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Abstract 

This study aimed to predict preterm birth in nulliparous women using machine learning and easily accessible vari-
ables from prenatal visits. Elastic net regularized logistic regression models were developed and evaluated using 
5-fold cross-validation on data from 8,830 women in the Nulliparous Pregnancy Outcomes Study: New Mothers-to-Be 
(nuMoM2b) dataset at three prenatal visits: 60 - 136 , 160 - 216 , and 220 - 296 weeks of gestational age (GA). The models’ 
performance, assessed using Area Under the Curve (AUC), sensitivity, specificity, and accuracy, consistently improved 
with the incorporation of data from later prenatal visits. AUC scores increased from 0.6161 in the first visit to 0.7087 
in the third visit, while sensitivity and specificity also showed notable improvements. The addition of ultrasound meas-
urements, such as cervical length and Pulsatility Index, substantially enhanced the models’ predictive ability. Notably, 
the model achieved a sensitivity of 0.8254 and 0.9295 for predicting very preterm and extreme preterm births, respec-
tively, at the third prenatal visit. These findings highlight the importance of ultrasound measurements and suggest 
that incorporating machine learning-based risk assessment and routine late-pregnancy ultrasounds into prenatal care 
could improve maternal and neonatal outcomes by enabling timely interventions for high-risk women.
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Background
Preterm birth, defined as the delivery at less than 37 
completed weeks of pregnancy, is one of the most widely 
studied obstetrical complications, and remains a leading 
cause of prenatal morbidity and mortality [1–4]. Preterm 

birth is associated with profound short-term and long-
term consequences in maternal health and neonatal 
health. A relatively recent study by Henderson et  al. [5] 
has shown that women who had a preterm birth have 
an increased risk of ill-health, including significantly 
more anxiety, fatigue and flashbacks, and negative feel-
ings about their baby in the early months. Babies who 
are born before they get physically ready for the world, 
often require special care [6] and they face greater risks 
of severe health problems, including palsy, intellectual 
impairment, chronic lung disease and vision and hearing 
loss [7].

The accurate and timely prediction of preterm birth is 
paramount, serving as the primary motivation for our 
study. Such predictions are crucial not only for initiat-
ing immediate interventions but also for managing the 
logistical aspects of neonatal care, especially in settings 
where advanced care facilities are lacking. The essential 
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interventions include the administration of steroids to 
promote lung maturity and magnesium sulfate to protect 
the developing brain, which are particularly crucial when 
access to specialized neonatal care is limited. In cases 
where the necessary care facilities are not immediately 
available, accurately predicting preterm birth also facili-
tates the timely transfer of patients either antenatally or 
postnatally to centers equipped to provide critical care, 
thus optimizing both maternal and neonatal outcomes 
[8]. Recently a review study has highlighted the effec-
tiveness of intrapartum and postnatal interventions par-
ticularly in low-and-middle-income countries (LMIC) 
[9]. For instance, prophylactic steroids in preterm labor 
reduced cerebral hemorrhage by 70%, and neonatal mor-
tality by 37% [10]. Delayed cord clamping has been linked 
to beneficial effects such as higher circulating blood vol-
ume during the first 24 hours of life, less need for blood 
transfusions, and lower incidence of intraventricular 
hemorrhage [11, 12]. Evidence supported the use of 
injectable vitamin K (phytomenadione) shortly after birth 
to prevent hemorrhage-related morbidity and mortal-
ity [13] and hospital-based kangroo mother care (KMC) 
has a reduction on neonatal mortality of low birth weight 
babies (normally born preterm) [14, 15]. These studies 
highlighted the importance of timely clinical actions fol-
lowing accurate preterm birth predictions.

The majority of current work on preterm birth predic-
tion aims to identify risk factors of preterm birth, and 
many risk factors have been reported to increase the risk 
of preterm birth such as body mass index (BMI), mater-
nal family history, cervical length, vaginal bleeding, and 
depression [16–25].

In recent years, several studies have explored the use 
of Electronic Medical Records (EMRs) for preterm birth 
prediction. For instance, Tran et  al. [26] focused on 
proper data preparation, addressing issues such as data 
leakage and class imbalance, and achieved an AUC of 
0.79 using a stabilized sparse logistic regression method. 
Weber et al. [27] used data from over 2 million patients 
to predict preterm birth in nulliparous women, achiev-
ing an AUC of 0.67 by combining racial-ethnic groups. 
Esty et al. [28] aimed to create a model that surpasses the 
prediction quality of expensive and invasive fibronectin 
marker screenings, achieving a sensitivity of 90.9% and 
specificity of 71.8% using a C5.0 Decision Tree. Gao et al. 
[29] focused on predicting extreme preterm birth (before 
28 weeks) using various machine learning models and 
achieved an AUC of 0.827 with an ensemble of LSTM 
models using word2vec embeddings. These studies high-
light the growing interest in using EMRs for preterm 
birth prediction. However, a significant gap in the litera-
ture remains: many of these models rely on variables that 
are difficult to obtain in routine clinical practice or fail to 

evaluate the model’s performance at multiple time points 
throughout pregnancy. Our study is to address this gap 
by focusing on easily accessible variables that can be col-
lected during standard prenatal visits and assessing the 
model’s predictive ability at different stages of pregnancy.

A notable exception is the study by AlSaad et al. which 
achieved predictive power as evidenced by ROC-AUC 
scores of 0.82, 0.79, and 0.78 at 1, 3, and 6 months prior 
to delivery, respectively [30]. Despite these results, their 
approach used a retrospective design where data collec-
tion points were predetermined at 1, 3, 6, and 9 months 
before a known delivery date. While statistically robust, 
this method poses significant practical challenges in pro-
spective clinical settings: specifically, this retrospective 
timing assumes precise knowledge of the delivery date, 
which is not feasible in real-time clinical practice. More-
over, their model relied on a wide array of complex vari-
ables, including diagnoses, medications, procedures, and 
lab orders, many of which are difficult to collect routinely, 
especially in resource-limited settings. Abraham et  al.’s 
study also brought up the idea of predicting preterm 
birth at different time points: 0, 13, and 28 weeks of ges-
tation, and they concluded that the model performance 
increased from conception (0 weeks) to the highest at 28 
weeks with a result of ROC-AUC = 0.75, PR-AUC = 0.40 
at 28 weeks of gestation [31]. However, this approach 
may face practical limitations in real-world applications. 
Billing codes can vary significantly across different medi-
cal practices and healthcare systems, potentially limiting 
the model’s generalization and standardization.

In this study, we aimed to analyze the predictive abili-
ties for preterm birth using “easy-to-acquire” EMR data 
collected from various prenatal visits in the nuMoM2B 
database [32], to demonstrate how such predictive mod-
els can be effectively integrated into clinical practice. 
Easy-to-acquire data, which was collected at naturally 
occurring gestational weeks, including individual and 
familial medical backgrounds, demographic details, 
non-intrusive evaluations, and standard diagnostic pro-
cedures, from different prenatal visits, is important 
to help maintain a reasonable cost in predictions and 
easy-to-handle evaluations. We evaluated models that 
combine medical history, family medical history, demo-
graphic information, non-invasive assessments, and com-
mon diagnostic measures to predict preterm birth. We 
assessed the efficacy of an elastic net regularized logistic 
regression model for predicting preterm birth, focusing 
on datasets enriched with data from multiple prenatal 
visits.

The paper is organized to first introduce the methodol-
ogy, highlighting our use of the elastic net approach. We 
then explored the contributions of different variables to 
model predictions, performed a sensitivity analysis on 
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subgroups of preterm birth categorized by gestational 
age, and investigated the impact of updated measure-
ments from later prenatal visits, with a particular focus 
on ultrasound measurements such as cervical length and 
Pulsatility Index.

Methodology
Data collection
The Nulliparous Pregnancy Outcomes Study: New Moth-
ers-to-Be (nuMoM2b) dataset, a valuable resource in our 
study, comprises a comprehensive collection of data. The 
dataset includes information from 10,038 nulliparous 
women with singleton pregnancies recruited from 8 clin-
ical centers affiliated with research institutions, detailed 
in the Appendix A in Fig. 8 and in Table 9. The primary 
objectives of the nuMoM2b study were to (1) determine 
maternal characteristics, including genetics, epigenetics, 
and physiological response to pregnancy and environ-
mental factors that influence or predict adverse preg-
nancy outcome; (2) identify specific aspects of placental 
development and function that lead to adverse pregnancy 
outcome; and (3) characterize genetic, growth, and devel-
opmental parameters of the fetus that are associated with 
adverse pregnancy outcome.

Inclusion criteria for the study were: (1) nulliparous 
women (defined as a pregnant woman with no prior 
pregnancy lasting 20 weeks or more), (2) viable singleton 
gestation (defined as the presence of fetal cardiac activ-
ity at the most recent ultrasound before enrollment), (3) 
gestational age between 6 weeks 0 days and 13 weeks 6 
days at recruitment (based on a “project ultrasound” 
performed by a certified nuMoM2b sonographer), and 
(4) intention to deliver in a participating hospital of the 
nuMoM2b Network.

Exclusion criteria included: (1) maternal age less than 13 
years, (2) history of three or more spontaneous abortions, 
(3) fetal malformation evident at or before enrollment that 
is likely lethal, (4) known fetal aneuploidy, (5) surrogate 
pregnancy, (6) multifetal pregnancy reduction, (7) participa-
tion in an intervention study that is anticipated to influence 
maternal or fetal morbidities/mortality (unless the study 
code is made available before enrollment), (8) previous 
enrollment in the nuMoM2b study, (9) planned pregnancy 
termination, and (10) inability to provide informed consent.

Data were collected through interviews, self-
administered questionnaires, clinical measurements, 
ultrasounds, and a review of medical records at four 
scheduled study visits (Table  1). At each visit, specific 
data collection procedures were followed to ensure data 
integrity and consistency across clinical sites. All study 
personnel underwent standardized training on data 
collection protocols, and regular monitoring visits were 
conducted to ensure adherence to study procedures.

After data were received, additional data edits were 
programmed and run to check for range violations and 
consistency with skip logic. Site coordinators reviewed 
items failing these edit checks and made corrections to 
the database or confirmed that the data were correct 
as keyed. As data were used for analyses, efforts were 
made to correct important fields, such as those used to 
date the pregnancy and calculate the estimated gesta-
tional age. The site staff reviewed the edit requests and 
entered corrections to the data in the database.

Despite these data quality control measures, some 
errors may have persisted, and some data may remain 
out of expected ranges or otherwise not make sense. 
Investigators using the data are responsible for review-
ing fields of interest prior to conducting analyses and 
making decisions on how to handle erroneous data.

Of the 10,038 participants, 9,289 consented to release 
their anonymized data for research, and 9,127 agreed 
to release data related to their babies. The informa-
tion collected encompassed a wide range of variables, 
including demographics, psychosocial factors, dietary 
habits, physiological measurements, and pregnancy 
outcomes. Study visits were scheduled at the following 
four times during the study as displayed in Table 1:

A full description of the methods employed in the 
Nulliparous Pregnancy Outcomes Study can be found 
in the publication by Hass et al. [32].

Sample size considerations
This study utilized the nuMoM2b dataset, which ini-
tially included 10,038 nulliparous women. While tra-
ditional a priori sample size calculations were not 
applicable for this secondary analysis, we conducted 
post-hoc power analyses to ensure adequate statistical 
power for our machine learning approach.

For logistic regression-based prediction models, a 
minimum of 10 events per predictor variable (EPV) is 
generally recommended to ensure model stability and 
reliability [33]. Our final analytical sample included 
8,830 participants with 759 preterm births. The number 
of predictor variables increased across visits:

Table 1  Gestational time points of prenatal visits in the 
nuMom2B study

Visit Weeks of Gestation

Visit 1 6
0 - 136 (6 weeks and 0 days to 13 weeks and 6 days)

Visit 2 16
0 - 216(16 weeks and 0 days to 21 weeks and 6 days)

Visit 3 22
0 - 296(22 weeks and 0 days to 29 weeks and 6 days)

Visit 4 The time of delivery
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–	 Visit 1: 35 predictors (21.7 events per predictor)
–	 Visit 2 (Cumulative): 51 predictors (14.9 events per 

predictor)
–	 Visit 3 (Cumulative): 73 predictors (10.4 events per 

predictor)

All models exceeded or met the minimum recommended 
threshold of 10 EPV, indicating adequate statistical 
power. Additionally, our sample size of 8,830 partici-
pants substantially exceeds the recommended minimum 
of 2,000 participants suggested by systematic reviews for 
stable and generalizable machine learning applications in 
healthcare [34].

The detailed participant selection and variable selec-
tion process and reasons for exclusion are presented in 
the Results section.

Variables
The selection of candidate predictor variables followed a 
systematic multi-step process. Through comprehensive 
literature review [8, 26–29, 35–48], we identified estab-
lished predictors of preterm birth, including biological 
markers, specialized imaging measurements, and clini-
cal factors. While some recognized predictors (such as 
inflammatory markers Interleukin-6 in amniotic fluid, 
interleukin-1 β , and matrix metalloproteinase-8) show 
potential of strong predictive value, they were excluded 
due to their absence in the nuMoM2b database and their 
resource-intensive nature. Our final variable selection 
focused on clinically accessible predictors available in the 
database that could be readily obtained during routine 
prenatal care.

The final variable selection prioritized clinically acces-
sible predictors available within the database that could 
be easily obtained during routine prenatal care. Vari-
ables were evaluated based on multiple criteria: avail-
ability during standard prenatal visits, cost-effectiveness 
of collection, non-invasive nature of measurement, 
and demonstrated clinical relevance from literature. 
Selected variables encompassed medical history, family 
medical history, demographic information, non-invasive 

assessments, and common diagnostic measures, as 
detailed in Table  2. The choice of these variables was 
guided by considerations of feasibility and cost-effec-
tiveness, which can be collected rapidly, affordably, and 
without the need for invasive or resource-intensive pro-
cedures. Consequently, the predictive models can be 
readily applied in routine clinical practice [49].

Data preprocessing and missing data analysis
Following feature selection, comprehensive data preproc-
essing was undertaken. A thorough investigation of miss-
ing data patterns was conducted, including a detailed 
examination of data collection procedures and a review 
of dataset documentation. While many variables exhib-
ited missing data patterns without clear documentation 
explanation (categorized as missing at random, MAR), 
certain variables demonstrated systematic missingness 
attributable to specific clinical protocols.

However, the missingness of certain variables was sys-
tematic and could be attributed to specific reasons. For 
variables such as ‘Tobacco Use at Visit 1’ and ‘Vaginal 
Bleeding’ at all three visits, missing entries were assumed 
to indicate no tobacco use or no bleeding beyond spot-
ting, respectively, and were imputed accordingly. During 
data collection, a uterine artery Doppler ultrasound at 
Visit 3 was mandated only if the findings from the uterine 
artery Doppler at Visit 2 were abnormal. This protocol is 
consistent with Hofstaetter et al’s study indicating that, in 
uncomplicated pregnancies, the uterine artery Pulsatil-
ity Index (PI) does not significantly vary with gestational 
age [50]. Hence, for cases with missing data of ‘Left uter-
ine artery - Pulsatility Index at Visit 3’ and ‘Right uterine 
artery - Pulsatility Index at Visit 3’ where Visit 2 measure-
ments were normal, we imputed these missing values by 
randomly selecting from the normal PI (Pulsatility Index) 
range appropriate between 22 and 29 weeks, as reported 
in the study by Cavoretto et al. [51]. This approach was 
necessary to maintain the integrity of the dataset while 
accommodating the clinical decision-making process 
that dictates these measurements.

Table 2  Identified characteristics and variables from NuMom2B dataset

Characteristics Variables

Basic Preconception Characteristics maternal age, history of cervical excisional procedures/surgery(Loop Electrosurgical Excision Procedure 
(LEEP)/conization), height, Body Mass Index(BMI), use of assisted reproductive technologies, family disease 
history(pregnancy complications and hypertension), and family history of preterm birth

Socio-Demographic Characteristics socio-economic status, educational attainment, marital status, and ethnicity

Lifestyle Characteristics tobacco use, alcohol use, mental stress, and maternal Vitamin-D deficiency

Obstetric/Pregnancy Characteristics gestational diabetes, gestational hypertension, vaginal bleeding, serial transvaginal cervical length, and cervical 
insufficiency

Medical History Characteristics pre-pregnancy diabetes history, pre-pregnancy hypertension history and obstetric history
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Additionally, we identified that the ‘Left uterine artery 
Pulsatility Index at Visit 1’ and ‘Right uterine artery - Pul-
satility Index at Visit 1’ were missing in over 85% of the 
cases because the uterine artery Doppler assessment at 
Visit 1 was performed optionally. Given the high degree 
of missingness and the optional nature of this assess-
ment, these variables were removed from the analysis.

For other variables considered to be MAR and with 
less than 80% missing data, we employed the K-Nearest 
Neighbor (KNN) imputation method, a commonly used 
approach in clinical datasets for handling missing data 
[52]. In this method, for a given patient with missing 
records, we applied a k-value of 5, and the KNN meth-
ods identified the 5-nearest patients based on Euclidean 
distance, using the variables that were also used for the 
prediction. The missing values were replaced using a 
majority vote for discrete variables and weighted means 
for continuous features, drawing from the records of 
these nearest patients [53, 54]. Imputation was conducted 
once across each training dataset prior to variable extrac-
tion for each visit. To validate the integrity of our imputa-
tion, we compared the performance of tree-based models 
on both the original and imputed datasets, observing no 
significant difference in model performance (AUC score) 
with a P-value of 0.604. This result confirms the efficacy 
of our imputation approach, as it maintained consistent 
predictive performance across datasets.

Model development and reporting
This study follows the Transparent Reporting of a mul-
tivariable prediction model for Individual Prognosis Or 
Diagnosis (TRIPOD) guidelines [55]. We developed and 
validated prediction models for preterm birth using three 
datasets corresponding to different prenatal visits. The 
model development process included predictor selection, 
handling of missing data, and assessment of model per-
formance through both discrimination and calibration 
metrics.

Model training and testing
To establish predictive models, five-fold cross-validation 
was applied to avoid overfitting. For the five-fold cross-
validation, samples (corresponding to pregnant women) 
were randomly split into five groups of similar size. The 
model was trained and validated on four parts and tested 
on the remaining part. This procedure was repeated 
five times on each set of four groups [27]. The size of 
the five groups were 1797, 1814, 1726, 1787, and 1707, 
respectively.

Elastic net regularized logistic regression models were 
used to predict preterm birth after the standardization 
of the numerical variables. The elastic net regularized 

logistic regression model is a practical supervised 
machine learning algorithm combining least absolute 
shrinkage and selection operator (LASSO) regression 
and Ridge regression with a good probabilistic interpre-
tation of variables suitable for disease prediction [56]. 
The LASSO penalty selected variables by reducing the 
absolute value of the weight, while the Ridge penalty by 
further reducing the extremities of weights. Details of the 
method can be found in the publication by Zou et al. [57].

Two important parameters for the elastic net regres-
sion model were used, including α (representing the 
weight of the penalty) and � (representing the complex-
ity of the penalty). In this model, α controls the balance 
between LASSO and Ridge, with α =1 corresponding to 
the LASSO (the default estimator) and α =0 correspond-
ing to Ridge regression [58]. To select the proper parame-
ters for the model, we tested α from 0 to 1 with a step size 
of 0.1, as well as the inverse of the regularization strength 
from 0.001 to 100. We then used 70%−30% training-val-
idating datasets to select optimal α and � coefficients for 
elastic net regression models in seek of maximum of the 
receiver operating characteristics curve (AUC) scores for 
validation datasets, and in order to achieve optimal effi-
ciency of the model.

Model performance analysis
Discrimination metrics
In this study, the average AUC scores and the pooled per-
formance metrics over 5 test datasets, including the AUC 
scores, accuracy, sensitivity, and specificity with the test 
datasets were used to evaluate the model performance 
[28, 38, 59]. In pooling, the predictions made in each 
cross-validation round were pooled into one set and one 
ROC curve was drawn and one AUC score was calculated 
from it [60]. This procedure was applied to the datasets 
at the three visits by training using only features available 
at each time point, and then the performances of mod-
els were compared to assess the predictive capability of 
models at different visits.

To assess the statistical significance of performance dif-
ferences between models at different visits, we employed 
DeLong’s test for paired ROC curves [61]. This test was 
chosen as it accounts for the correlated nature of the 
ROC curves, given that they were derived from the same 
population [62]. To control for multiple comparisons 
across the three visit-specific models, we applied Bon-
ferroni correction (adjusted significance level α = 0.017) 
[63].

All statistical analyses were performed using R ver-
sion 4.2.3, with the pROC package for ROC analysis and 
DeLong’s test [64], and the caret package for cross-vali-
dation procedures [65].
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Calibration assessment
To assess the calibration of our prediction models, 
we examined the agreement between predicted prob-
abilities and observed outcomes. We evaluated calibra-
tion through multiple metrics: calibration-in-the-large, 
calibration slope, and calibration plots. Calibration-in-
the-large measures the agreement between the mean 
predicted probability and the observed event rate. The 
calibration slope, obtained by regressing the observed 
outcomes on the predicted probabilities, indicates 
whether predictions are systematically too extreme (slope 
< 1) or too modest (slope > 1). We created calibration 
plots by grouping predictions into deciles and compar-
ing the mean predicted probability with the observed 
proportion of events in each group, with 95% confi-
dence intervals calculated using the standard error of the 
observed proportions.

Results
Of the 10,038 women initially enrolled in the nuMoM2b 
study, 749 were excluded due to missing risk factor 
data. Among the remaining 9,289 women with available 
data, 438 were excluded (432 with no record of birth 
type, 4 with live births but incomplete records, and 2 
with stillbirths but incomplete records). An additional 

21 participants were excluded due to having more than 
80% missing data, which primarily included cases of 
early pregnancy loss or very early preterm births where 
subsequent visit data could not be collected. This sys-
tematic filtering process resulted in a final analytical 
sample of 8,830 women (8,071 with full-term births 
and 759 with preterm births) who had sufficient data 
through delivery. The flow of data inclusion/exclusion is 
displayed in Fig. 1.

Among all variables, 35 variables were available at the 
first visit, 51 variables were available at the second visit, 
and 73 variables were available at the third visit.

At the first visit, the basic information (dataset B) was 
collected, including poverty level, ethnicity, pre-gesta-
tional diabetes, obesity level, marital status, and educa-
tional level. Additionally, we have basic measurement 
variables (including questionnaires and surveys) such as 
BMI, vaginal bleeding, smoking, stress level, gestational 
diabetes diagnosis and hypertension diagnosis measured 
at all three visits (dataset T1, T2, and T3). Subsequently, 
at the second and third visits the data was enriched with 
ultrasound measurements (dataset U2 and U3).

An overview of the datasets is presented in Table 3.
In our study, to answer our research questions, we 

used several comprehensive datasets composed of 

Fig. 1  A flow of data inclusion/exclusion
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dataset B, T1, T2, T3, U2, and U3, as showcased in 
Table  4. We first looked into prediction on the three 
datasets 1, 2, and 3 in Model performance is improved 
when data from later prenatal visits were added sec-
tion, studied the most influential variables in the pre-
diction in Analysis of key variable contributions across 
three prenatal visit datasets  section, and investigated 
the prediction performance for the severity of preterm 
birth in Sensitivity analysis on subgroups of preterm 
birth section. In Model prediction on test datasets with 
only updated information  section we investigated the 
need of updating information during visits where we 
focused on the other data sets mentioned in Table 4.

We evaluated the predictive performance of models 
using AUC scores derived from 5-fold cross-validation 
on datasets that contained data from different prenatal 
visits. This assessment was followed by a comprehensive 

analysis of pooled performance metrics, including AUC 
scores, accuracy, sensitivity, and specificity.

Model performance is improved when data from later 
prenatal visits were added
Discrimination performance
The summary of model performance across the three 
gestational periods for the three datasets 1, 2, and 3 
(listed in Table 4) is detailed in Table 5, and the pooled 
ROC curves for these datasets are presented in Fig. 2.

The training dataset performance showed progressive 
enhancement, with AUC scores increasing from 0.6512 
(SD: 0.0122) at Visit 1 to 0.6731 (SD: 0.0137) at Visit 2, 
and reaching 0.7393 (SD: 0.0094) at Visit 3. This pattern 
was similarly reflected in the validation datasets, where 
AUC scores improved from 0.6142 (SD: 0.0215) at Visit 1 
to 0.6444 (SD: 0.0202) at Visit 2, and 0.7156 (SD: 0.0124) 
at Visit 3. Most importantly, the test dataset results con-
firmed this trend, with AUC scores of 0.6157 (SD: 0.0217) 
at Visit 1, improving to 0.6423 (SD: 0.0137) at Visit 2, 
and achieving the highest performance of 0.7084 (SD: 
0.0219) at Visit 3. This progression suggests that predic-
tive ability substantially increases as more comprehensive 
gestational data becomes available, particularly by the 
information collected in the third visit.

Table 3  Data collection strategy across three prenatal visits

Dataset Variables included

B poverty, race, pre-gestational diabetes diagnosis, marital status, education, obesity level

T1 basic measurements at Visit 1: BMI, vaginal bleeding, smoking habits, stress level, gestational diabetes, hypertension

T2 basic measurements Visit 2: weight, BMI, smoking status, vaginal bleeding, gestational diabetes, hypertension

T3 basic measurements at Visit 3: weight, BMI, smoking status, vaginal bleeding, gestational diabetes, hypertension

U2 Ultrasound measurements at Visit 2: cervical length and Pulsatility Index

U3 Ultrasound measurements at Visit 3: cervical length and Pulsatility Index

Table 4  Dataset composition across prenatal visits

Dataset V1 and Dataset U1 are actually identical, containing the same set of basic information variables and basic measurement variables from Visit 1

Dataset Data composition Dataset composition

Dataset 1 all data available at Visit 1 B + T1

Dataset 2 all data available at Visit 2 B + T1 + T2 + U2

Dataset 3 all data available at Visit 3 B + T1 - 3 + U2 + U3

Dataset V1 basic information + basic measurements at Visit 1 B + T1

Dataset V2 basic information + basic measurements at Visit 2 B + T2

Dataset V3 basic information + basic measurements at Visit 3 B + T3

Dataset U1 basic information + basic measurements at Visit 1 B + T1

Dataset U2 basic information + basic measurements at Visit 2 + ultrasound measurements 
at Visit 2

B + T2 + U 2

Dataset U3 basic information + basic measurements at Visit 3 + ultrasound measurements 
at Visit 3

B + T3 + U 3

Table 5  AUC scores at varied gestational time points

Training dataset Validation dataset Test dataset

Dataset 1 0.6512± 0.0122 0.6142± 0.0215 0.6157± 0.0217

Dataset 2 0.6731± 0.0137 0.6444± 0.0202 0.6423± 0.0137

Dataset 3 0.7393± 0.0094 0.7156± 0.0124 0.7084± 0.0219
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In Fig. 2, we present the pooled ROC curve formed by 
merging the five test sets from the cross-validation and 
computing their combined ROC curve for each dataset. 
It provides a visual representation of these improve-
ments, showing significant increases in AUC from the 
dataset with information from the first prenatal visit to 
the dataset with information from the first and the sec-
ond prenatal visits and subsequently to the dataset with 
information from all three prenatal visits. The result 
showed that when data from Visit 2 and Visit 3 were 
added, the predictive ability substantially improved 
according to a notable increase in AUC scores. The pro-
gression in model performance with the inclusion of later 
prenatal visit data suggested a direct correlation between 
the quantity of gestational data and the predictive accu-
racy of prenatal assessments.

To formally assess the statistical significance of these 
performance differences between visits, we conducted 
DeLong’s test for paired ROC curves. The analysis con-
firmed significant improvements in discriminative abil-
ity across visits. The improvement from Visit 1 (AUC = 
0.6161) to Visit 2 (AUC = 0.6425) was significant (dif-
ference = 0.026, 95% CI: 0.009–0.040, Z = −3.059, p = 
0.002). The Visit 3 model (AUC = 0.7087) demonstrated 

the strongest performance, significantly outperform-
ing both the Visit 1 model (difference = 0.093, 95% CI: 
0.071–0.112, Z = −8.624, p < 0.001) and Visit 2 model 
(difference = 0.066, 95% CI: 0.048–0.086, Z = −6.900, p 
< 0.001). These progressive improvements in AUC scores 
were statistically significant even after applying Bonfer-
roni correction for multiple comparisons (adjusted sig-
nificance level α = 0.017), indicating robust enhancement 
in model performance with the addition of data from 
later prenatal visits.

A more comprehensive model performance analysis 
was conducted based on various performance metrics. 
We optimized the predictive threshold using the Youden 
Index [66], a widely recognized method for establishing 
the optimal cutoff for labeling predictions by maximizing 
the difference between the true positive rate (sensitivity) 
and the false positive rate (1 - specificity), followed by an 
assessment of accuracy, sensitivity, and specificity, with 
95% confidence interval. Table  6 shows in more detail 
what change in predictive power occurs as more prenatal 
data becomes available across later visits.

Further examination of multiple performance metrics 
revealed important insights into the models’ predictive 
capabilities (Table  6). The overall AUC scores showed 

Fig. 2  Pooled ROC curves formed by merging the 5 test folds on 3 datasets



Page 9 of 25Huang et al. BMC Pregnancy and Childbirth          (2024) 24:843 	

steady improvement from 0.6161 at Visit 1 to 0.6425 at 
Visit 2, and ultimately reaching 0.7087 at Visit 3. The 
accuracy metrics showed an interesting pattern: start-
ing at 63.14% (95% CI: 62.13–64.14%) in Visit 1, decreas-
ing to 53.53% (95% CI: 52.49–54.57%) in Visit 2, before 
improving to 66.52% (95% CI: 65.54–67.51%) in Visit 3. 
This temporary decrease in accuracy at Visit 2 can be 
explained by examining the sensitivity and specificity 
trade-offs. The sensitivity improved markedly from Visit 
1 (57.31%, 95% CI: 53.79–63.68%) to Visit 2 (69.30%, 
95% CI: 66.02–72.58%), though this came at the cost of 
reduced specificity (from 63.68%, 95% CI: 60.17–64.37% 
to 52.05%, 95% CI: 48.77–53.14%). By Visit 3, the model 
achieved a better balance, with sensitivity of 63.24% (95% 
CI: 59.81–66.67%) and specificity of 66.83% (95% CI: 
63.40–67.86%), resulting in the highest overall accuracy.

Model calibration analysis
We assessed the calibration of our prediction models 
through several metrics. All three models accurately pre-
dicted the overall preterm birth rate of 8.6%, with zero 
calibration-in-the-large, indicating excellent population-
level calibration. However, the calibration slopes (Data-
set 1: 8.69, Dataset 2: 9.27, Dataset 3: 8.31) suggest that 
the models are under-confident in their predictions, with 
true probabilities changing more rapidly than predicted 
probabilities.

The range of predicted probabilities broadened across 
visits, with Dataset 3 showing the widest range (1.1% to 
85.1%) compared to Dataset 1 (4.1% to 49.4%) and Data-
set 2 (1.7% to 64.4%). This pattern suggests that later vis-
its enable more confident risk stratification, consistent 
with our discrimination analysis. The calibration plots 
(Fig.  3) demonstrate that while the models effectively 
rank patients by risk (as evidenced by the positive slopes), 
they tend to compress predictions toward the population 
mean, particularly for high-risk cases.

These findings indicate that while our models excel at 
risk stratification and maintain accurate population-level 

predictions, the individual predicted probabilities should 
be interpreted as relative rather than absolute risk 
indicators.

Analysis of key variable contributions across three prenatal 
visit datasets
In Fig.  4, 10 variables with the highest absolute average 
coefficient values, that contributed the most to the pre-
diction model, are visualized for the datasets 1, 2, and 3. 
For the categorical variables named ‘Assisted reproduc-
tion’, ‘Vaginal bleeding’, ‘Cervical surgery - LEEP(loop 
electrosurgical excision procedure)’, ‘Hypertension condi-
tion’, ‘Diabetes condition’(excluding gestational diabetes), 
‘Tobacco use’, and ‘PreGestDM’(Pre-gestational diabetes). 
The value ‘1’ indicates a ‘Yes’ response, affirming the pres-
ence of the condition or utilization of a service, whereas 
‘2’ indicates a ‘No’ response, signifying the absence of the 
condition or non-utilization of the service.

Among all the information from the first prenatal visit, 
diagnosed diabetes at Visit 1(excluding previous ges-
tational diabetes), Pre-gestational diabetes and hyper-
tension at Visit 1 contributed most to the prediction of 
preterm birth. The history of previous cervical surgery 
as LEEP and Cone both showed positive associations, 
as well as the use of assisted reproduction and the use 
of tobacco in the last month before Visit 1. Also ‘Non-
Hispanic Black’ as a demographic variable with a positive 
coefficient, suggests a higher risk of preterm birth within 
this subgroup.

Continuing through dataset 2, consistency showed in 
pre-gestational diabetes, diagnosed diabetes (excluding 
previous gestational diabetes), hypertension, LEEP sur-
gery, the use of assisted reproduction, vaginal bleeding 
at Visit 1, and the use of tobacco in the last month before 
Visit 1 suggested a continued influence of these conditions 
throughout the pregnancy. The ‘Cervical length at Visit 
2’, with a negative coefficient, indicated a shorter cervical 
length related to preterm birth risk. The conditions of dia-
betes and hypertension at Visit 1 persisted as risk factors.

Upon including the third visit data, the ‘Cervical length 
at Visit 3’ presented with a large negative coefficient, and 
‘Vaginal bleeding at Visit 3’ was positively correlated with 
preterm birth, increasing the predicted risk during the 
later stages of pregnancy. Pre-gestational diabetes, diag-
nosed diabetes (excluding previous gestational diabe-
tes), hypertension, LEEP surgery, and the use of assisted 
reproduction continued to be significant contributors to 
preterm birth risk.

Sensitivity analysis on subgroups of preterm birth
The World Health Organization defines preterm birth 
as delivery before 37 completed weeks of gestation and 

Table 6  Pooled performance metrics on datasets 1, 2, and 3 
with 95% confidence intervals

Dataset 1 Dataset 2 Dataset 3

AUC Scores 0.6161 0.6425 0.7087

Accuracy 0.6314 0.5353 0.6652

[0.6213, 0.6414] [0.5249, 0.5457] [0.6554, 0.6751]

Sensitivity 0.5731 0.6930 0.6324

[0.5379, 0.6368] [0.6602, 0.7258] [0.5981, 0.6667]

Specificity 0.6368 0.5205 0.6683

[0.6017, 0.6437] [0.4877, 0.5314] [0.6340, 0.6786]
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further classifies preterm birth into subcategories based 
on gestational age [67]. These classifications are crucial 
for understanding the variability in outcomes and tailor-
ing interventions accordingly. Table 7 outlines these sub-
categories, and Fig. 5 displays the distribution of patients 
across these groups.

Table 8 provides a detailed examination of the pooled 
sensitivity with a 95% confidence interval of our predic-
tive models for each preterm birth subgroup across three 
datasets.

The most striking performance was observed for 
extreme preterm birth (delivery before 28 weeks), 
where sensitivity improved progressively across data-
sets: from 69.57% (95% CI: 64.03–75.11%) in Dataset 
1 to 76.81% (95% CI: 71.73–81.89%) in Dataset 2, and 
reaching its highest at 92.95% (95% CI: 89.83–96.07%) 
in Dataset 3. This exceptionally high sensitivity in Data-
set 3 is particularly meaningful given the critical nature 
of extreme preterm births. This exceptionally high sen-
sitivity in Dataset 3 can be explained by the proxim-
ity of Visit 3 to the delivery date for extreme preterm 
births; consequently, the data collected during this 
visit are more indicative of the imminent occurrence of 

preterm birth. This high sensitivity is particularly cru-
cial as extreme preterm births require the most urgent 
and intensive care.

Very preterm births (28–32 weeks) showed similarly 
robust detection rates, with sensitivity starting at 71.43% 
(95% CI: 65.74–77.12%) in Dataset 1, reaching its peak of 
84.13% (95% CI: 79.53–88.73%) in Dataset 2, and main-
taining strong performance at 82.54% (95% CI: 77.76–
87.32%) in Dataset 3.

For moderate preterm births (32–34 weeks), the model 
showed more modest but still meaningful sensitivity. 
Starting at 53.51% (95% CI: 48.84–58.18%) in Dataset 1, it 
improved substantially to 69.30% (95% CI: 64.98–73.62%) 
in Dataset 2, before slightly decreasing to 64.91% (95% 
CI: 60.44–69.38%) in Dataset 3.

Late preterm births (34–37 weeks) proved the most 
challenging to predict, with sensitivity ranging from 
54.78% (95% CI: 52.58–56.98%) in Dataset 1 to a peak 
of 66.47% (95% CI: 64.39–68.55%) in Dataset 2, before 
declining to 56.53% (95% CI: 54.34–58.72%) in Dataset 3.

When considering general preterm birth prediction (all 
categories combined), the model achieved moderate sen-
sitivity levels: 57.31% (95% CI: 53.79–63.68%) in Dataset 

Fig. 3  Calibration plots for preterm birth prediction models across three datasets. The plots show the relationship between predicted probabilities 
and observed proportions of preterm birth for models based on (A) Dataset 1, (B) Dataset 2, and (C) Dataset 3. The dashed diagonal line represents 
perfect calibration, a hypothetical scenario where the predicted probabilities of preterm birth exactly match the observed proportions. Points 
represent deciles of predicted risk, with vertical bars indicating 95% confidence intervals. Point size is proportional to the number of patients in each 
group. While all models maintain accurate overall prediction of preterm birth rate (8.6%), they tend to compress predictions toward the population 
mean, particularly for high-risk cases. Dataset 3 model shows the widest range of predictions (1.1% to 85.1%), suggesting improved risk stratification 
at later visits
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1, improving to 69.30% (95% CI: 66.02–72.58%) in Data-
set 2, and maintaining 63.24% (95% CI: 59.81–66.67%) in 
Dataset 3.

Model prediction on test datasets with only updated 
information
To determine whether updates to Electronic Health 
Records (EHR) or the addition of new measurements, 
such as Pulsatility Index and cervical length, enhance 
model performance, we analyzed datasets with these 
updates. Basic information variables including poverty, 
race, pre-gestational diabetes diagnosis, marital sta-
tus, education, and obesity level were utilized along-
side updated variables from three prenatal visits-BMI, 
diabetes and hypertension diagnoses, smoking habits, 
and vaginal bleeding. These analyses were structured 

Fig. 4  Contribution of the top ten most contributing variables in the prediction models for datasets 1, 2 and 3

Table 7  Sub-categories of preterm birth based on gestational 
age

Sub-category Gestational age at delivery

Extreme Preterm Birth Less than 28 weeks

Very Preterm Birth 28 to 32 weeks

Moderate Preterm Birth 32 to 34 weeks

Late Preterm Birth 34 to 37 weeks
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into two inside-group modeling comparisons: three 
updated datasets with updated basic measurements 
(Datasets V1, V2, and V3), and three updated data-
sets with both basic and ultrasound measurements 
included at Visit 2 and Visit 3 (Dataset U1, U2, and 
U3), see Table 4 in Results section, and Tables 10 and 
11 in the Appendix C.

We trained the elastic net regularized logistic regres-
sion model on these datasets and the pooled ROC 
curves for 3 test datasets are shown in Fig.  6. The 
results revealed that mere updates to BMI, smoking 
habits, and diagnoses alone slightly improved the AUC 
scores, indicating minimal enhancement in predictive 
performance by these factors alone.

However, introducing ultrasound measurements in 
Datasets 2T and 3T, updated from the second and third 
visits respectively, showed a marked improvement in 
model performance. As displayed in Fig.  7, the AUC 
scores for Datasets 2U and 3U closely match those of 
Datasets 2 and 3. This demonstrates that while updates 
to general patient information (such as BMI, smoking 
habits, and diagnoses) provide minimal improvement, 
the addition of new ultrasound measurements, particu-
larly cervical length and Pulsatility Index, substantially 
enhances the predictive capability of the model.

These findings suggest that to significantly improve 
the model’s predictive performance, it is crucial to 
update ultrasound measurements during subsequent 
visits. In contrast, updating general patient information 
alone may not be sufficient to meaningfully enhance the 
model’s accuracy in predicting preterm birth.

Discussion
Our study demonstrates that predictive assessments for 
preterm birth are most effective at Visit 3 (22–29 gesta-
tional weeks), with AUC improving from 0.6161 at Visit 
1 to 0.7087 at Visit 3. This performance is comparable 
to or exceeds previous large-scale studies. Weber et al. 
[27], using multiple machine learning methods on 2+ 
million patient records, achieved AUCs of 0.62–0.63 for 
individual racial-ethnic groups and 0.67 for combined 
groups. Similarly, Koivu et al. [42], employing state-of-
the-art machine learning algorithms (including neural 
networks and gradient boosting) on nearly 16 million 
observations, reported an AUC of 0.64 for preterm 

Fig. 5  Number of patients on subgroups of preterm birth

Table 8  Pooled sensitivity of model prediction on subgroups of 
preterm birth

Subgroup/
Sensitivity

Dataset 1 Dataset 2 Dataset 3

Extreme Preterm 
Birth

0.6957 0.7681 0.9295

[0.6403, 0.7511] [0.7173, 0.8189] [0.8983, 0.9607]

Very Preterm Birth 0.7143 0.8413 0.8254

[0.6574, 0.7712] [0.7953, 0.8873] [0.7776, 0.8732]

Moderate Preterm 
Birth

0.5351 0.6930 0.6491

[0.4884, 0.5818] [0.6498, 0.7362] [0.6044, 0.6938]

Late Preterm Birth 0.5478 0.6647 0.5653

[0.5258, 0.5698] [0.6439, 0.6855] [0.5434, 0.5872]

General Preterm 
Birth

0.5731 0.6930 0.6324

[0.5379, 0.6368] [0.6602, 0.7258] [0.5981, 0.6667]
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birth prediction. While both studies utilized substan-
tially larger datasets and more complex algorithms, our 
model achieved better performance using only readily 
available clinical measurements and ultrasound data at 
Visit 3, suggesting that the timing and type of clinical 
data may be more crucial than sample size or computa-
tional complexity.

Our study’s principal finding displays that predictive 
assessments for preterm birth are most effective when 
initiated from Visit 3, where prenatal data between 22 
and 29 gestational weeks are available. While the AUC 
scores show improvements, ranging from 0.6161 at the 
first visit to 0.6425 at the second visit, the most sub-
stantial leap is observed from the first to the third visit, 
reaching 0.7087. Similarly, model accuracy improves 
from 0.6314 at the first visit to 0.6652 at the third visit, 
accompanied by a rise in sensitivity from 0.5731 at 
the first visit to 0.6324 at the third visit and a rise in 
specificity from 0.6368 at the first visit to 0.6683 in the 
third visit. These findings suggest that while early pre-
diction attempts at Visit 1 and Visit 2 provide valuable 
insights, the optimal gains in predictive performance-
balancing sensitivity and specificity-are achieved by 
including data up to Visit 3. Therefore, our results 
suggest initiating predictive assessments from Visit 
3 when prenatal data between 22 and 29 gestational 

weeks is available, enhancing both the reliability and 
accuracy of the predictions.

In the analysis of key variables, those contributed most 
to the prediction can be explained and aligned with the 
other research results [68–92]. Throughout the three pre-
natal visits, tobacco use was a consistent risk factor for 
preterm birth, despite the low coefficient of the smoke-
less tobacco use in some fold due to over sparsity – only 3 
patients reported their use of smokeless tobacco. Tobacco 
is by far the most extensively evaluated behavior related 
influence on preterm birth [68]. Maternal smoking during 
pregnancy was associated with a 1.27(95%CI 1.21–1.33) 
times increased risk for preterm birth [69]. Fortunately, 
studies show that smoking cessation in early pregnancy 
can reduce this risk, emphasizing the critical need for 
healthcare interventions and policy support to aid smok-
ing cessation and protect against second-hand smoke [70]. 
Chronic conditions such as diabetes and hypertension 
were also linked to increased preterm birth risk [71–75], 
reinforcing the need for ongoing management in pregnant 
populations. ‘Assisted reproduction’ and ‘Cervical surgery 
- LEEP’ were also identified as influential factors across 
the prenatal timeline. Assisted reproductive technologies 
significantly correlate with preterm birth incidences, even 
in singleton births [76, 77]. The predictive value of cervical 
length measurements in forecasting preterm birth aligns 

Fig. 6  Pooled ROC curves for model prediction on 3 test datasets with basic measurements updated
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closely with existing medical literature. Research demon-
strates that changes in cervical length, particularly cervical 
shortening, can be detected via ultrasound several weeks 
prior to delivery: for term births, this change is typically 
observable around 32 weeks of gestation. However, for 
preterm births, cervical shortening may be detected as 
early as 16 to 24 weeks [78]. Research indicates that cer-
vical procedures like LEEP can predispose to preterm 
delivery, potentially due to cervical shortening and local 
immunological changes post-surgery [79–83]. As for vagi-
nal bleeding, its association with an increased risk of pre-
term delivery might be due to thrombin-induced uterine 
contractions or complications from sub-chorionic hema-
tomas leading to placental issues [84–89]. Additionally, the 
risk associated with being a non-Hispanic Black woman 
was aligned with extant studies [90–92]. The reasons for 
this disparity can be complicated, including a complex 
interaction between genetics, epigenetics, microbiome, 
and sociodemographic factors contributing to racial dis-
parities in preterm birth rates.

In this sensitivity analysis on subgroups of pre-
term birth, the high sensitivity for detecting very and 
extreme preterm births by Visit 3 can be explained by 
the proximity of Visit 3 to the delivery date for Extreme 
Preterm Births. Consequently, the data collected during 
this visit are more indicative of the imminent occur-
rence of preterm birth. This high sensitivity is crucial 
as extreme preterm births require the most urgent and 
intensive care [93]. The varying sensitivity across differ-
ent preterm birth categories indicates the importance 
of tailored model development and validation for spe-
cific clinical scenarios. The high sensitivity for extreme 
preterm birth (92.95%, 95% CI: 89.83–96.07%) by Visit 
3 is particularly noteworthy, as early detection of these 
cases carries the most significant clinical implica-
tions. This performance characteristic suggests poten-
tial utility in prioritizing preventive interventions for 
the highest-risk cases, though the lower sensitivity for 
late preterm birth indicates room for improvement in 
detecting less severe cases.

Fig. 7  Pooled ROC curves for model prediction on 3 test datasets with basic and ultrasound measurements updated
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Comparing the model performance on datasets of 
successive data and updated data, we find that utilizing 
basic information variables, basic measurement vari-
ables, and ultrasound measurement variables collected 
during this visit, without the necessity to integrate data 
from the first two visits, is enough to predict preterm 
birth. The integration of ultrasound measurements, 
particularly cervical length and Pulsatility Index, at 
later visits substantially improved the model’s efficacy. 
This supports our recommendation for routine ultra-
sound evaluations at later prenatal visits to ensure 
optimal prediction and preparedness for preterm birth 
scenarios.

Utilizing logistic regression with elastic net regulari-
zation, we combined demographic, lifestyle, obstetric, 
and medical history data to enhance our model’s pre-
dictive precision. This approach proved advantageous 
over more complex models by maintaining interpret-
ability and ease of use, crucial for clinical decision-
making [94, 95].

Our study had several strengths. We considered only 
the variables that are easy to obtain, thus contributing 
to a reduction in unnecessary resource use. Some stud-
ies have used variables with higher cost, for example, Ngo 
et  al. used serum biomarkers [96], and Dabi et  al. used 
acute obstetric changes within days of delivery [97]. We 
excluded invasive sampling variables, and focused on 
ones that are easier and cheaper to get. With the perfor-
mance of our models on the data available at the third 
visit, we illustrate the potential of a broader practice of 
cost-efficient variables.

Besides, our model is based on classic logistic regres-
sion, which is easier to interpret than deep learning 
methods. While deep learning models, as explored in 
Chakoory et al.’s study [98], may offer an efficient preterm 
birth prediction, they often require complex explana-
tions, such as those provided by SHAP values, to make 
their outcomes comprehensible. The transparency of our 
logistic regression models facilitates healthcare delivery 
by providing interpretable outcomes essential for justify-
ing clinical decisions [94, 95].

We also examined the model performance on the dif-
ferent subgroups of preterm birth, and the varying sen-
sitivity across different preterm birth categories indicates 
the importance of tailored model development and vali-
dation for specific clinical scenarios.

However, important limitations must be acknowl-
edged. NuMom2B dataset not only focused on nul-
liparous mothers with singleton pregnancy, but also 
excluded certain cases, for instance, patients with a 
history of three or more spontaneous abortions and 
patients with multifetal pregnancy reduction are 
excluded from the database [32], which means this 

selection may limit generalizability to broader popu-
lations. Future research will aim to broaden the scope 
and sample size to enhance the generalization of our 
models.

For now, our model performed well in distinguishing 
general preterm birth from full-term birth. However, its 
performance across specific subgroups of preterm birth 
varies significantly. This variation showcases the neces-
sity for developing personalized strategies tailored to 
these subgroups [31]. By developing more nuanced pre-
dictive models, we can better understand diverse clini-
cal scenarios associated with different stages of preterm 
birth. Such targeted models not only help in crafting 
personalized treatment strategies but also provide the 
essential lead time needed for effective therapeutic inter-
ventions. The final models, including detailed coefficients 
and implementation guidelines, are provided in the 
Appendix materials for reference and potential applica-
tion in clinical settings.

From a research perspective, our results open sev-
eral important avenues for future investigation. The 
differential performance across preterm birth catego-
ries suggests the need for specialized prediction mod-
els. Additionally, while our model performed well using 
only easily obtainable variables, future studies could 
investigate whether the selective addition of novel bio-
markers might improve prediction specifically for those 
subgroups where our model showed lower sensitivity, 
while maintaining the overall cost-effectiveness of the 
approach. Besides, implementation studies examin-
ing the model’s integration into clinical workflows and 
its impact on patient outcomes would provide valuable 
insights into real-world utility.

The implications of our findings extend beyond pre-
dictive modeling. First, the model’s high sensitivity for 
extreme preterm birth (92.95% at Visit 3) suggests that 
implementing this prediction tool during the 22–29 
week visit could help clinicians identify patients requir-
ing intensive monitoring and early interventions. This 
timing aligns with critical clinical decision points, 
such as the administration of antenatal corticosteroids 
and the arrangement of maternal transfer to facilities 
with appropriate neonatal care capabilities. Second, 
our finding that current visit data alone can achieve 
strong predictive performance has practical implica-
tions for clinical workflow, suggesting that clinicians 
can make risk assessments using immediately available 
information rather than requiring extensive histori-
cal data compilation. Third, the substantial improve-
ment in model performance with the integration of 
ultrasound measurements, particularly cervical length 
and Pulsatility Index, emphasizes the importance of 
routine ultrasound evaluations during prenatal visits. 
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This finding supports current clinical guidelines rec-
ommending ultrasound screening and suggests that 
these measurements, when combined with other read-
ily available clinical data, can significantly enhance 
preterm birth risk assessment without requiring more 
invasive or costly testing.

Conclusions
Our study applies elastic net regularized logistic regres-
sion to predict preterm birth, focusing on easy-to-obtain 
variables, and emphasizing the significant benefits of 
incorporating different prenatal data from later visits. 
Our study demonstrates that predictive assessments for 
preterm birth are most effective at Visit 3 (22–29 gesta-
tional weeks), with AUC improving from 0.6161 at Visit 
1 to 0.7087 at Visit 3. This performance is comparable to 
or exceeds previous large-scale studies. Weber et al. [27], 
using multiple machine learning methods on 2+ million 
patient records, achieved AUCs of 0.62–0.63 for individ-
ual racial-ethnic groups and 0.67 for combined groups. 
Similarly, Koivu et  al. [42], employing state-of-the-art 
machine learning algorithms (including neural networks 
and gradient boosting) on nearly 16 million observations, 
reported an AUC of 0.64 for preterm birth prediction. 
While both studies utilized substantially larger datasets 
and more complex algorithms, our model achieved better 
performance using only readily available clinical meas-
urements and ultrasound data at Visit 3, suggesting that 
the timing and type of clinical data may be more crucial 
than sample size or computational complexity.

By analyzing data across three prenatal periods, we 
observed that the inclusion of data from the third visit 
enhances model performance, with stable improve-
ments evident in both sensitivity and specificity met-
rics, indicating that from Visit 3, we can start predicting 
preterm birth. Moreover, with data solely from the 
third visit, our model achieves comparable predictive 
accuracy to models utilizing data from all three visits. 
Notably, the integration of ultrasound measurements 
such as cervical length and the Pulsatility Index sig-
nificantly bolstered the model’s performance, suggest-
ing that we should include ultrasound assessments in 
late pregnancy stages to ensure optimal prediction and 
management of preterm births. The model also demon-
strates high sensitivity in accurately detecting very and 
extreme preterm births during the third visit, which 
means the positive cases of these two subgroups can 
be correctly predicted, allowing for timely and targeted 
clinical interventions, such as the administration of 
necessary medications and the arrangement of appro-
priate care settings, to help with premature deliveries.

Appendix A: Eight clinical sites
The eight clinical sites are respectively listed as follows: 
Case Western Reserve University (Site 1); Columbia Uni-
versity (Site 2); Indiana University (Site 3); Magee-Wom-
en’s Hospital (Site 4); Northwestern University (Site 5); 
University of California Irvine (Site 6); University of 
Pennsylvania (Site 7); and University of Utah (Site 8).

Fig. 8  Geography of 8 clinical centers

Table 9  nuMoM2b clinical site institutional affiliations and 
subsites

Site 1 Case Western Reserve University
Case Western Reserve University

The Ohio State University

Site 2 Columbia University
Columbia University

Christiana Care Health System

Site 3 Indiana University (no subsites)
Indiana University

Site 4 Magee-Women’s Hospital
Magee-Women’s Hospital

West Penn Allegheny Health System (quit recruit-
ing in April 2012)

Site 5 Northwestern University (no subsites)
Northwestern University

Site 6 University of California Irvine
University of California Irvine

Long Beach Memorial Medical Center

Fountain Valley Regional Medical Center

Site 7 University of Pennsylvania
University of Pennsylvania

Pennsylvania Hospital

Site 8 University of Utah
University of Utah Health Science Center

LDS Hospital (quit recruiting in January 2012)

McKay Dee Hospital

Utah Valley Regional Medical Center

Intermountain Medical Center
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Appendix B: Bayesian regression tree model
In addition to conventional regression methods, 
we explored the application of Bayesian Regression 
Tree(BART) modeling to predict preterm birth. BART 
combines the robustness of machine learning with the 
advantages of Bayesian inference, enabling a flexible fit-
ting of regression mean structures through a nonparamet-
ric sum-of-trees model. This approach also benefits from 
the Bayesian framework’s capacity for uncertainty quanti-
fication and regularization via data-calibrated priors [99].

We employed the bartMachine package in R to con-
struct the models, applying the same 5-fold cross-vali-
dation procedure used with logistic regression modeling 
approaches. The performance of these BART models 
was evaluated using pooled ROC curves, as depicted in 
Fig.  9. The results indicate that BART models, similar 
to the elastic net regularized logistic regression models, 
show improved performance with the inclusion of data 
from later prenatal visits. Although the improvement 
was not superior to that of the logistic regression mod-
els, it was consistent with the overall trend observed in 
predictive enhancements when additional prenatal data 
were integrated.

Fig. 9  Pooled ROC curves for model prediction on 3 updated test 
datasets using BART​

Appendix C: Variables used in 3.4
In Tables  10 and 11, we present two comprehensive 
lists of the variables utilized in the analysis described 
in Model prediction on test datasets with only updated 
information  section. This table provides a detailed 
overview of the predictors incorporated into our 
model, including both demographic factors and ultra-
sound measurements.

Table 10  Variables in 3 datasets with basic information variables 
and basic measurement variables updated at each prenatal visit

Dataset V1 Dataset V2 Dataset V3

Height (cm)

Marital status

Race Hispanic

Race Asian

Race Other

Race Non-Hispanic White

Race Non-Hispanic Black

BMI category at Visit 1

Number of pregnancies

Age (years) at visit 1

Age category (years) at visit 1

Education status attained

Income as % of 2013 federal poverty level

Poverty category based on income and household size

Vitamin D, mcg

Vitamin D from supplements

Pre-gestational diabetes

Assisted reproduction for this pregnancy

Previous surgeries - Cervical surgery - Cone

Previous surgeries - Cervical surgery - LEEP

Previous surgeries - Cervical surgery - Cryotherapy

Previous surgeries - Abdominal surgery excluding uterine surgery

How often do you take Stress-Tabs, B-complex?

How often do you take Vitamin D, alone, w/ calcium?

Ever used any tobacco products including cigarettes and smokeless 
tobacco?

Smoked tobacco in 3 months prior to pregnancy?

Used smokeless tobacco in 3 months prior to pregnancy?

Family history of hypertension

Family history of Spontaneous preterm delivery (<37 weeks)

Family history of Early or preterm rupture of membranes

Family history of Preeclampsia, eclampsia, toxemia or pregnancy-
induced hypertension

BMI at Visit 1 BMI at Visit 2 BMI at Visit 3

Diabetes at Visit 1 Diabetes at Visit 2 Diabetes at Visit 3

Hypertension at Visit 1 Hypertension at Visit 2 Hypertension at Visit 3

Vaginal bleeding 
until Visit 1

Vaginal bleeding 
until Visit 2

Vaginal bleeding 
until Visit 3
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Dataset V1 Dataset V2 Dataset V3

Vaginal bleeding days Vaginal bleeding days 
since Visit 1

Vaginal bleeding days 
since Visit 2

Tobacco smoke last 
month at Visit 1

Tobacco smoke last 
month at Visit 2

Tobacco use last month 
at Visit 3

Smokeless tobacco 
last month at Visit 1

Smokeless tobacco 
last month at Visit 2

Smokeless tobacco last 
month at Visit 3

Table 11  Variables in 2 datasets with ultrasound measurements 
added and updated at visit 2 and visit 3

Dataset U1 Dataset U2 Dataset U3

Height (cm)

Marital status

Race Hispanic

Race Asian

Race Other

Race Non-Hispanic White

Race Non-Hispanic Black

BMI category at Visit 1

Number of pregnancies

Age (years) at visit 1

Age category (years) at visit 1

Education status attained

Income as % of 2013 federal poverty level

Poverty category based on income and household size

Vitamin D, mcg

Vitamin D from supplements

Pre-gestational diabetes

Assisted reproduction for this pregnancy

Previous surgeries - Cervical surgery - Cone

Previous surgeries - Cervical surgery - LEEP

Previous surgeries - Cervical surgery - Cryotherapy

Previous surgeries - Abdominal surgery excluding uterine surgery

How often do you take Stress-Tabs, B-complex?

How often do you take Vitamin D, alone, w/ calcium?

Ever used any tobacco products including cigarettes and smokeless 
tobacco?

Smoked tobacco in 3 months prior to pregnancy?

Used smokeless tobacco in 3 months prior to pregnancy?

Family history of hypertension

Family history of Spontaneous preterm delivery (<37 weeks)

Family history of Early or preterm rupture of membranes

Family history of Preeclampsia, eclampsia, toxemia or pregnancy-
induced hypertension

BMI at Visit 1 BMI at Visit 2 BMI at Visit 3

Diabetes at Visit 1 Diabetes at Visit 2 Diabetes at Visit 3

Hypertension at Visit 1 Hypertension at Visit 2 Hypertension at Visit 3

Vaginal bleeding 
until Visit 1

Vaginal bleeding 
until Visit 2

Vaginal bleeding 
until Visit 3

Vaginal bleeding days Vaginal bleeding days 
since Visit 1

Vaginal bleeding days 
since Visit 2

Tobacco smoke last 
month at Visit 1

Tobacco smoke last 
month at Visit 2

Tobacco use last month 
at Visit 3

Dataset U1 Dataset U2 Dataset U3

Smokeless tobacco 
last month at Visit 1

Smokeless tobacco 
last month at Visit 2

Smokeless tobacco last 
month at Visit 3

Cervical length (mm) 
at Visit 2

Cervical length (mm) 
at Visit 3

Left uterine artery PI 
at Visit 2

Left uterine artery PI 
at Visit 3

Right uterine artery PI 
at Visit 2

Right uterine artery PI 
at Visit 3

Appendix D: Final predictive models
Table 12 presents a comprehensive list of variable labels 
and their corresponding meanings used in our study. 
These variables were employed in the logistic regression 
models developed using datasets 1, 2, and 3. The coef-
ficients presented in the Tables  13, 14 and 15 represent 
the average values obtained from these models, provid-
ing insight into the relative importance and direction of 
each predictor’s effect on the outcome. Our final logistic 
regression model uses averaged coefficients from 5-fold 
cross-validation to predict the probability of preterm 
birth. The mathematical formula for this model is as 
follows:

where P(Preterm Birth) is the probability of preterm 
birth, β̄0 is the averaged intercept, β̄1, β̄2, . . . , β̄n are the 
averaged coefficients corresponding to each predictor 
variable, and X1,X2, . . . ,Xn are the values of the predictor 
variables. These averaged coefficients are obtained from 
the 5-fold cross-validation process. This model allows us 
to estimate the risk of preterm birth based on the com-
bination of demographic factors, medical history, and 
ultrasound measurements collected across multiple vis-
its. Depending on the extent of data collected up to Visit 
1, 2, or 3, the appropriate coefficients can be retrieved 
from the corresponding coefficient tables (Tables 13, 14, 
and 15, respectively). This flexibility allows for dynamic 
risk assessment as more information becomes available 
throughout the course of prenatal care, potentially ena-
bling more timely and targeted interventions.

Table 12  Variable names and their meanings

Variable name Variable meaning

PreGestDM Pre-gestational diabetes

V1AD12b Previous surgeries - Cervical surgery 
- LEEP

S02C01 Assisted reproduction for this 
pregnancy

AgeCat_V1 Age category

(1)

P(Preterm Birth) =
1

1+ e−(β̄0+β̄1X1+β̄2X2+...+β̄nXn)
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Variable name Variable meaning

Crace_1 Non-Hispanic White

Crace_2 Non-Hispanic Black

Crace_3 Hispanic

Crace_4 Asian

Crace_5 Other

V1AD12e Previous surgeries - Abdominal 
surgery excluding uterine surgery

V1AD12c Previous surgeries - Cervical surgery 
- Cryotherapy

V1AD12a Previous surgeries - Cervical surgery 
- Cone

V2AE06e Have any of your biological mother, 
sisters, half-sisters, or female first 
cousins ever had pregnancy com-
plications - Preeclampsia, eclampsia, 
toxemia or pregnancy induced 
hypertension

Education Education

V2AE06d Have any of your biological mother, 
sisters, half-sisters, or female first 
cousins ever had pregnancy com-
plications - Early or preterm rupture 
of the membranes

Height Height

BMI BMI Category

V1AG05 Did you smoke any tobacco 
products in the three months prior 
to this pregnancy?

PctFedPoverty Income as a percentage of 2013 
federal poverty level

Age_at_V1 Age

poverty Poverty category

VITAMINDAMOUNT How often do you take Vitamin D, 
alone, w/ calcium?

V1AF04 What is your current marital status?

V1AE01 Including this pregnancy, how many 
times have you been pregnant - 
Number of pregnancies

VITD_MCG Vitamin D, mcg

SUP_VITD Vitamin D from supplements

VXXB01aa_V1a Medical conditions or diagnoses, 
High blood pressure (hypertension) 
- Condition noted, Visit 1

VXXB01ae_V1a Medical conditions or diagnoses, 
Diabetes (excluding gestational 
diabetes in a prior pregnancy) - 
Condition noted, Visit 1

V1AG07 (At Visit 1) Did you smoke any 
tobacco products in the last month?

V1AD08 (At Visit 1) Since you became preg-
nant, have you had vaginal bleeding 
more than spotting?

BMI_Cat BMI Category

V1AG10 (At Visit 1) In the last month, did 
you use smokeless tobacco (chew 
or snuff )?

STRESSTABSAMOUNT How often do you take Stress-Tabs, 
B-complex?

Variable name Variable meaning

V1AD08a (At Visit 1) Since you became preg-
nant, have you had vaginal bleeding 
more than spotting?

V1AG06 (At Visit 1) In the three months 
prior to this pregnancy did you use 
smokeless tobacco (chew or snuff )?

V1AG04 (At Visit 1) Have you ever used any 
tobacco products including ciga-
rettes and smokeless tobacco?

V1AH03 (At Visit 1) In the last month, 
how often have you felt nervous 
and ’stressed’?

V2AH05 (At Visit 2) In the last month, did 
you use smokeless tobacco (chew 
or snuff )?

VXXB01ae_V2a Medical conditions or diagnoses, 
Diabetes (excluding gestational 
diabetes in a prior pregnancy) - 
Condition noted, Visit 2

V2AH02 (At Visit 2) Did you smoke any 
tobacco products in the last month?

U2BB02 (At Visit 2) Cervical length - mm

V2AD03 (At Visit 2) Since last study visit, have 
you had vaginal bleeding more 
than spotting?

BMI_V2 (At Visit 2) BMI

V2IA07 (At Visit 2) Coping with stress 
strengthens

V2AE09 Have your father, mother, brother, 
sister, half-brother or half-sister ever 
been diagnosed with hypertension 
(high blood pressure)?

VXXB01aa_V2a Medical conditions or diagnoses, 
High blood pressure (hypertension) 
- Condition noted, Visit 2

V2BA01_KG (At Visit 2) Weight

V2AE06c Have any of your biological mother, 
sisters, half-sisters, or female first 
cousins ever had pregnancy com-
plications - Spontaneous preterm 
delivery (<37 weeks)

U2CD07 (At Visit 2) Right uterine artery - 
Pulsatility Index (PI)

V3AD03 (At Visit 3) Since last study visit, have 
you had vaginal bleeding more 
than spotting?

U3BB02 (At Visit 3) Cervical length - mm

VXXB01aa_V3a Medical conditions or diagnoses, 
High blood pressure (hypertension) 
- Condition noted, Visit 3

BMI_V3 (At Visit 3) BMI

U3CD07 (At Visit 3) Right uterine artery - 
Pulsatility Index (PI)

V3AF05 (At Visit 3) In the last month, did 
you use smokeless tobacco (chew 
or snuff )?

U3CC07 (At Visit 3) Left uterine artery - Pulsa-
tility Index (PI)
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Variable name Variable meaning

VXXB01ae_V3a Medical conditions or diagnoses, 
Diabetes (excluding gestational 
diabetes in a prior pregnancy) - 
Condition noted, Visit 3

V3AG10 (At Visit 3) Perceived Stress Scale - In 
the last month, how often have 
you felt difficulties were piling 
up so high that you could not over-
come them?

V3AF02 (At Visit 3) Did you smoke any 
tobacco products in the last month?

V3AG05 (At Visit 3) Perceived Stress Scale - In 
the last month, how often have you 
felt that things were going your 
way?

V3AG06 (At Visit 3) Perceived Stress Scale - In 
the last month, how often have 
you found that you could not cope 
with all the things that you had 
to do?

V3AD03a (At Visit 3) How many days has vagi-
nal bleeding more than spotting 
happened? - Days

V3AG07 (At Visit 3) Perceived Stress Scale - In 
the last month, how often have 
you been able to control irritations 
in your life?

V3AG09 (At Visit 3) Perceived Stress Scale - In 
the last month, how often have you 
been angered because of things 
that were outside of your control?

V3AG08 (At Visit 3) Perceived Stress Scale - In 
the last month, how often have you 
felt that you were on top of things?

V3AG01 (At Visit 3) Perceived Stress Scale - In 
the last month, how often have you 
been upset because of something 
that happened unexpectedly?

U3Dtestcheck (At Visit 3) Whether uterine artery 
measurement is done

V3AG04 (At Visit 3) Perceived Stress Scale - In 
the last month, how often have you 
felt confident about your ability 
to handle your personal problems?

V3AG02 (At Visit 3) Perceived Stress Scale - In 
the last month, how often have you 
felt that you were unable to control 
the important things in your life?

V3AG03 (At Visit 3) Perceived Stress Scale - In 
the last month, how often have you 
felt nervous and ’stressed’?

V2AD03a (At Visit 3) How many days has vagi-
nal bleeding more than spotting 
happened? - Days

U2CC07 (At Visit 2) Left uterine artery - Pulsa-
tility Index (PI)

V3BA01_KG (At Visit 3) Weight

Table 13  Coefficients for predictors in predictive model for dataset 1

Feature Coefficient Odds ratio [95% CI]

PreGestDM -0.7105 0.4914 [0.4163 - 0.5800]

VXXB01ae_V1a -0.6642 0.5147 [0.4714 - 0.5619]

VXXB01aa_V1a -0.5018 0.6054 [0.4943 - 0.7415]

V1AD12b -0.3531 0.7025 [0.6075 - 0.8123]

V1AD08 -0.2823 0.7540 [0.5735 - 0.9914]

V1AG07 -0.2703 0.7632 [0.6441 - 0.9042]

S02C01 -0.2703 0.7632 [0.7061 - 0.8248]

V1AG10 -0.2642 0.7678 [0.4602 - 1.2811]

V1AD12a -0.1544 0.8569 [0.7122 - 1.0310]

Crace_2 0.1523 1.1646 [1.1204 - 1.2105]

AgeCat_V1 0.1153 1.1222 [1.0018 - 1.2571]

V1AD12c -0.1020 0.9030 [0.7427 - 1.0979]

Education -0.0679 0.9344 [0.8957 - 0.9747]

V1AD12e -0.0651 0.9370 [0.8535 - 1.0287]

Crace_4 -0.0632 0.9388 [0.7887 - 1.1174]

PctFedPoverty -0.0420 0.9589 [0.9289 - 0.9899]

BMI_Cat 0.0413 1.0421 [0.9858 - 1.1017]

Height -0.0388 0.9619 [0.9353 - 0.9893]

Crace_3 -0.0386 0.9622 [0.8837 - 1.0476]

V1AG06 -0.0382 0.9625 [0.8664 - 1.0693]

V1AG05 -0.0295 0.9709 [0.9136 - 1.0318]

Crace_5 0.0285 1.0289 [0.9598 - 1.1030]

STRESSTABSAMOUNT -0.0211 0.9791 [0.9399 - 1.0200]

poverty 0.0189 1.0191 [0.9687 - 1.0721]

V1AD08a 0.0179 1.0180 [0.9909 - 1.0460]

BMI 0.0154 1.0155 [0.9811 - 1.0511]

V1AH03 0.0137 1.0138 [0.9852 - 1.0433]

V1AE01 0.0123 1.0124 [0.9828 - 1.0429]

Crace_1 -0.0113 0.9888 [0.9523 - 1.0267]

V1AF04 0.0085 1.0086 [0.9771 - 1.0410]

VITAMINDAMOUNT 0.0085 1.0086 [0.9830 - 1.0348]

SUP_VITD -0.0081 0.9919 [0.9693 - 1.0151]

V1AG04 -0.0065 0.9936 [0.9752 - 1.0123]

Age_at_V1 0.0005 1.0005 [0.9803 - 1.0212]

VITD_MCG 0.0001 1.0001 [0.9873 - 1.0131]

Table 14  Coefficients for predictors in predictive model for dataset 2

Feature Coefficient Odds ratio [95% CI]

V2AH05 -0.6355 0.5297 [0.1625 - 1.7264]

PreGestDM -0.5559 0.5735 [0.4144 - 0.7938]

VXXB01ae_V2a -0.5111 0.5998 [0.4298 - 0.8371]

V3AD03 -0.3686 0.6917 [0.5139 - 0.9311]

U3BB02 -0.3105 0.7331 [0.6510 - 0.8255]

VXXB01aa_V1a -0.3030 0.7386 [0.6664 - 0.8186]

V1AD12b -0.2999 0.7409 [0.6832 - 0.8035]

S02C01 -0.2872 0.7504 [0.6854 - 0.8215]

VXXB01ae_V1a -0.2859 0.7513 [0.5899 - 0.9569]

VXXB01aa_V3a -0.2422 0.7849 [0.6514 - 0.9458]
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Feature Coefficient Odds ratio [95% CI]

BMI_V3 -0.2121 0.8089 [0.7607 - 0.8602]

V1AG07 -0.2059 0.8139 [0.6806 - 0.9732]

V1AD08 -0.2037 0.8157 [0.6213 - 1.0709]

U3CD07 0.1717 1.1873 [1.1351 - 1.2419]

V3AF05 -0.1550 0.8565 [0.6113 - 1.1999]

U3CC07 0.1449 1.1559 [1.1238 - 1.1889]

V2AH02 -0.1273 0.8805 [0.7075 - 1.0957]

AgeCat_V1 0.1182 1.1255 [0.9583 - 1.3217]

U2BB02 -0.1103 0.8956 [0.8684 - 0.9235]

Crace_3 -0.1052 0.9001 [0.7995 - 1.0134]

BMI_Cat 0.0964 1.1012 [0.9674 - 1.2536]

VXXB01ae_V3a -0.0913 0.9128 [0.7639 - 1.0906]

V2AD03 -0.0790 0.9241 [0.7255 - 1.1769]

Crace_4 -0.0761 0.9267 [0.7477 - 1.1485]

V1AD12e -0.0717 0.9308 [0.8566 - 1.0116]

V1AD12c -0.0713 0.9312 [0.8185 - 1.0594]

V1AD12a -0.0693 0.9330 [0.7810 - 1.1146]

V2AE06e -0.0693 0.9330 [0.8523 - 1.0215]

Crace_2 0.0675 1.0698 [0.9527 - 1.2014]

U2CC07 0.0669 1.0692 [1.0266 - 1.1135]

Education -0.0545 0.9469 [0.9216 - 0.9729]

V2AE06d -0.0480 0.9531 [0.8228 - 1.1041]

Height -0.0432 0.9578 [0.9279 - 0.9885]

BMI 0.0405 1.0413 [0.9829 - 1.1033]

V3AG10 0.0363 1.0370 [0.9943 - 1.0815]

V1AG10 -0.0347 0.9659 [0.8294 - 1.1247]

V3AF02 -0.0317 0.9688 [0.8433 - 1.1130]

BMI_V2 0.0269 1.0273 [0.9797 - 1.0772]

V3AG05 -0.0237 0.9765 [0.9341 - 1.0209]

V2IA07 0.0196 1.0198 [0.9765 - 1.0651]

STRESSTABSAMOUNT -0.0189 0.9813 [0.9428 - 1.0213]

V3AG06 -0.0175 0.9827 [0.9387 - 1.0288]

V2AE09 -0.0171 0.9830 [0.9362 - 1.0321]

V3AD03a 0.0168 1.0170 [0.9941 - 1.0403]

V1AG05 -0.0168 0.9833 [0.9317 - 1.0378]

Crace_5 0.0143 1.0144 [0.9335 - 1.1023]

V3AG07 -0.0134 0.9867 [0.9571 - 1.0172]

V1AD08a 0.0126 1.0126 [0.9896 - 1.0362]

V1AG06 -0.0107 0.9893 [0.9439 - 1.0370]

VXXB01aa_V2a -0.0088 0.9913 [0.9540 - 1.0301]

V3AG09 -0.0086 0.9914 [0.9604 - 1.0235]

PctFedPoverty -0.0084 0.9917 [0.9560 - 1.0287]

Age_at_V1 0.0069 1.0069 [0.9768 - 1.0380]

V1AG04 -0.0064 0.9936 [0.9661 - 1.0219]

poverty 0.0058 1.0058 [0.9805 - 1.0318]

VITAMINDAMOUNT 0.0053 1.0053 [0.9918 - 1.0190]

V1AF04 0.0051 1.0051 [0.9831 - 1.0276]

V2BA01_KG 0.0047 1.0047 [0.9881 - 1.0216]

Crace_1 -0.0047 0.9953 [0.9752 - 1.0159]

V3AG08 -0.0046 0.9954 [0.9815 - 1.0095]

V1AH03 0.0046 1.0046 [0.9918 - 1.0176]

Feature Coefficient Odds ratio [95% CI]

V2AE06c 0.0044 1.0044 [0.9851 - 1.0241]

V1AE01 0.0041 1.0041 [0.9864 - 1.0221]

U2CD07 0.0034 1.0034 [0.9901 - 1.0168]

V3AG01 0.0032 1.0032 [0.9894 - 1.0171]

U3Dtestcheck -0.0019 0.9981 [0.9900 - 1.0063]

V3AG04 0.0018 1.0018 [0.9941 - 1.0095]

V3AG02 -0.0014 0.9986 [0.9861 - 1.0113]

V3BA01_KG 0.0013 1.0013 [0.9977 - 1.0050]

VITD_MCG -0.0009 0.9991 [0.9965 - 1.0018]

SUP_VITD -0.0006 0.9994 [0.9969 - 1.0019]

V3AG03 0.0004 1.0004 [0.9988 - 1.0019]

V2AD03a 0.0003 1.0003 [0.9990 - 1.0016]

Table 15  Coefficients for predictors in predictive model for 
dataset 3

Feature Coefficient Odds ratio [95% CI]

V2AH05 -0.6355 0.5297 [0.1625 - 1.7264]

PreGestDM -0.5559 0.5735 [0.4144 - 0.7938]

VXXB01ae_V2a -0.5111 0.5998 [0.4298 - 0.8371]

V3AD03 -0.3686 0.6917 [0.5139 - 0.9311]

U3BB02 -0.3105 0.7331 [0.6510 - 0.8255]

VXXB01aa_V1a -0.3030 0.7386 [0.6664 - 0.8186]

V1AD12b -0.2999 0.7409 [0.6832 - 0.8035]

S02C01 -0.2872 0.7504 [0.6854 - 0.8215]

VXXB01ae_V1a -0.2859 0.7513 [0.5899 - 0.9569]

VXXB01aa_V3a -0.2422 0.7849 [0.6514 - 0.9458]

BMI_V3 -0.2121 0.8089 [0.7607 - 0.8602]

V1AG07 -0.2059 0.8139 [0.6806 - 0.9732]

V1AD08 -0.2037 0.8157 [0.6213 - 1.0709]

U3CD07 0.1717 1.1873 [1.1351 - 1.2419]

V3AF05 -0.1550 0.8565 [0.6113 - 1.1999]

U3CC07 0.1449 1.1559 [1.1238 - 1.1889]

V2AH02 -0.1273 0.8805 [0.7075 - 1.0957]

AgeCat_V1 0.1182 1.1255 [0.9583 - 1.3217]

U2BB02 -0.1103 0.8956 [0.8684 - 0.9235]

Crace_3 -0.1052 0.9001 [0.7995 - 1.0134]

BMI_Cat 0.0964 1.1012 [0.9674 - 1.2536]

VXXB01ae_V3a -0.0913 0.9128 [0.7639 - 1.0906]

V2AD03 -0.0790 0.9241 [0.7255 - 1.1769]

Crace_4 -0.0761 0.9267 [0.7477 - 1.1485]

V1AD12e -0.0717 0.9308 [0.8566 - 1.0116]

V1AD12c -0.0713 0.9312 [0.8185 - 1.0594]

V1AD12a -0.0693 0.9330 [0.7810 - 1.1146]

V2AE06e -0.0693 0.9330 [0.8523 - 1.0215]

Crace_2 0.0675 1.0698 [0.9527 - 1.2014]

U2CC07 0.0669 1.0692 [1.0266 - 1.1135]

Education -0.0545 0.9469 [0.9216 - 0.9729]

V2AE06d -0.0480 0.9531 [0.8228 - 1.1041]

Height -0.0432 0.9578 [0.9279 - 0.9885]

BMI 0.0405 1.0413 [0.9829 - 1.1033]
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Feature Coefficient Odds ratio [95% CI]

V3AG10 0.0363 1.0370 [0.9943 - 1.0815]

V1AG10 -0.0347 0.9659 [0.8294 - 1.1247]

V3AF02 -0.0317 0.9688 [0.8433 - 1.1130]

BMI_V2 0.0269 1.0273 [0.9797 - 1.0772]

V3AG05 -0.0237 0.9765 [0.9341 - 1.0209]

V2IA07 0.0196 1.0198 [0.9765 - 1.0651]

STRESSTABSAMOUNT -0.0189 0.9813 [0.9428 - 1.0213]

V3AG06 -0.0175 0.9827 [0.9387 - 1.0288]

V2AE09 -0.0171 0.9830 [0.9362 - 1.0321]

V3AD03a 0.0168 1.0170 [0.9941 - 1.0403]

V1AG05 -0.0168 0.9833 [0.9317 - 1.0378]

Crace_5 0.0143 1.0144 [0.9335 - 1.1023]

V3AG07 -0.0134 0.9867 [0.9571 - 1.0172]

V1AD08a 0.0126 1.0126 [0.9896 - 1.0362]

V1AG06 -0.0107 0.9893 [0.9439 - 1.0370]

VXXB01aa_V2a -0.0088 0.9913 [0.9540 - 1.0301]

V3AG09 -0.0086 0.9914 [0.9604 - 1.0235]

PctFedPoverty -0.0084 0.9917 [0.9560 - 1.0287]

Age_at_V1 0.0069 1.0069 [0.9768 - 1.0380]

V1AG04 -0.0064 0.9936 [0.9661 - 1.0219]

poverty 0.0058 1.0058 [0.9805 - 1.0318]

VITAMINDAMOUNT 0.0053 1.0053 [0.9918 - 1.0190]

V1AF04 0.0051 1.0051 [0.9831 - 1.0276]

V2BA01_KG 0.0047 1.0047 [0.9881 - 1.0216]

Crace_1 -0.0047 0.9953 [0.9752 - 1.0159]

V3AG08 -0.0046 0.9954 [0.9815 - 1.0095]

V1AH03 0.0046 1.0046 [0.9918 - 1.0176]

V2AE06c 0.0044 1.0044 [0.9851 - 1.0241]

V1AE01 0.0041 1.0041 [0.9864 - 1.0221]

U2CD07 0.0034 1.0034 [0.9901 - 1.0168]

V3AG01 0.0032 1.0032 [0.9894 - 1.0171]

U3Dtestcheck -0.0019 0.9981 [0.9900 - 1.0063]

V3AG04 0.0018 1.0018 [0.9941 - 1.0095]

V3AG02 -0.0014 0.9986 [0.9861 - 1.0113]

V3BA01_KG 0.0013 1.0013 [0.9977 - 1.0050]

VITD_MCG -0.0009 0.9991 [0.9965 - 1.0018]

SUP_VITD -0.0006 0.9994 [0.9969 - 1.0019]

V3AG03 0.0004 1.0004 [0.9988 - 1.0019]

V2AD03a 0.0003 1.0003 [0.9990 - 1.0016]

Appendix E: TRIPOD (transparent reporting 
of a multivariable prediction model for individual 
prognosis or diagnosis) checklist
 

Section Item Checklist item Page number

Title and Abstract

Section Item Checklist item Page number

    Title 1 Identify the study 
as developing 
a prediction model, 
validation study, 
or updating a pre-
diction model

Page 1

    Abstract 2 Provide a summary 
of objectives, study 
design, setting, 
participants, sample 
size, predictors, 
outcome, statistical 
analysis, results, 
and conclusions

Pages 1-2

Methods
    Source of data 3a Describe the study 

design or source 
of data

Data collection sec-
tion

3b Specify the key 
study dates

Data collection sec-
tion

    Participants 4a Specify key ele-
ments of the study 
setting

Data collection sec-
tion

4b Describe eligibility 
criteria for partici-
pants

Data collection sec-
tion

    Outcome 5a Clearly define 
the outcome 
that is predicted

Background section

5b Report any actions 
to blind assessment 
of the outcome

Data collection sec-
tion

    Predictors 6a Clearly define all 
predictors

Variables section, 
Table 2

6b Report any actions 
to blind assessment 
of predictors

Data collection, Vari-
ables sections

    Sample size 7 Explain 
how the study size 
was arrived at

Sample size consid-
erations section

    Missing data 8 Describe how miss-
ing data were 
handled

Data preprocessing 
and missing data 
analysis section

Model Development
    Statistical 

analysis
9a Describe all steps 

in model specifica-
tion

Model training 
and testing section

9b Specify all measures 
used to assess 
model performance

Model performance 
analysis section

    Risk groups 10 Describe how risk 
groups were cre-
ated

Sensitivity analysis 
on subgroups of pre-
term birth section

Results
    Participants 11 Report the number 

of participants 
and events

Fig. 1
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Section Item Checklist item Page number

    Model devel-
opment

12a Present the full 
prediction model

Results section, 
Appendix D

12b Explain how to use 
the prediction 
model

Model prediction 
on test datasets 
with only updated 
information section

    Model perfor-
mance

13 Report perfor-
mance measures 
with confidence 
intervals

Model perfor-
mance is improved 
when data from later 
prenatal visits were 
added section

Discussion
    Limitations 14 Discuss any limita-

tions
Discussion section

    Interpretation 15a Discuss the results Discussion section

15b Give an overall 
interpretation con-
sidering objectives

Discussion section

    Implications 16 Discuss clini-
cal usefulness 
of the model

Discussion section

Other Information
    Supplemen-

tary
17 Provide supple-

mentary informa-
tion

Appendices A-D

    Funding 18 Give the source 
of funding

Funding section

Notes:

•	 We recommend using the TRIPOD Statement to 
ensure transparent reporting of the prediction model.

•	 Items in this checklist have been fulfilled in our man-
uscript as indicated by the page/section numbers.
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