving age between 22 and 32 months, with lacta-
tion days between 5 and 305; 2) daily milk production 
ranging from 5 to 80  kg, and somatic cell score (SCS) 
values between 0 and 9, calculated using the formula 
SCS = log₂(SCC/100,000) + 3, where SCC is the somatic 
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cell count; 3) for activity metrics, only data recorded 
within the barn were considered, with averages calculated 
on a daily basis; and 4) for each trait, values exceeding 
the mean by more than three standard deviations were 
removed. Following these quality control steps, a data-
set was compiled for 8,455 cows, containing 1,048,575 
entries each for EC_1, EC_2, EC_3, EC_ave, MY, MS, 
and AQ, along with 67,560 entries for SCS. For genetic 
evaluation, cows with distinct phenotypes were traced 
back through three generations (parents, grandparents, 
maternal grandparents), resulting in an average pedigree 
depth of 3.25 generations and a comprehensive pedigree 
file encompassing 16,423 Holsteins (195 bulls and 16,228 
cows).

Analysis of variance for EC
A General Linear Model (GLM) procedure was used to 
perform an analysis of variance (ANOVA) on the EC in R 
statistical software (v4.2.1). This analysis considered vari-
ous factors including the season of measurement, age at 
first calving, measurement parity, and BCS. To control 
for Type I errors in post hoc multiple comparisons, the 
Duncan test was employed. The fixed effects model used 
to identify factors influencing EC is specified as follows:

where yijklmnt denotes the individual phenotypic value 
of EC at each milking session, u is the overall mean. 
The Farmi is the i-th farm effect; Yearj is classified 
into two discrete categories corresponding to the j-th 
year of measurement: 2021 and 2022; Seasonal effects 
( Seasonk ) are segmented into four periods: spring (March 
to May), summer (June to August), autumn (Septem-
ber to November), and winter (December to Febru-
ary). The Fcal reflects the l-th month of first calving age 
effect, categorized into six levels, with each group span-
ning a two-month range from 22 to 34  months (e.g., 
22 < age ≤ 24  months, 24 < age ≤ 26  months, etc.). The 
Paritym denotes the m-th parity effect. The BCSn is the 
BCS for the n-th individual ranges from 2.5 to 4.0 in 
0.25-point increments, and the day in milk ( DIMt ) is cat-
egorized into three intervals, covering days 5 to 305 of 
lactation. Lastly, the eijklmnt represents the residual effect.

Phenotypic correlation analysis
The correlation analysis was performed using R statistical 
software (v4.2.1) to quantify the relationships between EC 
measurements from different milking sessions and various 
milk production traits. Pearson’s correlation coefficient was 
calculated using the cor function. For correlations involving 
SCS, only records from test days where SCS measurements 

(1)
yijklmnt = u+ Farmi + Yearj + Seasonk + Fcal + Paritym + BCSn + DIMt + eijklmnt ,

were available and coincided with the daily records of EC 
and milk production traits were included in the analysis. 
To enhance the interpretability of the statistical findings, 
the corrplot package in R software (v4.2.1) was employed to 
generate a color-coded graphical representation of the cor-
relation matrix.

Logistic regression analysis
To better understand the predictive capacity of EC traits 
for identifying subclinical mastitis in dairy cows, we 
established a threshold aligned with international stand-
ards: 200,000 somatic cells per milliliter in milk [22, 23]. 
This benchmark serves as a critical indicator for assess-
ing bovine health and determining the potential onset of 
mastitis. A SCC exceeding this threshold classifies a cow 
as having subclinical mastitis, while a count below it indi-
cates a healthy status. This criterion enables a more pre-
cise analysis of mastitis prevalence within the dairy cow 
population. Following this classification, logistic regression 
modeling was employed to evaluate the impact of EC and 
other factors, such as the season of measurement, age at 
first calving, parity, and BCS, on the occurrence of subclini-
cal mastitis in dairy cows. To determine the overall signifi-
cance of the variables, the Wald test was conducted before 

proceeding with group comparisons. The logistic regres-
sion model used is outlined as follows:

where p represents the probability of the cow has sub-
clinical mastitis; b0 is the constant term; The variables 
Farmi , Yearj , Seasonk, Fcal , Paritym and DIMn are defined 
as in Eq. 1. Additionally, BCS represents the BCS for each 
cow, which ranges from 2.5 to 4.0, with increments of 
0.25. In this model, BCS and EC∗ are included as a covar-
iate; EC∗ encompasses EC_1 EC_2 EC_3 and ECave , with 
only one EC trait evaluated in the model at a time. Here, 
EC_1 , EC_2 , and EC_3 referred to the EC at the first, 
second, and third milking sessions of the day, respec-
tively, and EC_ave represents the daily average EC. The 
regression coefficients b1 and b2 correspond to the effects 
of BCSandEC∗ , while eijklmn represents the residual error.

Genetic characteristics analysis
Genetic parameters for EC and milk production traits 
were estimated using a random regression model. Variance 
components were calculated through the average infor-
mation restricted maximum likelihood (AI-REML) algo-
rithm, as implemented in DMU software (v5.6) [24]. The 

(2)
Logit(p) = ln

p
1−p = b0 + Farmi + Yearj + Seasonk + Fcal+

Paritym+DIMn + b1 × BCS + b2 × EC∗
+ eijklmn ,
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expectation–maximization (EM) algorithm was used when 
the AI-REML algorithm did not converge. The model is 
defined as follows:

where yijkmn represents the phenotypic observation 
recorded on the measurement day, with HTDi denoting 
the effect of the i-th year, season, and herd. The effects 
Parityj , FCAk , and BCSl align with those specified in 
Eq. 1 and are included as fixed effects. The term bn rep-
resents the fixed regression coefficient of the n-th order 
polynomial, while amn indicates the random regression 
coefficient of the n-th order polynomial for the additive 
genetic effect of the m-th cow. Similarly, pmn is the ran-
dom regression coefficient for the permanent environ-
mental effect of the m-th cow. The function Ln(ωt) 
corresponds to the covariate of the n-th order polyno-
mial on the lactation day, ωt is the standardized value 
for the t-th lactation day, calculated as 
ωt =

[

2(t−5)
305

]

− 1 . The polynomial degree λ represents 
the highest order of polynomial included in the model: 
λ is set to 3 for EC_1, EC_2, EC_3, SCS, MY, MS, and 
AQ, and 4 for EC_ave. The random residual eijkmn is 
assumed to have homogeneous variance throughout 
the lactation stage. Model convergence is determined 
by two criteria: the norm of the parameter update vec-
tor being less than 1.0 × 10−7 or the norm of the gradi-
ent vector (AI) being less than1.0 × 10−6. Pedigree 
information is utilized within the model to construct 
the relationship matrix, ensuring accurate representa-
tion of genetic kinships.

After removing all fixed effects, the phenotype of each 
individual was adjusted to the 305-day performance value 
according to the following formula:

where yadj is the adjusted phenotypic value correspond-
ing to the electrical conductivity of the cow at each 
milking session, and et denotes the random residual cor-
responding to the t-th lactation day of each parity. The 
remaining elements in this formula are consistent with 
those defined in formula 3.

The additive genetic variance, permanent environmen-
tal effect variance, heritability, and genetic correlation, as 
well as the correlation of permanent environmental effect 
at different time points within the lactation stage were 
calculated according to the following formulas:

(3)yijklmn = HTDi + Parityj+Fcak+BCSl +
∑6

n=0 bnLn(ωt)+
∑

�

n=0 amnLn(ωt)+
∑

�

n=0 pmnLn(ωt)+eijkmn,

(4)

y=

305
∑

t1=5

3
∑

t2=5

amnLn(ωt)+

305
∑

t=5

3
∑

n=0

pmnLn(ωt)+

305
∑

t=5

et ,

where σ 2
at denotes the variance of additive genetic 

effects on the t-th lactation day, while σ 2
pet represents the 

variance of permanent environmental effects specific to 
the same lactation day. The covariance between addi-
tive genetic effects across two distinct lactation days, t1 
and t2 , is represented by σ 2

a(t1,t2) , and the covariance of 
permanent environmental effects between these days is 
indicated by σ 2

pe(t1,t2) . The vector Lt corresponds to the 
Legendre polynomial associated with the t-th lactation 
day. The additive genetic correlation between two lac-
tation days, t1 and t2 , is designated as ra(t1,t2) , while the 
correlation of permanent environmental effects for these 
days is denoted as rpe(t1,t2) . The matrices ̂G and ̂P are the 
estimated (co)variance matrices for the stochastic regres-
sion terms, based on the order of the Legendre polyno-
mial, and represent the additive genetic and permanent 
environmental effects, respectively. Heritability on the t
-th lactation day is indicated by h2t  , whereas h2T refers to 
the overall heritability of the trait adjusted to 305-day 
performance. Lastly, σ 2

e  specifies the residual variance 
within the model.

(5)σ 2
at = L

′

t
̂GLt ,

(6)σ 2
pet = L

′

t
̂PLt ,

(7)σ 2
a(t1,t2) = L

′

t1
̂GLt2,

(8)ra(t1,t2) =
σ 2
a(t1,t2)

√

σ 2
a(t1)×σ 2

a(t2)

,

(9)rpe(t1,t2) =
σ 2
pe(t1,t2)

√

σ 2
pe(t1)×σ 2

pe(t2)

,

(10)h2t =
σ 2
at

√

σ 2
at+σ 2

pet+σ 2
et

,

(11)

h2T =

305
∑

t1=5

305
∑

t2=5

σ 2
a(t1,t2)/(

305
∑

t1=5

305
∑

t2=5

σ 2
a(t1,t2) +

305
∑

t1=5

305
∑

t2=5

σ 2
pe(t1,t2) +

305
∑

5

σ 2
e ),
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In addition, to explore the genetic relationships 
between EC traits and milk production traits (milk pro-
duction, milking speed, activity level and SCS), a multi-
trait animal model was developed using the corrected 
phenotypes of these eight traits.

where yadj represents the adjusted phenotypic value of 
EC_1, EC_2, EC_3, EC_ave, SCS, MY, MS, and AQ, with 
the adjustment method following the approach outlined 
in a previous study [19]. The term 1 is a unit vector, and u 
is the mean of the evaluation population. The variable a is 
the additive genetic effects of all individuals, assumed to 
follow a anormal distribution with a mean value of 0 and 
variance Aσ 2

a  , where A is the kinship matrix constructed 
from pedigree data, and Z is the design matrix associated 
with a . The term e is the random residual of the model, 
which follow a normal distribution with a mean of 0 and 
variance Iσ 2

e  , where I is the unit vector.

Results
The statistical description of phenotype
In the analysis of 104,857 records from 8,455 Chinese 
Holstein cows, the mean EC values across different ses-
sions showed slight variations, ranging from 9.314 to 
9.372, with the smallest variation observed in the daily 
average (Table 1). The SCS had a low mean but exhibited 
high variability, while MY exhibited a broad range from 
9.5 to 64.6, reflecting diverse production levels. Similar 
variability was noted for MS and AQ (Table  S1). Fre-
quency observations and cumulative density results indi-
cated that all traits approximate a normal distribution, as 
depicted in Figure S1.

Factors affecting the variation of EC
The ANOVA test revealed the impact of various factors 
on the EC traits from Chinese Holstein dairy cows, with 
particular emphasis on the seasonal variation, age at first 
delivery, parity, and BCS (Table 2). Seasonal changes had 
a consistent influence on electrical conductivity meas-
urements across the first three milking sessions (EC_1, 

(12)yadj = 1u+ Za+ e,

EC_2, EC_3) and the daily average (EC_ave), with the 
highest conductivity observed in the second season. The 
cows with a first calving age of 25–27  months exhib-
ited lower EC values, whereas those with a first calving 
age of 34–36  months presented marginally higher con-
ductivity values. Additionally, EC displayed a subtle yet 
steady increase in conductivity with an increasing num-
ber of parities. The relationship between BCS and EC 
was more complex, as neither the leanest nor the fattest 
cows showed a high electrical conductivity, indicating 
an optimal range for conductivity that correlates with 
cow health. These factors, each interacting differently 
with electrical conductivity, underscore the multifaceted 
nature of milk composition traits.

The phenotypic correlation between electrical conductivity 
and milk production‑related traits
The phenotypic correlation between EC traits and vari-
ous milk production-related traits in Chinese Holstein 
dairy cows was examined in the study, with the results 
visualized using a correlation matrix heatmap. As shown 
in Fig.  1, significant positive correlations, with coeffi-
cients between 0.73 to 0.82, were observed between the 
EC measurements of the first (EC_1), second (EC_2), and 
third (EC_3) milking sessions, as well as with the daily 
average EC (EC_ave). The SCS showed moderate posi-
tive correlations with EC traits, with coefficients between 
0.18 to 0.23, while MY and average MS displayed weaker 
correlations. Interestingly, the AQ of cows demonstrated 
a slightly negative relationship with other traits.

The genetic analysis of electrical conductivity and milk 
production‑related traits
The heritability estimates for EC traits exhibited a slight 
upward trend from the first to the third daily milking ses-
sions (EC_1, EC_2, EC_3), with values of 0.458, 0.472, 
0.471, respectively, and 0.487 for the average daily EC 
(EC_ave). Standard errors for these heritability values 
ranged from 0.101 to 0.105 (Table  3). Genetic analysis 
revealed strong genetic correlations within the EC meas-
urements across the different milking sessions: the first 

Table 1  Descriptive statistical analysis of EC in Chinese Holstein dairy cattle

RN Record number, SD Standard deviation, Min the minimum value, Max the maximum value, EC_1 the EC at the first milking session in a day, EC_2 the EC at the second 
milking session in a day, EC_3 the EC at the third milking session in a day, EC_ave the daily average EC

EC (mS/cm) RN Mean SD Min Max Skew Kurtosis

EC_1 1048575 9.372 0.674 7.100 11.412 0.010 0.006

EC_2 1048575 9.314 0.672 6.900 11.124 0.045 0.002

EC_3 1048575 9.321 0.672 7.400 11.100 0.040 0.006

EC_ave 1048575 9.343 0.591 7.200 11.252 0.024 −0.001
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(EC_1), second (EC_2), and third (EC_3), with values 
exceedingly close to unity (0.992 to 0.998, Table 4). The 
genetic correlations between daily EC measurements 
(EC_1, EC_2, EC_3, and EC_ave) and SCS were slightly 
positive (−0.098 to 0.135), suggesting that an increase in 
EC may be genetically linked to a higher propensity for 
elevated SCC. The correlations between EC traits and 
MY as well as MS were low and negative, while AQ exhib-
ited a substantial negative genetic correlation (−0.286 to 
−0.111). Notably, AQ demonstrated a significant positive 
genetic correlation (0.475) with SCS.

Logistic regression analysis of mastitis using SCS
The results of logistic regression analysis for predicting 
subclinical mastitis using EC traits in dairy cows are sum-
marized in Tables  5 and  6. Notably, EC_1, EC_2, EC_3 
and EC_ave were significantly positively associated with 
an increased likelihood of subclinical mastitis, with odds 
ratios (OR) ranging from 10.23 to 10.96. The area under 
the curve (AUC) values for these EC traits were ranged 
from 0.636 to 0.697 (Table 6, Fig. S2). The asymptotic sig-
nificance of each parameter was less than 0.05 (Table 6), 
indicating that their diagnostic effectiveness was statisti-
cally significant.

Table 2  The ANOVA test analysis of various factors influencing the EC

The mean and standard deviation of EC

EC_1 the EC at the first milking session in a day, EC_2 the EC at the second milking session in a day, EC_3 the EC at the third milking session in a day, EC_ave the daily 
average EC

The averages with the same letter between indicate that the difference is not significant, and those without the same letter indicate that the difference is significant 
(p < 0.05)

Factor Level Number EC_1 EC_2 EC_3 EC_ave

Farm 1 346649 9.371 ± 0.673A 9.378 ± 0.671A 9.376 ± 0.671A 9.371 ± 0.610A

2 332941 9.342 ± 0.674A 9.373 ± 0.673A 9.373 ± 0.673A 9.376 ± 0.611A

3 369546 9.382 ± 0.675A 9.373 ± 0.672A 9.378 ± 0.673A 9.374 ± 0.615A

Year 2021 513862 9.474 ± 0.672B 9.474 ± 0.675B 9.474 ± 0.672B 9.474 ± 0.607B

2022 534713 9.274 ± 0.684A 9.274 ± 0.661A 9.274 ± 0.657A 9.274 ± 0.601A

Season Spring 337040 9.287 ± 0.668A 9.248 ± 0.667B 9.254 ± 0.671B 9.263 ± 0.609B

Summer 263005 9.477 ± 0.679B 9.413 ± 0.674C 9.402 ± 0.675C 9.430 ± 0.606C

Autumn 202002 9.483 ± 0.662C 9.414 ± 0.667C 9.423 ± 0.664D 9.440 ± 0.601D

Winter 246528 9.285 ± 0.657A 9.218 ± 0.654A 9.246 ± 0.657A 9.250 ± 0.598A

First calving age 22–24 104845 9.305 ± 0.622B 9.250 ± 0.626B 9.248 ± 0.626B 9.268 ± 0.562B

24–26 74790 9.532 ± 0.479E 9.466 ± 0.611E 9.486 ± 0.464E 9.495 ± 0.274E

26–28 533015 9.286 ± 0.675A 9.231 ± 0.679A 9.237 ± 0.675A 9.251 ± 0.607A

28–30 197600 9.414 ± 0.675C 9.354 ± 0.671C 9.362 ± 0.672C 9.377 ± 0.611C

30–32 62739 9.515 ± 0.687D 9.456 ± 0.692D 9.465 ± 0.686D 9.479 ± 0.617D

32–34 39251 9.710 ± 0.682F 9.654 ± 0.692F 9.664 ± 0.679F 9.676 ± 0.612F

Parity 1 376314 9.040 ± 0.553A 8.999 ± 0.550A 8.992 ± 0.545A 9.010 ± 0.488A

2 285091 9.443 ± 0.656B 9.370 ± 0.653B 9.383 ± 0.653B 9.399 ± 0.586B

3 143330 9.605 ± 0.667C 9.535 ± 0.676C 9.552 ± 0.670C 9.564 ± 0.599C

4 101731 9.602 ± 0.640C 9.541 ± 0.650D 9.558 ± 0.642D 9.567 ± 0.572C

5 142109 9.708 ± 0.654D 9.654 ± 0.665E 9.669 ± 0.658E 9.677 ± 0.582D

DIM 5–100 364183 9.375 ± 0.651 9.375 ± 0.649 9.375 ± 0.649 9.375 ± 0.589

101–200 483725 9.355 ± 0.674 9.355 ± 0.673 9.355 ± 0.673 9.355 ± 0.612

201–305 200667 9.407 ± 0.712 9.407 ± 0.707 9.407 ± 0.708 9.407 ± 0.642

BCS 2.25 5983 9.683 ± 0.667G 9.627 ± 0.689G 9.639 ± 0.680G 9.650 ± 0.610G

2.50 27549 9.643 ± 0.652F 9.578 ± 0.661F 9.591 ± 0.658F 9.604 ± 0.588F

2.75 164788 9.526 ± 0.662D 9.462 ± 0.669D 9.475 ± 0.666D 9.488 ± 0.599D

3.00 268385 9.376 ± 0.666C 9.319 ± 0.664C 9.328 ± 0.666C 9.341 ± 0.603C

3.25 391975 9.325 ± 0.670B 9.267 ± 0.665B 9.271 ± 0.665B 9.288 ± 0.605B

3.50 155857 9.258 ± 0.663A 9.207 ± 0.659A 9.211 ± 0.658A 9.226 ± 0.598A

3.75 31765 9.369 ± 0.697C 9.315 ± 0.696C 9.316 ± 0.0694C 9.333 ± 0.630C

4.00 2273 9.608 ± 0.750E 9.554 ± 0.748E 9.544 ± 0.735E 9.569 ± 0.670E
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The phenotypic and genetic changes of EC 
within the lactation of dairy cows
The trends in EC traits throughout lactation periods in 
dairy cows were analyzed in this study (Fig.  2). All the 
curves displayed a similar pattern: a rise during the early 
lactation period (5–100 days), followed by a leveling off 
between approximately 50 to 80  days, which continued 
through to the end of mid-lactation (200–305 days). After 
day 200 of lactation (DIM200), a rapid increase in EC 
was observed. The mid-lactation period (100–200  days) 

showed relative stability across all EC traits, indicating a 
homeostatic phase in milk production. In contrast, from 
around DIM270 to the end of the lactation period, the 
red curve deviated with a downward trend, opposite to 
the other curves. Prior to this divergence, the red curve 
maintained higher EC values compared to the other 
curves, while the v green curve consistently exhibited 
lower values.

The heritability patterns for EC across different lac-
tation stages in dairy cows, delineated by distinct 

Fig. 1  The phenotype correlation between electrical conductivity and milk production-related traits of Chinese Holstein dairy cows. Note: 
EC_1 = the EC at the first milking session in a day; EC_2 = the EC at the second milking session in a day; EC_3 = the EC at the third milking session 
in a day; EC_ave = the daily average EC; SCS = somatic cell score of the milk; MY = the milk production yield; MS = the average milk speed in a day; 
AQ = the activity quantity of each cow in a day. The lower left corner is the relevant value, the upper right corner is the corresponding color 
expression, and the asterisks indicate significant correlation between two traits (*. p < 0.05 and **. p < 0.01)



Page 8 of 16Lu et al. BMC Genomics         (2024) 25:1230 

periods, exhibited marked variation. During early lacta-
tion (DIM5- DIM100), the heritability of EC_1 exhibited 
considerable fluctuation, which transitioned into a phase 
of relative genetic stability during mid-lactation (DIM100- 
DIM200). As cows entered late lactation (DIM200- 
DIM305), especially at DIM270–DIM305, the heritability 
trends for the EC measurements began to show a down-
ward trend. Before DIM270, the heritability of EC_ave 
was higher than that of electrical conductivity detected 
at different sessions (EC_1, EC_2, and EC_3) (Fig.  3A). 
The additive genetic effect curves for EC in dairy cows 
remained consistent and stable across all the EC traits 

(EC_1, EC_2, EC_3, and EC_ave) up until approximately 
270 days, after which a noticeable upward shift occurred 
in all curves, with EC_ave experiencing a more pro-
nounced increase compared to the others (Fig. 3B). The 
trends for the permanent environmental effects of EC 
mirrored those of the additive genetic effects throughout 
the entire lactation period (DIM5–DIM305, Fig. 3C).

Additive genetic and permanent environmental 
correlations of EC during lactation in dairy cows
As shown in Fig.  4, the genetic correlations of EC 
throughout the lactation period in dairy cows were all 
positive but tended to decrease as lactation progressed. 
The correlation were particularly weak between the 
early and late stages of lactation. Before DIM270, the 
correlation between the additive genetic effects of EC 
and EC_ave were generally high (> 0.8) at most time 
points. However, EC_ave exhibited low correlations 
with additive genetic effects both before and after 
DIM270 at most time points. In contrast, for EC_1, 
EC_2, and EC_3 exhibited low correlations with addi-
tive genetic factors only during the periods from DIM5 
to DIM35 and DIM270 to DIM305.

As illustrated in Fig.  5, the permanent environmen-
tal effect correlations of EC in dairy cows showed simi-
lar patterns for EC_1, EC_2, EC_3, and EC_ave across 

Table 3  The heritability of EC in Chinese Holstein dairy cattle

σ 2
a  = the sum of additive genetic (co)variance and covariance for EC from 5 

to 305 days, σ 2
pe = the sum of permanent environmental (co)variance and 

covariance for EC from 5 to 305 days, σ 2
e  = the sum of residual variance for EC 

from 5 to 305 days, h2T = the overall heritability of the EC traits adjusted to 305-
day performance, se = standard error of the heritability

EC (mS/cm) σ 2
a σ 2

pe σ 2
e h2T se

EC_1 40.435 47.703 0.148 0.458 0.103

EC_2 43.675 48.708 0.149 0.472 0.101

EC_3 43.357 48.547 0.149 0.471 0.105

EC_ave 41.441 43.524 0.067 0.487 0.102

Table 4  The genetic correlation between electrical conductivity and milk production-related traits of Chinese Holstein dairy cows

EC_1 the EC at the first milking session in a day, EC_2 the EC at the second milking session in a day, EC_3 the EC at the third milking session in a day, EC_ave the daily 
average EC, SCS somatic cell score of the milk, MY the daily milk yield, MS the average milk speed in a day, AQ the activity quantity of each cow in a day

The bold fonts are genetic correlation values, and the non-bold fonts are the corresponding standard errors

EC_1 EC_2 EC_3 EC_ave SCS MY MS AQ

EC_1 1.000 0.014 0.011 0.021 0.050 0.050 0.067 0.112

EC_2 0.994 1.000 0.009 0.002 0.042 0.044 0.060 0.104

EC_3 0.992 0.998 1.000 0.004 0.055 0.045 0.062 0.114

EC_ave 0.998 0.999 0.997 1.000 0.048 0.041 0.056 0.109

SCS 0.098 0.113 0.122 0.135 1.000 0.089 0.130 0.166

MY −0.113 −0.113 −0.060 −0.090 −0.009 1.000 0.029 0.074

MS −0.057 −0.084 −0.009 −0.035 0.162 0.457 1.000 0.098

AQ −0.286 −0.200 −0.118 −0.111 0.475 0.422 0.027 1.000

Table 5  The logistic regression analysis of EC and mastitis in dairy cows diagnosed by SCS

Beta Slope value of regression analysis, SE standard error, Wald wald test value, OR Value Odds Ratio value, EC_1 the EC at the first milking session in a day, EC_2 the EC 
at the second milking session in a day, EC_3 the EC at the third milking session in a day, EC_ave the daily average EC

Factor Level Beta SE Wald X2 P Value OR Value 95% Confidence Interval

Lower Limit Upper Limit

EC_1 0.37 0.37 0.03 138.56 0.02 10.74 9.70 9.94

EC_2 0.38 0.38 0.02 187.22 0.01 10.23 9.88 10.39

EC_3 0.42 0.42 0.05 244.47 0.00 10.38 10.22 10.58

EC_ave 0.58 0.58 0.07 354.52 0.00 10.96 10.69 11.47
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lactation stages, generally exhibiting a downward trend 
over time, with occasional negative correlations (high-
lighted by the darkest blue in Fig. 5). Specifically, dur-
ing DIM5-DIM35 and DIM275-DIM305, the permanent 
environmental effects for EC_1 and EC_ave demon-
strated strong correlations. In contrast, EC_2 and EC_3 
showed closer correlations in their permanent environ-
mental effects during the periods of DIM35-DIM95 and 
DIM275-DIM305.

Discussion
Feasibility of electrical conductivity as an indicator 
of mastitis in dairy cows
Early identification of mastitis is considered the most 
effective strategy to ensure dairy cows have the optimal 
chance for a swift recovery [25, 26]. Traditionally, mas-
titis detection has relied on the observation of clinical 
symptoms, such as udder swelling or the presence of clots 
in the milk [27, 28]. EC has emerged as an indicator of 
the mammary gland health in cows. Under normal condi-
tions, the concentrations of ions such as Na + , Cl-, K + , 
and Mg2 + in milk remain stable. However, udder infec-
tions can disrupt this balance, increasing the concentra-
tion of conductive particles and thereby elevating milk’s 
EC. This occurs primarily due to bacterial invasions that 
trigger an immune response, resulting in an influx of 
white blood cells and enhanced permeability of the milk-
blood barrier. This process significantly increases the 
concentrations of ions, such as Na + and Cl-, reflecting 
changes in the udder health [29–31]. As a result, EC lev-
els rise above normal values, correlating with increased 
SCC. Research has shown that variations in milk EC 
can reflect the severity of mastitis, making EC measure-
ments useful for diagnosing subclinical mastitis [29, 31]. 
Our study identified significant phenotypic correlations 
(0.18 to 0.23, Fig. 1) and demonstrated that EC_ave had a 

Table 6  The binary classifier performance evaluation

EC_1 the EC at the first milking session in a day, EC_2 the EC at the second 
milking session in a day, EC_3 the EC at the third milking session in a day, EC_
ave the daily average EC, AUC​ area under the curve, AS asymptotic significance
a according to non-parametric assumptions
b null hypothesis

True region = 0.5

Variable AUC​ SEa ASb Asymptotic 95% Confidence 
Interval

Lower Limit Upper Limit

EC_1 0.636 0.004 0.002 0.624 0.645

EC_2 0.638 0.004 0.005 0.632 0.643

EC_3 0.641 0.003 0.000 0.637 0.655

EC_ave 0.697 0.006 0.000 0.664 0.707

Fig. 2  The phenotypic curves of EC within the lactation of dairy cows. Note: The red line represents the EC at the first milking session in a day 
(EC_1); the green line represents the EC at the second milking session in a day (EC_2); the blue line represents the EC at the third milking session 
in a day; the purple line represents the daily average EC (EC_ave). The upper left corner represents the equation of the curve, where y1 , y2 , y3 and y4 
are the value of EC_1, EC_2, EC_3, and EC_ave, respectively, and x is Standardized DIM ranging from 5 to 305, where x = [2(DIM− 5)/305] − 1 ; 
the abscissa represents days in milk (DIM) and the ordinate represents the size of the value
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significant detection rate for subclinical mastitis in dairy 
cows in the regression analysis (Tables 5 and 6). However, 
the low genetic correlations between EC_1, EC_2, EC_3, 
and EC_ave with SCS were observed (0.098 to 0.135, 
Table  4) suggest challenges in using EC as a consistent 
genetic indicator for subclinical mastitis in cows.

We observed that EC_ave was more closely associated 
with SCS than individual milking session values (EC_1, 
EC_2, EC_3, Fig. 1 and Table 4). This suggests that milk 
composition varies throughout the day, potentially due to 
fluctuations in the efficiency of milk synthesis and secre-
tion by mammary cells at different times. Previous stud-
ies have shown that the milk quality, in terms of protein 
(3.26%) and fat (3.37%) contents, is lower in the morning 
compared to the afternoon, where protein levels rise to 
4.03% and fat to 3.79%, with changes also observed in lac-
tose content [32]. Additionally, shorter milking intervals 
of 12:12  h produce higher milk fat content than longer 
intervals of 16:8 h [32, 33]. Thus, using the average daily 
EC helps to smooth out these variations in milk composi-
tion across different milking sessions, providing a more 
accurate detection of mastitis occurrences.

Non‑genetic factors affecting EC
In this study, we demonstrated that the EC is influ-
enced by a variety of factors, including the measurement 

year, the measurement season, age at first calving, par-
ity, and BCS (Table  2). This finding is consistent with 
previous research of Pyörälä and Woolford et  al., who 
reported that parity and different lactation stages signifi-
cantly affect the milk EC levels [34, 35]. Specifically, we 
observed significant variations in EC during the early and 
late stages of lactation, which may be related to changes 
in the solid component content of milk throughout lac-
tation [36]. Seasonal factors, particularly temperature 
changes, also significantly influence EC. Our research 
suggests that EC is generally lower in winter and spring 
compared to summer and autumn, likely because higher 
temperatures decrease milk viscosity. This reduction in 
viscosity impacts the binding of dissolved calcium and 
phosphate with casein micelles and affects the formation 
of solid calcium phosphate Calcium phosphate, leading 
to an increase in EC [37]. These seasonal changes in milk 
composition and properties underscore the influence of 
temperature variations on EC.

Our findings further highlight the impact of age at first 
calving and parity on EC. Cows with a first calving age 
of 26–28 months exhibited the lowest EC values, whereas 
those with a first calving age of 32–34  months showed 
the highest. Additionally, EC levels increased significantly 
with rising parity, suggesting that the risk of mastitis in 
dairy cows gradually increases with age [4, 8, 38]. This 

Fig. 3  The genetic parameter curves of EC within the lactation of dairy cows. Note: A = the heritability of EC within the lactation of dairy cows; 
B = the additive genetic effects of EC within the lactation of dairy cows; C = the permanent environmental effects of EC within the lactation of dairy 
cows. The red line represents the EC at the first milking session in a day (EC_1); the green line represents the EC at the second milking session 
in a day (EC_2); the blue line represents the EC at the third milking session in a day (EC_3); the purple line represents the daily average EC (EC_ave); 
the abscissa represents days in milk (DIM) and the ordinate represents the size of the value
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trend may result from cumulative exposure to pathogens, 
changes in mammary tissue, and a potential decline in 
immune system efficiency over time [39]. Studies have 
shown that cows in their second or later lactations have 
a higher risk of developing mastitis compared to those in 
their first lactation, a vulnerability that may be influenced 
by management practices, including milking hygiene, 
nutrition, and stress management [8, 40]. Furthermore, 
the prevalence of specific mastitis-causing pathogens 
may vary with age, with older cows being more suscepti-
ble to infections from environmental pathogens [40].

The BCS has a significant impact on the milk EC traits 
in this study, with the lowest EC values observed at a BCS 
of 3.5. EC values gradually increased as BCS either rose 
or fell from this point (Table 2). BCS is an assessment of 
the fatness level of dairy cows, and research indicates that 
cows with higher fat levels are more susceptible to masti-
tis and reproductive diseases [41]. Conversely, cows with 
a low BCS may not achieve their expected milk produc-
tion levels, leading to a decrease in milk fat content [42, 
43]. These cows may also exhibit signs of anestrus or have 

lower conception rates, which can alter milk composition 
and consequently increase EC. For cows in early lacta-
tion stage, a BCS above 4 poses numerous health risks, 
such as retained placenta, uterine atony, mastitis, meta-
bolic diseases, and puerperal metritis [44]. The ideal BCS 
during mid-lactation is approximately 3.25, while for late 
lactation stage, it should range between 3 and 3.5. A BCS 
below 2.75 during this lactation may indicate long-term 
malnutrition or illness [45, 46]. A BCS of 3.5 is consid-
ered optimal, as it minimizes the risk of mastitis and met-
abolic diseases, correlating with lower EC level. Looking 
ahead, beyond mastitis detection, EC could also serve 
as a potential indicator trait for reproductive diseases in 
dairy cows, suggesting promising avenues for research.

Correlation between EC and milk production‑related traits
In this study, we discovered that the phenotypic expres-
sion of EC significantly correlates with traits including 
MY, MS, AQ, and SCS (Fig. 1). It is commonly believed 
that cows with mastitis, due to discomfort in the udder, 
exhibit more frequent lying down and standing up, which 

Fig. 4  The additive genetic correlations of EC within the lactation of dairy cows. Note: A = the genetic correlations of EC at the first milking session 
in a day (EC_1); B = the genetic correlations of EC at the second milking session in a day (EC_2); C = the genetic correlations of EC at the third milking 
session in a day (EC_3); D = the genetic correlations of the daily average EC (EC_ave). The red and blue color gradients represent the magnitude 
of the correlation
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reduces rest time and milk production [47, 48]. However, 
our findings reveal a relatively low negative correlation 
between AQ and both EC as well as other milk produc-
tion traits. From a genetic perspective, activity level 
exhibited a stronger negative correlation with EC (−0.111 
to −0.286) and a higher positive correlation with MY 
(0.422, Table 4). This could be because the dairy cows in 
our study were generally healthy and did not suffer from 
clinical mastitis, allowing increased activity to promote 
blood circulation and metabolism, which in turn sup-
ports udder health and lowers EC value in the milk [48]. 
Additionally, increased activity can enhance the cow’s 
appetite and feed intake, indirectly boosting milk pro-
duction [47, 49].

Our research also indicates a positive correlation 
between MY and EC, though the correlations differ at the 
phenotypic and genetic levels (Table 4). This discrepancy 
may be due to the fact that increased milk yield is often 
associated with higher metabolic activity and salt con-
centration in the mammary gland, leading to elevated EC 
levels [50, 51]. However, the negative genetic correlation 

suggests that genetic factors may promote both higher 
MY and improved mammary health and inflamma-
tion resistance, resulting in lower EC. This implies that 
genetic selection can independently affect these traits, 
causing their genetic relationships to diverge from their 
phenotypic expressions. Furthermore, average daily EC 
(EC_ave) demonstrated higher phenotypic and genetic 
correlations with milk production traits compared to 
EC_1, EC_2, and EC_3 (Fig.  1, Table  4). This suggests 
that using average daily EC data accounts for physiologi-
cal fluctuations and environmental changes throughout 
the day, offering a more accurately and comprehensively 
reflection of udder health and milk production perfor-
mance than data from a single milking session.

The phenotypic changes in EC during lactation
Our study revealed consistent patterns in EC changes 
throughout the lactation cycle, characterized by a sharp 
increase during the early lactation phase, a stable pla-
teau in mid-lactation, and a rise again in the late lactation 
phase (Fig. 2). The initial increase in EC can be attributed 

Fig. 5  The permanent environmental correlations of EC within the lactation of dairy. Note: A = the permanent environmental correlations of EC 
at the first milking session in a day (EC_1); B = the permanent environmental correlations of EC at the second milking session in a day (EC_2); C 
= the permanent environmental correlations of EC at the third milking session in a day (EC_3); D = the permanent environmental correlations 
of the daily average EC (EC_ave). The red and blue color gradients represent the magnitude of the correlation
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to the reorganization and repair processes of mammary 
cells [52]. During this transitions from a rest phase to 
active milk production, the mammary tissue undergoes 
changes that may include mild inflammatory responses 
and increased intercellular space, leading to changes in 
electrolyte concentrations, such as sodium and chloride 
[53, 54], thereby elevating EC levels. In the mid-lactation 
phase, as mammary function stabilizes, milk composition 
becomes more consistent, resulting in a more stable EC 
[55, 56]. The increase in EC observed during late lacta-
tion phase may be linked to physiological aging of mam-
mary tissue, a decline in milk yield, and an elevated risk 
of inflammation. As the lactation cycle nears its end, 
the mammary gland begins to reduce milk production 
in preparation for the dry period, potentially increasing 
intercellular space and making the udder more suscepti-
ble to pathogen invasion, leading to cellular damage and 
inflammation [57, 58], which may in turn affects EC.

Additionally, our findings indicate that morning EC val-
ues are higher than those measured at other times of the 
day, while afternoon EC values tend to be lower (Fig. 2). 
This difference may result from the overnight accumula-
tion of electrolytes in the udder, leading to higher morn-
ing EC, whereas the shorter interval before afternoon 
milking allows less time for electrolyte build-up, result-
ing in lower EC values. Furthermore, we observed a rapid 
decline in morning EC as the lactation period nears its 
end, likely due to reduced milk yield and diminished 
mammary activity, which leads to lower electrolyte con-
centrations [53, 54].

The genetic pattern of EC
In this study, the heritability estimates for electrical con-
ductivity (EC_1, EC_2, EC_3, and EC_ave) ranged from 
0.458 to 0.487, indicating medium to high heritability 
(Table  3). Previous studies have reported a wide range 
of heritability estimates for EC, varying from 0.12 to 
0.56 [59–63]. For example, one study on Holstein cows 
reported heritability estimates for EC between 0.12 and 
0.36 [63], while research on 1,899 primiparous Polish 
Holstein–Friesian cows found estimates ranging from 
0.269 to 0.466 [64]. Another study involving 922 Holstein 
cows across three German farms found heritability values 
between 0.37 and 0.46 [60], and a study on 421 cows from 
three dairy farms in Lithuania estimated a heritability of 
0.51 [61]. Additionally, research on Hungarian Holstein-
Friesians reported a heritability of 0.56 [62]. These dif-
ferences may result from variations in the definition of 
EC, lactation stage, statistical models used, population 
size, and the genetic diversity of the cattle breeds studied, 
highlighting the importance of considering these factors 
when interpreting the variability in EC heritability esti-
mates across studies.

The heritability of EC traits showed a rapid increase 
in the early lactation period, stabilized during mid-lac-
tation, and then declined in late lactation (Fig. 3A). Spe-
cifically, the heritability and additive genetic effects of EC 
traits during the first milking session (EC_1) were higher 
than at other milking sessions before 250  days of lacta-
tion but became lower after DIM250 (Fig. 3A, B). The ini-
tial rise in heritability during early lactation period may 
be due to the active state of mammary cells, with genetic 
differences becoming more apparent during mammary 
development and the onset of milk production [65]. 
The stability observed in the mid-phase corresponds 
to the mammary gland reaching a steady state of milk 
production, where genetic influence remains relatively 
consistent [56]. The decline in heritability towards late 
lactation period may be associated with the physiologi-
cal aging of the mammary gland and a decrease in milk 
yield (Fig. 3C), during which environmental factors play 
a more significant role [57]. The pronounced genetic 
influence on EC, especially for EC_1, can be attributed 
to the long intervals without milking overnight, allowing 
genetic factors to more strongly impact milk composition 
during the first morning milking.

Genetic correlations of EC remained very high (> 0.5) 
throughout the lactation period until 250 days, but they 
decreased significantly after 275 days, especially between 
275–305  days (Fig.  4). This suggests that physiological 
changes in the mammary gland occur after 250  days, 
with environmental, nutritional, and management factors 
playing a more influential role in udder health and EC 
during this period. The high genetic correlations before 
250 days indicate minimal variation in the expression of 
genes regulating milk component during this phase [65], 
while significant shifts in gene expression likely occur 
after DIM250. These findings underscore the importance 
of recording performance data throughout the entire lac-
tation period for accurate evaluation of EC traits in milk 
[66, 67]. However, missing records for individuals before 
DIM250 may not significantly affect the overall accuracy 
of genetic evaluations.

Additionally, we observed that the correlation of per-
manent environmental effects on EC gradually decreases 
over time, although they remained high on consecutive 
days within the lactation period. This pattern allows the 
lactation period to be categorized into three distinct 
phases: 5–60 days, 61–250 days, and 251–305 days. The 
correlations of permanent environmental effects between 
these phases were lower or even negative (Fig. 5), indicat-
ing that the impact of environmental and management 
conditions on mammary health and EC varies across dif-
ferent stages. The high correlation on consecutive days 
suggests a consistent impact from environmental and 
management measures over the short term. Notably, the 
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physiological shifts around DIM60 and DIM250, which 
correspond to peak milk production and preparation for 
the dry period, increase the impact of environmental fac-
tors such as feeding management and nutritional status 
on udder health and EC [31, 68]. Thus, ensuring proper 
feeding and management practices during these critical 
periods is essential for maintaining optimal milk produc-
tion and udder health.

Conclusion
This study offers a comprehensive genetic analysis of EC 
in Chinese Holstein cows and evaluates its potential as 
a biomarker for early detection of subclinical mastitis. 
The findings reveal that milk EC traits are influenced by 
several factors, including age at first calving, parity, and 
BCS, and show significant phenotypic associations with 
SCS, MY, AQ, and MS. The milk EC traits demonstrated 
moderate to high heritability, particularly during early to 
mid-lactation, suggesting that genetic improvement of 
these traits could be feasible. While logistic regression 
models demonstrated the predictive capability of milk 
EC for identifying subclinical mastitis, with AUC values 
ranging from 0.636 to 0.697, the relatively low genetic 
correlations between milk EC and SCS indicate limita-
tions to its effectiveness as a standalone genetic indicator 
for subclinical mastitis. Future research should focus on 
integrating milk EC with other indicators to enhance the 
accuracy of subclinical mastitis detection and to further 
investigate environmental factors that influence EC dur-
ing critical lactation stages.
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