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Abstract 

Background Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointes-
tinal tract. Recent advent of tyrosine kinase inhibitors (TKIs) has significantly improved the prognosis of GIST patients. 
However, responses to TKI therapy can vary depending on the specific gene mutation. D842V, which is the most com-
mon mutation in platelet-derived growth factor receptor alpha exon 18, shows no response to imatinib and sunitinib. 
Radiomics features based on venous-phase contrast-enhanced computed tomography (CECT) have shown potential 
in non-invasive prediction of GIST genotypes. This study sought to determine whether radiomics features could help 
distinguish GISTs with D842V mutations.

Methods A total of 872 pathologically confirmed GIST patients with CECT data available from three independent 
centers were included and divided into the training cohort ( n = 487 ) and the external validation cohort ( n = 385 ). 
Clinical features including age, sex, tumor size and location were collected. Radiomics features on the largest axial 
image of venous-phase CECT were analyzed and a total of two radiomics features were selected after feature selec-
tion. Random forest models trained on non-radiomics features only (the non-radiomics model) and on both non-
radiomics and radiomics features (the combined model) were compared.

Results The combined model showed better average precision (0.250 vs. 0.102, p = 0.039) and F1 score (0.253 
vs. 0.155, p = 0.012) than the non-radiomics model. There was no significant difference in ROC-AUC (0.728 vs. 0.737, p 
= 0.836) and geometric mean (0.737 vs. 0.681, p = 0.352).

Conclusions This study demonstrated the potential of radiomics features based on venous-phase CECT images 
to identify D842V mutation in GISTs. Our model may provide an alternative approach to guide TKI therapy for patients 
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Background
Gastrointestinal stromal tumors (GISTs) are the most 
common type of mesenchymal tumors in the gastroin-
testinal tract. They originate from the interstitial cells 
of Cajal or their stem cell-like precursors. The majority 
of GISTs are driven by activating mutations in proto-
oncogene c-KIT (KIT) in approximately 80% of cases, 
and platelet-derived growth factor receptor alpha (PDG-
FRA) receptor tyrosine kinases in 5–10% of cases [1, 2]. 
The advent of tyrosine kinase inhibitors (TKIs), such as 
imatinib mesylate and sunitinib malate, which specifi-
cally target these mutations, has significantly improved 
the prognosis of GIST patients [3, 4].

Response to TKI therapy can vary depending on the 
specific gene mutation in GISTs. Early clinical research 
has reported that 83.5% of GISTs with mutations in KIT 
exon 11 and 47.8% with mutations in exon 9 exhibit a 
partial response to imatinib [5]. Conversely, the predomi-
nant PDGFRA mutant isoform, D842V, which accounts 
for approximately 60% of all PDGFRA mutant GISTs, is 
completely resistant to imatinib and sunitinib [2, 5, 6]. 
Patients with D842V-mutant GISTs have a short progres-
sion-free and overall survival, necessitating alternative 
TKIs and treatment strategies [7].

Advances in TKI therapy have emphasized the impor-
tance of gene mutation screening and routine imaging 
follow-up. However, sequence variant testing is costly 
and may not be affordable or accessible for some patients, 
especially in low- and middle-income countries, limiting 
personalized TKI treatment options for these patients 
[8]. Radiomics is an emerging field that involves the 
extraction of quantitative features from medical images 
to predict clinical outcomes and guide treatment deci-
sions. Previous research has demonstrated the poten-
tial of radiomics to predict the genotype of GISTs based 
on contrast-enhanced computed tomography (CECT) 
images [9–11]. These results indicate that radiomics fea-
tures have the potential to capture important biological 
information from GISTs, enabling non-invasive predic-
tion of their genotype and guiding subsequent treatment 
decisions.

The aim of this multi-center study is to identify radi-
omics features from computed tomography (CT) images 
that can reliably predict the presence of D842V-mutant 
GISTs. By achieving this, we aim to develop a non-inva-
sive, cost-effective, and accessible radiomics model for 

predicting D842V mutation status, thereby facilitating 
personalized treatment approaches for GIST patients.

Methods
Subjects
The institutional review board approved the study pro-
tocol (KY2023-002-B), and the study was conducted in 
accordance with ethical principles of the 1975 Decla-
ration of Helsinki and subsequent revisions. Informed 
consent from the patients was waived due to the retro-
spective study design. This retrospective multi-center 
study enrolled 487 consecutive GIST patients diagnosed 
with pathologically confirmed GIST between January 
2011 and June 2022 in our center, and 385 GIST patients 
from two other centers between January 2015 and June 
2022 (Fig.  1). The inclusion criteria were as follows: (1) 
Tumors were pathologically confirmed as GIST by fine 
needle aspiration or surgery; (2) Molecular testing results 
were available. The exclusion criteria were as follows: 
(1) Patients with prior TKI treatment; (2) Tumors with 
its maximum diameter less than 10 mm or ambiguous 
tumor border on CT images; (3) Missing venous phase 
CECT before surgery or biopsy, poor image quality, 
or tumors partially included on CT images. This study 
adheres to the Image Biomarker Standardisation Ini-
tiative (IBSI) guidelines for the standardization of image 
acquisition and analysis.

CT image acquisition
All subjects underwent a CECT scan with the scan-
ning and reconstruction parameters used in daily clini-
cal practice. A non-contrast-enhanced CT scan was first 
obtained before the administration of iodine contrast. 
Then, the iodine contrast agent was administered at a 
dose of 1.5 mL/kg of the patient’s weight at a flow rate 
of 2.5–3.0 mL/s. Arterial (30 - 40 seconds after injection) 
and venous (70 - 90 seconds after injection) phases were 
obtained for each patient. Detailed CT protocols are 
available in Additional file 1.

CT image segmentation
A radiologist with five years of experience in gastrointes-
tinal imaging (ZX) performed CT image segmentation on 
the venous phase images. Three months later, the same 
radiologist (ZX) re-segmented a randomly selected sub-
set of 40 patients, and another radiologist (WZ), with 

inaccessible to sequence variant testing, potentially improving treatment outcomes for GIST patients especially 
in resource-limited settings.
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seven years of experience, segmented the images once 
on the same subset. All CT images were imported into 
3D Slicer (version 5.0.3, available at https:// www. slicer. 
org/) for delineation. A 2D region of interest (ROI) of the 
tumor lesion was delineated on the largest axial slice. CT 
images of other contrast-enhanced phases and non-con-
trast-enhanced acquisition were accessible to the radi-
ologists for reference. The radiologists were blind to the 
pathology results during the segmentation process. Sub-
sequently, all segmented volumes were resampled to a 
resolution of 1mm * 1mm using linear interpolation, and 
the images were discretized with a bin width of 25 prior 
to the extraction of radiomics features.

Feature selection and model development
Four non-radiomics features, including age, sex, tumor 
diameter and tumor location were collected from elec-
tronic medical records (age and sex), CT images (tumor 
diameter) and surgical records (tumor location) respec-
tively. These features were either general demographics 

or employed in the latest guidelines for risk stratifica-
tion of GISTs. A total of 1023 radiomics features were 
extracted from the ROI of each CT image with and with-
out filters. These features included first order statistics 
and textural features obtained from grey-level co-occur-
rence matrix (GLCM), grey-level dependence matrix 
(GLDM), grey-level run-length matrix (GLRLM), grey-
level size-zone matrix (GLSZM) and neighboring grey 
tone difference matrix (NGTDM). Features with intra- 
and inter-observer correlation coefficients greater than 
0.75 were selected for model development. Details of 
the radiomics extraction workflow are provided in Addi-
tional file 1.

To address the issue of data imbalance, random under-
sampling was applied to the D842V wildtype group, and 
the guided regularized random forest algorithm was 
employed as an approach of dimensionality reduction 
[12]. The guided regularized random forest algorithm 
uses the importance scores from a pretrained random 
forest model, and adds a penalty on the features used for 

Fig. 1 Patient recruitment and study workflow. CT, computed tomography; GIST, gastrointestinal stromal tumors; TKI, tyrosine kinase inhibitors

https://www.slicer.org/
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splitting if their information gain is similar to features 
used at previous splits. To address the issue of overfit-
ting, a regularization coefficient of 0.5 was employed, and 
the maximum depth of decision trees was limited to 2. A 
minimal subset of radiomics features was selected, and a 
random forest model was built on these radiomics fea-
tures in conjunction with non-radiomics features. Prior 
weights were balanced before training the random for-
est model on the entire training cohort. For comparison, 
two extra prediction models were developed using the 
same parameters. One was built using only non-radiom-
ics features, and the other was built using all radiomics 
and non-radiomics features except tumor location. The 
predictive capabilities of these models were then evalu-
ated on the entire validation dataset. The radiomics fea-
tures were extracted using PyRadiomics, version 3.0.1 in 
Python software, version 3.10.8 (Python Software Foun-
dation), which is compliant to IBSI definitions. The over-
all study design is illustrated in Fig. 2.

Statistical analysis
Descriptive statistics were presented as frequencies ( n ) 
and percentages (%) for categorical variables and mean 
± standard deviation for continuous variables. Compari-
sons of categorical variables between different groups 
were performed using Fisher’s exact test or Pearson’s χ2 
test with Yate’s correction for continuity. Continuous 
variables were compared using students’ t test. Bootstrap 
was performed with 1000 times of resampling to calculate 
the variance of different metrics of prediction models, 
and bootstrap test was performed to compare the perfor-
mance of them between different models. A two-sided p 
value of < 0.05 was considered statistically significant. All 

statistical analyses were performed with Python software, 
version 3.10.8 (Python Software Foundation).

Results
From January 2011 to June 2022, a total of 872 patients 
were retrospectively included in the study. These patients 
were divided into the internal training cohort ( n = 487 ) 
from one center, and the external validation cohort 
( n = 385 ) from the other two centers. Baseline character-
istics are shown in Table 1. Patients in the training cohort 

Fig. 2 The study design. CT, computed tomography; ROC, relative operating characteristic. Some icons designed by OpenMoji (https:// github. 
com/ hfg- gmuend/ openm oji) were used under the terms of Creative Commons Share Alike License 4.0 (CC BY-SA 4.0), with modifications to suit our 
figure requirements

Table 1 Baseline characteristics of patients in the training and 
validation cohort

Training cohort 
( n = 487)

Validation cohort 
( n = 385)

p

Age (years) 61.32 ± 12.01 60.63 ± 11.02 0.382

Sex 0.089

Female 238 (48.87%) 165 (42.86%)

Male 249 (51.13%) 220 (57.14%)

Location 0.201

Stomach 298 (61.19%) 258 (67.01%)

Duodenum 45 (9.24%) 38 (9.87%)

Small intestine 100 (20.53%) 63 (16.36%)

Others 44 (9.03%) 26 (6.75%)

Gene mutation

KIT 9 40 (8.21%) 32 (8.31%) 1.000

KIT 11 378 (77.62%) 275 (71.43%) 0.044

KIT 13 13 (2.67%) 10 (2.60%) 1.000

KIT 17 6 (1.23%) 7 (1.82%) 0.669

PDGFRA 12 6 (1.23%) 0 (0.00%) 0.037

PDGFRA 18 28 (5.75%) 23 (5.97%) 1.000

Wildtype 22 (4.52%) 46 (11.95%) < 0.001

https://github.com/hfg-gmuend/openmoji
https://github.com/hfg-gmuend/openmoji
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had higher proportion of GISTs with KIT 11 mutation 
( p = 0.044 ) and lower proportion of those without KIT 
and PDGFRA mutation ( p < 0.001 ). No statistically sig-
nificant differences in age, sex and tumor location were 
observed between the training and validation cohorts.

There were 24 patients with D842V-mutant GISTs in 
the training cohort (4.93%) and 17 patients in the valida-
tion cohort (4.42%). The demographic data of the train-
ing and validation cohorts, stratified by D842V mutation, 
were shown in Table 2 The proportion of D842V-mutant 
GISTs located in the stomach was significantly higher 
than that of D842V-wildtype GISTs in both the training 
cohort and the validation cohort(p < 0.001 ). A signifi-
cantly higher proportion of male patients was observed 
in D842V-mutant GISTs in the validation cohort (p = 
0.043). The proportion of male patients was also higher in 
the training cohort, although this difference was not sta-
tistically significant (p = 0.077).

A total of 601 radiomics features with intra- and inter-
observer correlation coefficients greater than 0.75 were 
selected for model development. After feature selec-
tion, two radiomics features, namely wavelet-HL filtered 
GLDM GrayLevelNonUniformity and squareroot filtered 
RobustMeanAbsoluteDeviation, were selected for use in 
training prediction models. The predictive performance 
of the model trained on non-radiomics features alone 
(the non-radiomics model) and on both non-radiom-
ics and radiomics features (the combined model) were 
shown in Table 3. Relative operating characteristic (ROC) 
curve and Precision-recall curve of the models on both 
the training and the validation cohort were shown in 
Figs. 3 and 4. The combined model showed better average 
precision (0.250 vs. 0.102, p = 0.039 ) and F1 score (0.253 
vs.  0.155, p = 0.012 ) than the non-radiomics model. 
There was no statistical significance between the two 
models in area under the relative operating characteristic 

curve (ROC-AUC) and geometric mean. The predictions 
of different models were illustrated in Fig. 5. Results on 
the model trained on all radiomics and non-radiomics 
features except tumor location were presented in Addi-
tional file 1.

Discussion
In this work, we explored the potential of CT imaging 
features to detect PDGFRA exon 18 D842V mutation. 
We developed a prediction model incorporating non-
radiomics variables and radiomics features from venous 
phase CECT, which showed robust performance in pre-
dicting D842V-mutant GISTs. Although the combined 
model had a similar ROC-AUC compared to the non-
radiomics model, the combined model had a significantly 
higher average precision in the precision-recall curve 
(Fig. 4), which is considered more robust in imbalanced 
settings. In addition, the combined model showed sig-
nificantly higher F1 score. The results of this study pro-
moted that D842V-mutant GISTs may exhibit distinct 
imaging phenotypes that can help to differentiate them 
from D842V-wildtype GISTs. To our best knowledge, this 
is the first study to leverage imaging features to predict 
D842V-mutant GISTs. This is particularly important as 
our findings could enable early and cost-effective identifi-
cation of a specific primarily imatinib-resistant genotype 
of GISTs.

The response of GISTs to TKI therapy is largely 
dependent on the location of gene mutation, thus 
sequence variant testing is always recommended for 
GIST patients [5]. Despite the benefits of genomic 
sequencing, disparities based on race, ethnicity and 
geographic region can limit patients’ access to optimal 
treatments, potentially exacerbating health-care associ-
ated impoverishment [8, 13, 14]. A recent study revealed 
that GIST patients in low- and middle-income countries, 

Table 2 Baseline characteristics of patients in the training and validation cohort stratified by D842V mutation

Training cohort Validation cohort

D842V-mutant ( n = 24) D842V-wildtype 
( n = 463)

p D842V-mutant 
( n = 17)

D842V-wildtype 
( n = 368)

p

Age (years) 59.79 ± 11.91 61.40 ± 12.02 0.523 63.53 ± 9.72 60.50 ± 11.07 0.268

Sex 0.077 0.043

Female 7 (29.17%) 231 (49.89%) 3 (17.65%) 162 (44.02%)

Male 17 (70.83%) 232 (50.11%) 14 (82.35%) 206 (55.98%)

Location < 0.001 < 0.001

Stomach 21 (87.50%) 277 (59.83%) 16 (94.12%) 242 (65.76%)

Duodenum 1 (4.17%) 44 (9.50%) 1 (5.88%) 37 (10.05%)

Small intestine 0 (0.00%) 100 (21.60%) 0 (0.00%) 63 (17.12%)

Others 2 (8.33%) 42 (9.07%) 0 (0.00%) 26 (7.07%)
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who may not have access to sequence variant testing, had 
treatment outcomes comparable to those reported in 
high-income countries after first-line imatinib and sec-
ond-line sunitinib therapies [15]. One possible explana-
tion for these favorable results was that GISTs with KIT 
mutation, which was the predominant gene mutation, 
were mostly sensitive to imatinib or sunitinib treatment. 
However, our data indicated that at least 5% of patients 
had D842V mutation with primary resistance to imatinib. 
Prescribing TKI therapy without detailed sequence vari-
ant testing could lead to the futility of ineffective treat-
ments and the unnecessary imposition of adverse effects 
on these patients. Therefore, early identification of these 
patients in a more accessible approach is of significant 
clinical importance and is urgently needed.

Previous research have shown that GISTs with D842V 
mutation were predominantly found in the stomach and 
omentum [16, 17]. Our study confirmed these findings, 
and we additionally found a male predominance in these 
cases. Nevertheless, our prediction model based on non-
radiomics features alone cannot adequately detect D842V 
mutations, probably due to the relatively low prevalence 
of this genotype. After removal of tumor location, we 
found a decrease in all performance metrics. However, 

the model remained effective with both ROC-AUC and 
average precision above chance level, suggesting that our 
combined model is not dependent on tumor location 
alone, and that radiomics features have a significant con-
tribution in predicting D842V mutation.

Imaging-based prediction models have been increas-
ingly recognized for their utility in predicting specific 
gene mutation variants in GISTs with the help of radiom-
ics. Xu et  al.  reported that CECT texture features, par-
ticularly the standard deviation of tumor intensity, could 
discriminate GISTs without KIT exon 11 mutation from 
those with KIT exon 11 mutation [18]. Wei et  al.  dis-
covered that CECT-based radiomics features and clini-
cal features, including extra-gastric location and distant 
metastasis, could effectively predict KIT exon 9 mutation 
[11]. In our previous work, we demonstrated that imag-
ing-based quantitative features could distinguish between 
different genotypes of KIT exon 11 mutations, especially 
deletions involving codons 557/558 [9]. We also found 
that GISTs may exhibit specific imaging patterns at dif-
ferent phases of CECT images in predicting Ki-67 prolif-
eration index [19]. These studies highlighted the potential 
of imaging features to discriminate between various gene 
mutations in GISTs. Consistent with these studies, our 

Fig. 3 Relative operating characteristic curve of different models. AUC, area under the relative operating characteristic curve
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combined model showed a significant improvement in 
both average precision and F1 score over the non-radi-
omics model. Our study further demonstrated that radi-
omics features were capable of predicting PDGFRA exon 
18 D842V mutations in GISTs. Given the relative avail-
ability of CT imaging, we believe the application of our 
prediction model could assist decision making in TKI 
treatment and the subsequent patient monitoring, par-
ticularly in populations with limited access to sequence 
variant testing.

Limitations
Our study had inevitably some limitations. The retro-
spective study design introduced potential selection bias, 
which may impact the generalizability of the findings. 
The radiomics features were examined from the largest 
axial slice of the tumor in the venous phase, which may 
not provide a comprehensive representation of the tumor. 
Nevertheless, we believe the impact is limited given that 
comparable performance has been achieved in previous 
studies between two- and three-dimensional radiomics 
features, as well as across different contrast-enhanced 
phases in gastrointestinal tumors [20, 21]. Although 
D842V mutation is the most frequently identified 
imatinib-resistant genotype according to prior research, 
patients with D842V mutant GISTs represent a minor 
proportion of the overall GIST population. The imbal-
anced patient cohort, coupled with a high-dimensional 
dataset, posed challenges in achieving a representative 
sample size and a balanced distribution of mutations 
across patient subgroups. To mitigate these challenges, 
we collected multi-center data to maximize the num-
ber of samples available for analysis. Furthermore, we 
employed random under-sampling in combination with 
random forest based feature selection to minimize the 

Fig. 4 Precision-recall curve of different models. AP, average precision

Table 3 Diagnostic performance of non-radiomics and 
combined models

AP average precision, G-Mean geometric mean, ROC-AUC  area under the relative 
operating characteristic curve, CI confidence interval

Clinical model Clinical+radiomics 
model

value 95% CI value 95% CI p

AP 0.102 [0.045, 0.192] 0.250 [0.097, 0.486] 0.039

G-Mean 0.681 [0.542, 0.776] 0.737 [0.574, 0.860] 0.352

F1 0.155 [0.088, 0.254] 0.253 [0.143, 0.400] 0.012

ROC-AUC 0.737 [0.609, 0.833] 0.728 [0.516, 0.861] 0.836
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risk of overfitting. Random under-sampling was chosen 
considering that the more popular over-sampling meth-
ods could potentially increase the likelihood of overfit-
ting in the induction process [22]. The guided regularized 
random forest algorithm was selected for its reputation 
as a common embedded feature selection approach that 
had been successfully applied in high-dimensional and 
imbalanced datasets, similar to our settings [12, 23]. 
Despite these methodological strategies, these limita-
tions remain and should be carefully considered when 
interpreting the results. Finally, the high-order radiomics 
features used in our model are complicated and difficult 
to explain, which restrict the interpretability of our find-
ings. Future research is required to confirm these results 
in clinical settings.

Conclusions
In conclusion, our study successfully developed a pre-
diction model that integrates non-radiomics variables 
with radiomics features from venous phase CECT and 
demonstrated its efficacy in identifying D842V-mutant 
GISTs. The integration of imaging features into the pre-
diction model significantly improved its performance, 
which could facilitate the early, cost-effective detection 
of a genotype resistant to current first- and second-line 
TKI therapy. Our model may provide an alternative 
approach to guide TKI therapy for patients inaccessible 
to sequence variant testing, potentially improving treat-
ment outcomes for GIST patients especially in resource-
limited settings. Further research and validation studies 
will be necessary to refine the model and to evaluate its 
performance in a clinical setting.
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