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Abstract 

Epithelial cells (ECs) provide the first line of defense against microbial threats and environmental challenges. They 
participate in the host’s immune responses via the expression and secretion of various immune-related molecules 
such as cytokines and chemokines, as well as interaction with immune cells. A growing body of evidence sug-
gests that the dysregulated function of ECs can be involved in the pathophysiology of a broad range of infectious, 
autoimmune, and inflammatory diseases, including inflammatory bowel disease (IBD), asthma, multiple sclerosis, 
and rheumatoid arthritis. To maintain a substantial immunoregulatory function of ECs, precise expression of differ-
ent molecules and their regulatory effects are indispensable. MicroRNAs (miRNAs, miRs) are small non-coding RNAs 
that regulate gene expression commonly at post-transcriptional level through degradation of target messenger RNAs 
(mRNAs) or suppression of protein translation. MiRNAs implicate as critical regulators in many cellular processes, 
including apoptosis, growth, differentiation, and immune response. Due to the crucial roles of miRNAs in such a vast 
range of biological processes, they have become the spotlight of biological research for more than two decades, 
but we are still at the beginning stages of the use of miRNA-based therapies in the improvement of human health. 
Hence, in the present paper, attempts are made to provide a comprehensive overview with regard to the roles of miR-
NAs in the immunoregulatory functions of ECs. A better understanding of the molecular mechanisms through which 
immunoregulatory properties of ECs are manifested, could aid the development of efficient strategies to prevent 
and treat multiple human diseases.
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Introduction
Epithelial cells (ECs) such as those in lining the skin, 
gastrointestinal tract, respiratory tract, and oral cav-
ity provide the first line of host defense against foreign 
bodies and injury [1]. In addition to their role in creat-
ing a physical barrier, ECs are critical in the recruit-
ment of immune cells to the affected site and contribute 
either independently or in collaboration with resident/ 

recruited immune cells to provide epithelial tissue immu-
nity [2, 3]. To perform these functions, ECs express a 
wide range of biomolecules associated with the immune 
response, including cytokines, chemokines, co-stimu-
latory molecules, and major histocompatibility complex 
(MHC) class I and II. Moreover, ECs are equipped with 
pattern recognition receptors (PRRs), such as Toll-like 
receptors (TLRs) which enable them to recognize dis-
tinct pathogen-associated molecular patterns (PAMPs) 
and to participate in the initiation of appropriate immune 
responses against microbial pathogens [2, 3]. Different 
gene products regulate the EC functions. Addressing 
these molecules and their associated pathways will pro-
vide new perspectives to understanding malignant dis-
eases related to the dysfunction of ECs.
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MicroRNAs (miRNAs, miRs) are a class of small non-
coding RNAs that regulate gene expression at the post-
transcriptional level mainly through degradation or 
translational repression of target mRNAs. MiRNAs play 
important roles in various cellular processes including 
development, differentiation, apoptosis, and immune 
response [4–6]. Furthermore, there are growing evi-
dence concerning the contribution of miRNAs in the 
regulation of almost all aspects of EC functions such as 
renewal and wound healing [7–9], epithelial/endothe-
lial barrier maintenance [10, 11], response to oxidative 
stress [12, 13], autophagy [14] and epithelial immunity 
[15, 16]. Also, previous studies have explored that dys-
regulation of miRNAs in ECs is associated with several 
immune-related disorders such as inflammatory bowel 
disease (IBD) [11, 17], and asthma [18]. Therefore, in 
this review, our main focus is directed toward miRNA 
involvement in the regulation of immune response by 
ECs. As well, we summarize multiple extracellular roles 
of miRNA in mediating epithelial-immune cell commu-
nications. Of note, we provide an overview of the cur-
rent knowledge about the miRNA regulatory effects in 
the modulation of EC function in confronting COVID-
19 infection.

Better understanding of the immunoregulatory fea-
tures of ECs and the mediators that play a fundamental 
role in which, will guide future research to design effi-
cient therapeutic interventions against various infectious 
and inflammatory diseases.

Epithelial cell functions: from physical/biochemical 
barrier to immune protection
The ECs protect the host with the formation of a physi-
cal and biochemical barrier separating the host body 
from the external environment. In addition, the ECs 
can respond to danger signals such as microbial stimuli 
and contribute to the regulation of both tolerogenic and 
immunogenic responses [19]. Given the important role of 
ECs in the establishment of protective immunity, disrup-
tion of EC homeostasis creates the risk of infection and 
inflammatory disorders.

Tight junction proteins (TJPs), production of mucous 
layer, secretion of broadly targeted antimicrobial proteins 
(AMPs), and transcytosis of secretory immunoglobulin 
A (SIgA) are among the main mechanisms that contrib-
ute to the protective function of the epithelial barrier 
[19]. Also, the epithelium can respond to pathogens by 
secretion of various cytokines responsible for recruiting 
immune cells to infected or injured sites [20].

In the following paragraphs, we briefly discuss evidence 
about the protective mechanisms by which the epithe-
lium improves host defense against invading pathogens.

Role of TJPs in epithelial barrier function
The ECs are joined by tight junctions. TJPs, located at 
the tight junctions, comprise transmembrane (or integral 
membrane) proteins (such as junctional adhesion mol-
ecules (JAMs), tricellulin, claudins, and occludin) and 
peripherally associated scaffolding proteins (such as ZO 
(zonula occludens)-1, -2 and -3). These proteins deter-
mine the mucosal permeability and regulate the trans-
port of solutes, ions, and water through the paracellular 
pathway of ECs [21–23]. Several lines of evidence dem-
onstrate the importance of TJPs in the regulation of epi-
thelium function and prevention of severe inflammatory 
responses. For instance, Yuki et al. reported that levels of 
ZO-1 and claudin-1 proteins were decreased in the skin 
of patients with atopic dermatitis [24]. In another study, 
Krug et  al. reported that tricellulin, a protein that par-
ticipates in organization of tricellular as well as bicellular 
tight junctions [21], was decreased in patients with ulcer-
ative colitis, and its reduction increased the paracellular 
passage of macromolecule [25].

Expression of AMPs as a potent arm of the innate immune 
system in the epithelial barrier
AMPs are charged peptides that act as a protective part 
of the host ҆s innate immune system against a broad range 
of bacteria, fungi, and viruses. For example, cathelici-
dins― an important group of cationic AMPs― 
convert into their mature form (LL-37 in humans and 
mCRAMP in mice [26]) through extracellular cleavage by 
proteinase-3 [27]. The AMP LL-37 is produced by various 
human cell types such as neutrophils [26], mast cells [28], 
monocytes [29], and ECs from different organs includ-
ing intestine [30], gastric [31], lung [32, 33] and mouth 
[34]. This AMP showed antimicrobial activity against a 
variety of pathogens such as Pseudomonas aeruginosa 
[27, 35], Helicobacter pylori [31], Staphylococcus aureus 
[36, 37], Candida albicans [34], and respiratory syncyt-
ial virus (RSV) [38]. Besides direct antimicrobial activity 
[38, 39], LL37 shows diverse immunoregulatory func-
tions against infection. Wang et  al., reported that LL37 
enhances bacterial phagocytosis in human macrophages. 
Furthermore, the expression of Fcγ receptors (including 
CD32 and CD64), TLR4, and CD14 was increased on 
LL-37-treated macrophages [40]. Treatment with LL-37 
significantly enhanced interleukin (IL)-6 and IL-8 release 
from human bronchial epithelial IB3-1 cells [27]. As such, 
Neumann et al., found a role for LL-37 in the formation 
of neutrophil extracellular traps [41]. In addition, another 
study reported that mouse and human cathelicidins 
released by neutrophils promoted differentiation and 
survival of Th17 cells, and directed subsequent adaptive 
immune responses through which [26]. As an example of 
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the pathophysiological role of LL-37 in disease progres-
sion, Jiao et al. study provided evidence that elevated lev-
els of LL-37 induced asthma exacerbation through the 
activation of eosinophils interacting with bronchial ECs 
in inflammatory airway [42]. This evidence and other 
similar findings indicate that AMPs such as LL37 mediate 
communications between the ECs and immune cells.

Other AMPs such as defensins, are also produced by 
ECs and protect the host against pathogens [43], how-
ever, providing a comprehensive overview with regard to 
different types of AMPs is beyond the scope of the pre-
sent article.

Secretion of IgA and immunity in epithelial barrier
Secretory IgA (SIgA) is the predominant antibody isotype 
on mucosal surfaces of humans and many other mam-
mals which plays important roles in protection against 
pathogens without leading to inflammation because of 
its inability to activate the complement pathway [44]. In 
addition, the production of SIgA regulates the commen-
sal microbiota composition to maintain a healthy balance 
between the host and the microorganisms [44, 45].

IgA-producing plasma cells abundantly reside within 
the lamina propria of the gastrointestinal tract, but a sig-
nificant number of these cells are also found in the other 
mucosal sites such as upper and lower airways [44] and 
genital tract [46]. The multimeric IgA produced by local 
plasma cells in the lamina propria is transported across 
the ECs ― which express poly-Ig receptor (pIgR) on 
their basolateral surfaces― into the mucosal lumen 
[44, 45]. Moreover, IgA-producing plasma cells are also 
present within non-mucosal sites such as in the mam-
mary gland [47], bone marrow [48], and brain tissue [49], 
although data suggests that systematic and mucosal IgA 
producing plasma cells are of the same origin [47–49].

The major part of mucosal IgA-secreting plasma cells is 
derived from activated B-cells in mucosal-associated lym-
phoid tissues (MALT). The majority of MALT is local-
ized along the gut, termed as gut-associated lymphoid 
tissues (GALT). The GALT includes several structures 
which the Peyer’s patches (PPs) are the main IgA-induc-
tive sites among them [45]. Activated naïve IgM B cells 
in the gut differentiate into IgA-secreting plasma cells 
by class-switch recombination (CSR) from Cμ to Cα in 
the constant region of the Ig heavy chain. This process is 
dependent on priming by mucosal dendritic cells (DCs) 
carrying various antigens and live bacteria from the lumi-
nal surface into the PPs [19, 45, 50].

Briefly, in the presence of cognate CD4 + T cells, inter-
action between CD40 on the surface of B cells and its 
ligand (CD40L) on T cells as well as secretion of multi-
ple cytokines lead to high-affinity antigen-specific IgA 
production to neutralize the pathogens [19, 45, 51]. 

In addition, in the absence of T cells, CSR to IgA could 
occur through the stimulation of B cells by APRIL (A 
proliferation-inducing ligand) and BAFF (B-cell activat-
ing factor of the TNF family) [19, 51], which their struc-
ture and function are related to CD40L [52]. A role is 
also known for APRIL and BAFF in support of survival 
of IgA + B cells and IgA-producing plasma cells [45, 50, 
52]. In response to commensal bacteria, the production 
of APRIL and BAFF by ECs directly stimulates the B 
cells and triggers IgA CSR. Furthermore, ECs induce the 
production of APRIL and BAFF by mucosal DCs which 
intensify the effect on B cell stimulation [19, 52]. How-
ever, there are several other important factors influencing 
IgA CSR which were well discussed in previous studies 
[45, 50].

Expression of immunoregulatory molecules by ECs 
and interaction with immune cells
It is noteworthy that epithelial tissues contain a complex 
network of resident immune cells that play crucial roles 
in host defense and tissue homeostasis. Tissue-resident 
immune cells are both myeloid and lymphoid cell sub-
sets mainly including mononuclear phagocytes, innate 
lymphoid cells, tissue-resident T cells, and IgA-secreting 
plasma cells [19, 53]. In response to a challenge, such 
as invading pathogens and tissue injury, ECs exert their 
influence on priming of immune responses via communi-
cations with immune cells resident in the tissue and those 
that are infiltrated from the periphery to resolve the chal-
lenge, hence, restore the tissue to its original condition 
[53].

The production and secretion of numerous immu-
noregulatory signals by ECs such as transforming growth 
factor-β (TGF-β) [54, 55], IL-8 [20, 55], thymic stromal 
lymphopoietin (TSLP) [55, 56], IL-25 [57, 58] and many 
other biomolecules provide possible tools for the transla-
tion of stimuli-derived signals from ECs to immune cells 
and promote cross-talk between them. We summarized 
several biomolecules secreted by ECs as well as their 
immune-related functions in Table  1. In the following, 
several regulatory interactions of ECs in the immune sys-
tem are mentioned.

Previous data showed that human corneal ECs can 
internalize Aspergillus flavus spores via actin-medi-
ated endocytosis [94] and differentially express dis-
tinct sets of gene transcripts associated with tumor 
necrosis factor (TNF) signaling, Th17 differentia-
tion, NF-κB signaling, chemokine signaling and B cell 
receptor signaling against fungal infection compared 
to control [95]. After stimulation with killed Asper-
gillus fumigatus, pro-inflammatory cytokines such as 
CXCL1, TNF-α, and IL-6 and activation of P38 MAPK 
were induced through LOX-1 (lectin-like oxidized 
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low-density lipoprotein receptor 1) in rat corneal ECs. 
Also, the expression of CXCL1 and TNF-α was found 
to be elevated through LOX-1 in human corneal ECs 
[69]. Moreover, corneal ECs upregulated the expres-
sion of dectin-1 [96], TLR-2, TLR-4, IL-1β, and IL-10 
upon stimulation with A. fumigatus antigens [97].

Pulmonary ECs infected with different strains of 
Mycobacterium tuberculosis at early stage can produce 
a wide range of cytokines, chemokines, growth factors 
and PRRs such as IL-6, IL-8, interferon (IFN)-γ, TNF-
α, granulocyte colony-stimulating factor (G-CSF), 
granulocyte–macrophage colony-stimulating factor 
(GM-CSF), TLR3, TLR5, and TLR2 [20].

Keratinocytes are the main cell type of the epider-
mis― the outermost layer of skin ― which in 
addition to providing a physical barrier, can express 
different types of cytokine receptors and PRRs such as 
TLRs, nucleotide-binding oligomerization domain-like 
receptors (NLRs), and RIG-I–like receptors (RLRs). 
Furthermore, they produce a wide variety of cytokines, 
chemokines, growth factors as well as AMPs [98]. 
For example, human keratinocytes and mouse skin 
produce inflammatory mediators IL-6, IL-1β, IL-8, 
cyclooxygenase (COX)-2, and monocyte chemoat-
tractant protein (MCP-1) mediated by NF-κB sign-
aling in response to ultraviolet B (UVB) irradiation 
[59]. Under the mediation of IL-25, keratinocytes can 
produce pro-inflammatory cytokines and chemokines 
via activation of the STAT3 pathway in a murine pso-
riasis model― a chronic autoinflammatory skin dis-
ease― indicating that keratinocytes play a critical 
role in the pathogenesis of this disease [82].

The luminal surface of PPs is covered by the follicle-
associated epithelium (FAE) which contains relatively 
limited numbers of goblet cells, enteroendocrine cells, 
and intraepithelial lymphocytes and is rich in special-
ized ECs known as microfold cells (M cells). M cells, 
which are phagocytic, constantly sample and trans-
port luminal antigens to the underlying GALT. Then, 
M cells release their transcytosed material within 
intraepithelial pockets formed by their expanded 
basolateral side. Within these pockets, M cells inter-
act directly with the immune cells residing in the sub-
epithelial dome (SED) beneath the FAE. The antigens 
transported by M cells are then taken up by antigen-
presenting cells (APCs) residing in the SED such as 
immature DCs. The antigen-primed DCs undergo a 
maturation process and migrate to the T-cell zone of 
GALT to present antigens to T cells, leading to the 
activation of antigen-specific B cells and ultimately the 
induction of mucosal immune responses including the 
production of IgA antibodies by lamina propria plasma 
cells [16, 99, 100].

ECs act as non‑professional phagocytes
As mentioned in the above section, ECs are capable of 
phagocytosis and elimination of cell debris, dead cells, 
and invading pathogens [101, 102]. However, they use 
different phagocytosis mechanisms compared to profes-
sional phagocytes such as macrophages. Although ECs 
have a remarkably lower phagocytic efficiency compared 
to professional phagocytes, accumulating evidence indi-
cates that their phagocytic activity has a significant con-
tribution in maintaining tissue homeostasis as well as in 
eliciting an adequate innate immune response against 
pathogens [101].

Capasso et  al. study showed that Pseudomonas aer-
uginosa was attached to apoptotic ECs or apoptotic 
bodies and internalized by surrounding ECs via efferocy-
tosis― a mechanism in which phagocytes engulf and 
remove apoptotic cells. Finally, the bacteria were killed 
within the cells through lysosomal processes [103].

ECs act as non‑professional antigen‑presenting cells
In addition to acting as non-professional phagocytes, ECs 
can present different antigens by major histocompatibil-
ity complex (MHC) class I and MHC class II molecules to 
the intraepithelial lymphocytes― primarily a hetero-
geneous T cell population including conventional T cell, 
γδ T cell, NKT cell, CD4 + CD8αα + double-positive T 
cell [19, 104] ― and lamina propria lymphocytes [105, 
106]. Thus, ECs have the potential to act as non-profes-
sional APCs and stimulate immune responses against 
numerous antigens [105, 106].

MHC- I molecules are expressed by most nucle-
ated cells and mainly present endogenous antigens 
to cytotoxic CD8 + T lymphocytes. While, MHC- II 
molecules are predominantly expressed on the profes-
sional APCs (DCs, B cells, macrophages) and thymic 
epithelia, and primarily present antigens to CD4 + T 
cells [107]. However, evidence shows that MHC-II 
proteins and associated processing molecules are also 
expressed by non-hematopoietic cells, such as fibro-
blasts, myofibroblasts, lymphatic endothelial cells, and 
ECs [102, 106, 108–111] which provide an important 
prerequisite for them to function as non-conventional 
APCs [112]. Although numerous studies reported the 
role of IFN-γ as a critical inducer of MHC- II expres-
sion by ECs [102, 113, 114], limited evidence shows 
that there are potential IFN-γ independent mecha-
nisms in the induction of MHC- II expression on ECs 
[115]. Despite the expression of MHC- II molecules on 
the surface of ECs being reported in both normal and 
inflammatory conditions, their expression level can be 
different between health and pathological conditions. 
For example, an elevated level of MHC-II expression 
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was found in IBD and Epstein-Barr virus (EBV)-asso-
ciated gastric cancer compared to the normal groups 
[113, 116].

In the context of antigen presentation through 
MHC-II by ECs, either immune-enhancing or immu-
nosuppressive responses have been suggested. Sev-
eral studies reported the upregulated expression of 
MHC-II by ECs under inflammatory conditions which 
activated effector CD4 + T cell responses [117, 118]. 
While, other studies reported conflicting findings and 
suggested a tolerogenic role of antigen presentation by 
ECs through regulatory T (Treg) cell expansion [119, 
120]. These contradictory observations highlight the 
need for further investigations to illustrate the exact 
outcome of antigen presentation by ECs to effector 
or regulatory CD4 + T cells. The findings mentioned 
below support the ability of ECs for activation of T 
cells through antigen presentation.

Shenoy et  al. study showed that antigen presenta-
tion by lung ECs critically regulated CD4 + resident 
memory T (TRM) cell function and reported an impor-
tant role of epithelial CD4 + TRM cell immune interac-
tions in establishing barrier immunity [106]. Koyama 
et  al. found that MHC-II-expressing intestinal ECs 
have a pivotal role in alloantigen presentation to donor 
CD4 + T cells in  vivo and thereby in the initiation of 
acute lethal graft-versus-host disease (GVHD)― an 
immunopathology mediated by mature donor T cells 
which recognize host alloantigens and leads to severe 
inflammation ― following allogeneic bone marrow 
transplantation. They also reported that intestinal EC-
specific deletion of MHC-II abrogated lethal GVHD in 
the gastrointestinal tract [118].

Hatano et  al. reported that antigen presentation 
by IFN-γ- pretreated murine small intestinal ECs 
induced antigen-specific proliferation in CD4 + intes-
tinal intraepithelial lymphocytes (IILs) and enhanced 
IFN-γ secretion by these cells [105]. As another exam-
ple, Dotan et  al. reported that co-culture of intestinal 
ECs isolated from IBD patients with autologous or 
allogeneic healthy peripheral blood T cells stimulated 
the proliferation and IFN-γ secretion in CD4 + T cells 
which were significantly greater degree than those in 
T cells stimulated with normal intestinal ECs. Moreo-
ver, blockade of MHC-II (DR) harnessed CD4 + T cell 
proliferation and the IFN-γ secretion in IBD intestinal 
EC- CD4 + T cell co-cultures, with a lesser effect in the 
normal intestinal EC- CD4 + T cell co-cultures [117].

About the extensive capabilities of ECs, in the above 
section, we attempted to provide a short overview 
of the manifold functions of these cells in immune 
defense which should be given more attention in 
future studies.

MiRNAs and epithelial immune responses
Accumulating data indicates that miRNAs play key roles 
in determining the fate and modulation of functions of 
ECs, such as proliferation [121], differentiation [16, 79], 
apoptosis, and autophagy [122] through targeting differ-
ent genes and signaling pathways. Nakato et al., with the 
generation of mice harboring intestinal EC- specific dele-
tion of Dicer1, found that intestinal epithelial miRNAs 
(miRNAs in FAE) play a significant role in the differen-
tiation and function of M cells and contribute to mucosal 
immune homeostasis [16].

MiRNAs affect the epithelial and endothelial perme-
ability through the regulation of TJP expression. For 
example, miR-122a, miR-144, and miR-200C-3p can 
increase intestinal tight junction permeability by directly 
targeting and degradation of the occludin mRNA [123–
125]. MiR-29 can increase intestinal epithelial permeabil-
ity by directly targeting and reduction of the claudin-1 
mRNA [126]. MiR-144 promotes intestinal permeabil-
ity by directly targeting ZO1 mRNA [123] (Fig. 1). Also, 
miR-21-5p increases intestinal epithelial permeability via 
induction of ARF4 (ADP ribosylation factor 4) expression 
(ARF4 is not a direct target of this miRNA) [127]. Dys-
regulation of epithelial barrier function contributes to a 
broad range of autoimmune and inflammatory diseases 
[11, 124].

Moreover, epithelium-expressed miRNAs act as media-
tors for crosstalk between ECs and the immune system 
(Fig. 1). Biotin et al. study, using a mouse model of inac-
tivated Dicer1 in the gut, showed that epithelial miRNAs 
play a fundamental role in the induction of the anti-par-
asitic Th2 (T helper type 2) responses and modulation 
of gut mucosal immunity. Particularly, they showed that 
miR-375 expression in mouse colonic epithelium induced 
higher expression of RELMβ and TSLP― two epithe-
lium-derived cytokines that regulate mucosal anti-para-
sitic Th2 response [79].

Kawasaki et al. found that miR‑429 exerts anti‑inflam-
matory function through the suppression of inflam-
matory cytokines such as IL‑8 by inhibiting the NF‑κB 
pathway in gingival EC line (squamous cell carcinoma 
Ca9‑22 cells) [15]. In Chen et al. study, stable knockdown 
(KD) gingival EC lines for several epithelium-expressed 
miRNAs were constructed and their inflammatory 
response to infection with periodontal pathogens was 
assessed. They reported that pathogen-stimulated miR-
126 KD cells produced lower IL-8 and CXCL1 levels than 
wild-type cells. In contrast, infection of miR-155 KD 
and miR-210 KD cells showed higher IL-8 and CXCL1 
expression than wild-type cells [60].

In the irradiated mouse model, oral gavage with 
hydrogen-water increased the miR-1968-5p level in 
the small intestine. MiR-1968-5p directly targeted and 



Page 9 of 22Jafari and Abediankenari ﻿BMC Immunology           (2024) 25:84 	

Fig. 1  Schematic drawing that briefly illustrates (A) the microRNA involvement in the modulation of immune response by epithelial cells; and (B) 
the effect of microRNAs in epithelial permeability through the regulation of tight junction protein expression
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downregulated the MyD88 (myeloid differentiation factor 
88) expression and alleviated the intestinal injury induced 
by irradiation [128]. It is worth noting that MyD88 was 
known as a key player in inflammatory signaling path-
ways downstream of IL-1 receptor (IL-1R) families and 
mammalian TLRs [129]. A study on the function of miR-
146a in keratinocytes identified this miRNA as a regu-
latory agent in keratinocyte innate immunity in which 
TLR2- induced miR-146a acted as a negative feedback 
regulator via suppression of the inflammatory mediators 
such as IL-8, CCL20, and TNF-α. In addition, the study 
showed that miR-146a repressed the chemotactic attrac-
tion of neutrophils by keratinocytes [61]. As well, the Li 
et al. study reported that miRNA-23a-enriched exosomes 
from hypoxic tubular ECs mediated the cross-talk 
between these cells and macrophages to promote renal 
tubulointerstitial inflammation [130]. Thus, the blockade 
of miRNA transfer between ECs and immune cells may 
act as a potential therapeutic approach to ameliorate an 
immune-related disorder. Further findings concerning 
the role of miRNAs in the regulation of immune-related 
target genes expressed in ECs were presented in Table 2.

Role of EC miRNAs in the control of microbial 
infections
The role of miRNAs in the interactions of the epithelium 
with the microbial pathogen has been widely investigated 
[151–153]. In this context, accumulating data reported 
that miRNA-mediated immune responses are involved in 
either pathogen survival or pathogen elimination. Several 
examples are mentioned as follows.

Upon influenza A virus infection, miR-136 is up-
regulated in A549 human lung ECs. Subsequently, this 
miRNA mediates the up-regulation of several cytokines 
including IL-6 and IFN-β, and stimulates innate immu-
nity by acting as a ligand for RIG-I (retinoic acid-induc-
ible gene 1) leading to suppression of virus replication 
[70]. On the other hand, influenza A virus downregulates 
miR-17-3p and miR-221 in human lung ECs during the 
early-stage infection which this causes enhanced viral 
replication possibly through GALNT3 (GalNAc trans-
ferase 3) upregulation [154].

Aguilar et  al. indicated that Salmonella typhimurium 
infection induced changes in the miRnome expres-
sion via downregulation of transcription factor E2F1. 
These changes promoted Salmonella replication in both 
infected epithelial and bystander cells [151]. Yang K et al. 
demonstrated that after Pseudomonas aeruginosa infec-
tion, miR-155 expression was upregulated in human and 
mouse corneas and was predominantly expressed in mac-
rophages. Moreover, they found that miR-155 reduced 
the macrophage-mediated elimination of P. aeruginosa by 
targeting Rheb (Ras homolog enriched in the brain), and 

therefore, involved in corneal susceptibility to P. aerugi-
nosa keratitis [155]. Another study indicated that Salmo-
nella enterica infection increased miR-128 expression in 
intestinal ECs which, in turn, decreased the levels of EC-
secreted M-CSF (macrophage colony-stimulating fac-
tor), leading to impaired M-CSF–mediated macrophage 
recruitment. It is noteworthy that M-CSF was confirmed 
as a direct target of miR-128 [74].

Recently, several studies have reported the possible 
roles of host miRNAs to serve as anti- or pro-viral effec-
tors among COVID-19 patients and provided new per-
spectives to develop preventive and treatment strategies 
based on miRNAs. For example, Lu D et al. reported that 
miR-200c can directly target and inhibit the expression 
of angiotensin-converting enzyme 2 (ACE2) ― known 
as a receptor for the spike protein of SARS-CoV-2 which 
plays fundamental roles during the COVID-19 infec-
tion― in cardiomyocytes [156]. Given that ACE2 is 
remarkably expressed in different tissues including the 
lung, heart, kidney, intestine, liver, testis, and central 
nervous system [156, 157], miR-200c could be an inter-
esting topic for future research to design a potential strat-
egy for prevention and treatment of complications during 
the COVID-19 infection.

According to a few studies, several viruses use the 
"miRNA sponge effect" to disrupt the pathways regu-
lated by host miRNAs. Through this mechanism, the 
viral genome acts as miRNA sponges that competitively 
interact with host miRNAs to deplete specific miRNAs 
and cause the disruption of miRNA/natural target inter-
actions [158, 159]. For example, a recent study reported 
that hsa-miR-302c-5p― a key regulator of ACE2― 
can be sponged by the SARS-CoV-2 genome. This effect 
potentially led to an elevated expression of ACE2 [158] 
which was found to be associated with severe COVID-19 
disease [160]. Therefore, focusing attention on such stud-
ies could be helpful to explore the exact role of miRNAs 
in the regulation of EC immune responses to microbial 
infection and may provide a promising target for clinical 
treatment of infectious diseases.

A brief overview of several studies reporting miRNAs 
expressed in EC and their respective function in the 
immune system and immune disorders is presented in 
Table 3.

Xeno‑miRNAs and effects on immune system
Growing evidence points to certain subtypes of miRNAs 
which are codified by non-host genomes but are present 
in body fluids and tissues of different species of animals, 
including humans. They have been termed xeno-miRNA 
(xeno-miRs) which can modulate gene expression among 
various species and kingdoms. Xeno-miRs in humans 
have been reported from numerous exogenous sources, 
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Table 2  Immune-related miRNAs and their direct target genes expressed in epithelial cells (ECs). MiRNAs directly target the 
mentioned genes and downregulate their expression and functions

miRNA Direct target gene: Function Epithelial cell type References

miR-128 M-CSF: A pro-inflammatory cytokine that recruits macrophages to the infection site 
and promotes them to phagocytose and kill foreign microorganisms [74]

Intestine [74]

miR-375 KLF5: A member of the KLF family of zinc finger transcription factors which acts as a key 
regulator in a diverse range of important cellular functions in the body [131]. KLF5 
is involved in the regulation of several processes such as cell growth, lung development, 
and cardiovascular apoptosis [131, 132]. It promotes proliferation and suppresses the dif-
ferentiation of goblet cells [79]

HT-29 cells [79]

miR-1968-5p MyD88: A central adaptor for the TLR signaling pathway and an essential modulator 
of the innate immune response to microbial pathogens which initiates a cascade of sign-
aling events leading to the expression of inflammatory-related genes. It has an important 
role in maintaining the mutualism between hosts and microbiota in health situations. It 
plays a key role in the regulation of gut injury [128]

Intestine [128]

miR-124 TLR6: Toll-like receptors (TLRs) detect invading pathogens and initiate an inflamma-
tory response that subsequently leads to induce specific adaptive immune responses 
[65]. TLR6, a member of the TLR family, is expressed on the surface of distinct types 
of immune and non-immune cells
MyD88: Mentioned above
TNF-α: A cytokine that is generated by various cell types, including activated mac-
rophages, T-lymphocytes, natural killer cells, and ECs [65, 133]. It has been known 
as a crucial regulator of inflammatory responses and can stimulate a series of different 
inflammatory molecules, thus, this cytokine can be involved in the pathogenesis of sev-
eral inflammatory and autoimmune diseases [133]
TRAF6: An adaptor protein that acts as a mediator downstream of various receptor 
signaling with regulatory functions, including members of the TNFR superfamily, the TLR 
family, tumor growth factor-β receptors, and T cell receptor. Also, TRAF6 can be involved 
in the activation of other signaling pathways, such as NF-κB, MAPK, PI3K, and inter-
feron regulatory factor (IRF) pathways. This molecule is necessary for the activation 
of the immune system as well as the maintenance of immune tolerance [134]
STAT3: A transcription factor that is activated downstream of a wide range of cell surface 
receptors, including cytokine receptors [135, 136]. STAT3 signaling regulates the expres-
sion of immune factors and recruits immunosuppressive cells to create a tolerant tumor 
microenvironment [136]. The activated STAT3 signaling upregulates the expression 
of oncogenes and plays crucial roles in malignancy, cell proliferation, survival, migration, 
and immune evasion of many human tumors [136–138]. As such, STAT3 plays an impor-
tant role in the regulation of both T and B cells. Therefore, dysfunction of STAT3 protein 
in lymphocytes can lead to immunodeficiency as well as autoimmune diseases [135, 
136]
IL-6R: Interleukin-6 (IL-6) activates intracellular signaling pathways via a heterodimeric 
signaling complex consisting of the IL-6 α-receptor (IL-6R) and the signal-transducing 
β-subunit glycoprotein 130 (gp130). Membrane-bound IL-6R is expressed in a limited 
number of cell types, including hepatocytes and lymphocytes. This mode of cell activa-
tion which IL-6 binds to its membrane-bound receptor is named classic signaling. The 
IL-6R can be cleaved through proteolysis which leads to the release of soluble IL-6R (sIL-
6R) from the cells. The IL-6 binds to the sIL-6R which subsequently can form a signaling 
complex with gp130 on the cell surface. This complex activates the cells through a mode 
termed trans-signaling. Principally, all cells of the human body can achieve IL-6 signals 
by trans-signaling because of the ubiquitous expression of the gp130. Mainly, trans-
signaling is causative for pro-inflammatory effects and classic signaling is responsible 
for anti-inflammatory properties of IL-6 [139, 140]
AHR: A ligand-inducible transcription factor that acts as a component of the host 
response to environmental stimuli, is essential in the regulation of immune responses 
and helps to control immune homeostasis. It regulates the differentiation of Th17 
and Treg cells. Activation of the intestinal AHR pathway has an anti-inflammatory effect 
in the gut [71]

A549 cells, BxPC3 cells, Caco-2 
cells, HT-29 cells, Colon, 
Intestine

[65, 71, 137]

miR-19b SOCS3: SOCS proteins, especially, SOCS1–3 and CISH are involved in the regulation 
of cytokine receptor signaling. These proteins are negative feedback regulators that are 
induced directly by STAT proteins and in turn act to negatively regulate the JAK/STAT 
pathway by various mechanisms. Due to the key roles of cytokines in the immune 
system, SOCS proteins can influence various aspects of immune cell behavior such 
as development, activation, differentiation, and polarization. They are also implicated 
in a range of immune-related diseases [141]. SOCS3 acts as a key regulator of immunity 
and inflammation via negative regulation of multiple cytokine signaling pathways such 
as the IL-6 family members [141, 142]

Intestine [142]



Page 12 of 22Jafari and Abediankenari ﻿BMC Immunology           (2024) 25:84 

which among them plant miRNAs are the main source of 
these exogenous RNAs. Upon dietary intake, xeno-miRs 
from different sources such as plant [161–164] and milk 
[165, 166] are absorbed by gastrointestinal ECs, packaged 
into exosomes, subsequently secreted into the blood cir-
culation and then delivered into recipient tissues/ cells 
[161, 163, 164], including the lung, liver, spleen, kidney, 
heart, DCs, adipocytes and macrophages [161, 163, 164, 
167–171], where they regulate host- gene expression 
[163, 167, 172].

Numerous studies have confirmed the immunomodu-
latory effects of xeno-miRs on the mammalian immune 
system. Cavalieri et al. demonstrated that a wide range of 
miRNAs obtained from diverse plant species could act as 
TLR3 ligands in DCs. Also, they found that plant xenom-
iRs (for instance, Fragaria vesca miR168), via impairment 
of TRIF signaling, were able to reduce inflammation and 

the pathology development of autoimmune encephalo-
myelitis in the mouse model [168].

Plant miR159a and miR156c in nut exosome-like nan-
ovesicles were found to have anti-inflammatory effects 
in  vitro and in mouse models of adipose tissue inflam-
mation via downregulation of TNF receptor superfam-
ily member 1a (Tnfrsf1a) expression in macrophages 
and adipocytes, which in turn negatively regulate TNF-α 
signaling pathway [167]. Zhou et al. study suggested that 
absorbed plant miR2911 from honeysuckle decoction 
was transferred into the lung by exosomes through cir-
culation, where it inhibited SARS-CoV-2 replication and 
accelerated the recovery process in COVID-19 patients 
[171].

Another study reported that plant miR2911, encoded 
by honeysuckle, directly targeted various influenza A 
viruses and inhibited viral replication [164]. Ginger 

Table 2  (continued)

miRNA Direct target gene: Function Epithelial cell type References

miR-682 PTEN: Generally is known to repress cell survival signaling, such as Akt, and therefore 
promotes cell death [143]

Intestine [143]

miR-192 MIP-2α (CXCL2): A chemotactic CXC chemokine that is expressed by ECs and mac-
rophages. It is significantly elevated in ulcerative colitis tissues [67]

Colon [67]

miR-92b Sirt6: A nicotinamide adenine dinucleotide-dependent enzyme which acts as a protec-
tive molecule. It plays roles in metabolism, aging, and disease and protects intestinal ECs 
against inflammatory injury [144]

Intestine [144]

miR-346 VDR: A nuclear hormone receptor that mediates the biological activities of the vita-
min D hormone. Epithelial VDR signaling plays a key role in maintaining the integrity 
of the mucosal epithelial barrier and protects against mucosal inflammation [145]

Colon, Intestine [145]

miR-541-5p HMGB1: A highly conserved nuclear protein that has a role in inflammatory progression. 
It is considered a putative danger signal for various inflammatory diseases. It plays a criti-
cal role in the pathogenesis of acute lung injury [146]

Alveolus [146]

miR-145-5p KIF3A: A member of the kinesin-2 family and a component of a trimeric motor complex 
that regulates microtubular function and transport. This complex is required for the for-
mation and function of motile, non-motile, and sensory cilia. KIF3A plays important roles 
in respiratory ECs, such as barrier function, epithelial repair, and intracellular protein 
trafficking. Deficiency of KIF3A in respiratory ECs implicates in a high susceptibility to aer-
oallergens and airway hyperresponsiveness, and increases the severity of pulmonary 
eosinophilic inflammation and Th2-mediated inflammation following aeroallergen expo-
sure. The human KIF3A gene locus is associated with susceptibility to atopic dermatitis, 
rhinitis, and asthma [18, 147]

Airway [18]

miR-30c-5p SOCS1: A member of the SOCS family proteins that is induced by a wide range 
of cytokines and known as a negative feedback inhibitor of the JAK/STAT signaling path-
way induced by cytokines [148]. SOCS1 regulates various cytokines involved in the con-
trol of immunity and inflammation. For instance, it is one of the inducible negative 
regulators of IFN signaling [141, 148]
JAK1: The JAK/STAT pathway is utilized by the majority of cytokine receptors to transmit 
signals into the nucleus for the regulation of specific genes. In mammals, the JAK family 
consists of 4 members (JAK1, JAK2, JAK3, and TYK2) [141]. JAK1 is widely expressed 
in almost all tissues and is involved in various cytokine-receptor signaling, such as IL-2R, 
-4R, and -6R [149]. Also, JAK1 is a key signaling component in IFN-I signaling [149, 150]

Vero E6 cells, MARC-145 cells [148, 150]

Abbreviation: M-CSF Macrophage colony-stimulating factor, KLF5 Krüppel-like factor 5, MyD88 Myeloid differentiation primary response gene 88, TLR6 Toll-like 
Receptor 6, TNF-α tumor necrosis factor-α, TRAF6 TNFR-associated factor 6, MAPK mitogen-activated protein kinase, PI3K phosphoinositide 3-kinase, STAT3 Signal 
transducer and activator of transcription 3, IL-6R Interleukin-6 receptor, AHR Aryl hydrocarbon receptor, SOCS3 Suppressor of cytokine signaling 3, CISH cytokine-
inducible SH2-containing protein, PTEN Phosphatase and tensin homolog, MIP-2α Macrophage inflammatory peptide-2α, Sirt6 Sirtuin 6, VDR Vitamin D receptor, 
HMGB1 High-mobility group box 1, KIF3A Kinesin family member 3A, SOCS1 Suppressor of cytokine signaling protein 1, JAK1 Janus kinase 1

Cells: HT-29 human colon adenocarcinoma cell line, A549 human pulmonary epithelial cell line, BxPC3 human pancreatic cell line, Caco-2 human colon cancer cell line, 
Vero E6 kidney epithelial cells isolated from an African green monkey, MARC-145 monkey kidney epithelial cell line
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exosome-like nanoparticle miRNAs (aly-miR396a-5p and 
rlcv-miR rL1-28-3p) reduced SARS-CoV-2-induced lung 
inflammation and apoptosis via inhibition of expression 
of viral RNA polymerase Nsp12 and spike genes [170].

Moreover, diet-derived exosome-like nanoparticles 
containing miRNAs can be taken up by the gut micro-
biota and are able to modulate their composition and 
function in mammals. In this regard, Teng et al. reported 
that mdo-miR7267-3p, one of the miRNAs present in 
ginger exosome-like nanoparticles, repressed monooxy-
genase ycnE expression in Lactobacillus rhamnosus, 
which increased the production of indole-3-carboxalde-
hyde (I3A)― a ligand for aryl hydrocarbon receptor 
(AHR)― leading to the induction of IL-22 production 
via activation of AHR pathway in gut lymphocytes. These 
actions improved gut barrier function and ameliorated 
colitis in mice [173]. Another study reported that bovine 
milk-derived extracellular vesicles through immune-
related miRNAs changed gut microbiota composition, 
modulated their metabolites, and strengthened intestinal 
immunity in mice [174].

Interestingly, Li et  al. study provided evidence that 
plant miRNAs (for instance, miR2911 derived from hon-
eysuckle) in the maternal diet can be delivered to the 
fetus through the placenta and regulate fetal gene expres-
sion [162].

However, the direct effects of xeno-miRs on the 
immunomodulatory functions of ECs as well as xeno-
miR-mediated cross-talk between ECs and neighbor-
ing immune cells have not been deeply explored yet. 
Future research in this field opens promising avenues 
for miRNA-based treatment of immune malignancies 
through diet.

It is noteworthy to underline that despite the above-
mentioned evidence, several researchers have reported 
negative/negligible expression of xeno-miRs in body 
fluids or tissues of recipients and rejected the xeno-miR 
hypothesis [175–177]. It seems that technical issues such 
as experimental artifacts and cross-contaminations [176], 
xeno-miR degradation during the digestive process [175], 
and being selective of diet-derived xenomiR absorption 
(dependent on miR sequence) by animals [178] are the 
possible causes for studies where xeno-miRs were not 
detected in animal bodies. However, further studies are 
needed to resolve these contradictions.

Therapeutic potential of miRNAs to treat 
conditions involving EC disorders
In the context of miRNA roles in immunoregulatory 
functions of ECs, promising therapeutic applications of 
miRNAs are to use their immunomodulatory capacities 
to induce antimicrobial pathways during infection as well 
as to control the deregulated inflammatory responses in 

immune-related disorders such as IBD and asthma (as 
noted in Table 3). For instance, miR-128 level in mouse 
intestinal and colon tissues was upregulated during Sal-
monella enterica infection. The elevation in miR-128 
level decreased the secretion of M-CSF by host ECs and 
the M-CSF–mediated macrophage recruitment, leading 
to the escape of Salmonella from macrophages (Fig.  1). 
On the other hand, intragastric delivery of anti-miR-128 
promoted M-CSF–induced macrophage recruitment and 
suppressed S. enterica infection in mice [74]. However, 
despite extensive studies confirming potential therapeu-
tic applications of miRNAs, few studies have been con-
ducted as clinical trials and none of those have reached 
phase III [179] or led to Food and Drug Administration 
(FDA)– approved drug. Thus, it seems that the transla-
tion of these research findings into clinical treatments 
faces significant challenges.

As an example of miRNA-based therapy target-
ing ECs, we refer to the RG-101 designed for use in 
patients with chronic hepatitis C virus (HCV) infection. 
In which anti-miR-122 oligonucleotide was conjugated 
to N-acetylgalactosamine‒ a high-affinity ligand for the 
asialoglycoprotein receptor that is widely expressed on 
hepatocytes [180]. It is interesting to note that miR-122 
was known as a crucial host factor for HCV replication. It 
binds to 5´ UTR of the HCV RNA and enhances genome 
stability and translation [181]. To evaluate the safety and 
efficacy of RG-101 in human subjects, 32 patients were 
enrolled in phase 1B randomized controlled trial study. 
The results showed that a single subcutaneous injection 
of RG-101 significantly reduced viral load in patients at 
week 4 of treatment. In addition, HCV RNA levels sub-
stantially decreased in all treated patients and were not 
detectable for at least 76  weeks (end of follow-up) in 3 
patients with sustained virological response. Nonethe-
less, viral rebound‒ which is associated with mutations 
in miR-122 binding regions in the HCV 5´ UTR‒ was 
observed in most patients. Some severe adverse events, 
including intrahepatic cholestasis and hyperbiliru-
binemia, were reported in some patients [180]. Anti-
viral immunity analysis showed that NK-cell frequency 
increased and NK-cell activating receptors (such as 
NKp30 and NKp46), NK-cell IFN-γ production, and IFN-
γ-induced protein 10 (IP-10) level in plasma decreased 
after RG-101 administration. Moreover, HCV-specific 
T-cell responses did not significantly change in patients. 
Overall, the data suggested that the NK cells, and not 
adaptive immunity, may have involved in the control of 
HCV infection [182]. Given that miR-122 acts as a tumor 
suppressor in hepatocellular carcinoma [183], the pos-
sibility of long-term risk of hepatocellular carcinoma 
development in patients with HCV infection following 
RG-101 administration should be noticed.
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In another phase 1 clinical trial study, the safety, opti-
mal dosing, and efficacy of TargomiRs were tested in 
patients with malignant pleural mesothelioma (MPM). 
TargomiRs were developed as minicells loaded with miR-
16 mimic with an anti-EGFR bispecific antibody to tar-
get EGFR-expressing tumor cells [184]. Mesothelial cells 
have characteristics of both mesenchymal and epithelial 
cells which line the serosal cavities (peritoneal, pericar-
dial, and pleural) and internal organs [185, 186]. MiR-16 
was reported to have tumor suppressor activity in MPM 
[187].

In the above-mentioned study, 26 patients received at 
least one dose of TargomiR. During the response evalu-
ation, the following results were observed in patients: 5% 
with a partial response, 68% with stable disease, and 27% 
with progressive disease. Moreover, toxicity effects, such 
as inflammation symptoms, anaphylaxis, and cardiac 
events, which were dependent on the dose of TargomiR 
administration, were recorded [184].

In sum, although it is now clarified that miRNAs are 
key regulators of gene expression and their dysfunction is 
involved in many diseases, attempts to produce miRNA-
based therapies did not end with a practical outcome. 
This issue is partly related to the inherent characteris-
tics of miRNAs, including a large number of endogenous 
targets, low binding affinity with its target which leads 
to nonspecific actions, and degradation of miRNA mim-
ics/ anti-miRNAs by circulating RNase enzymes [179]. 
In addition, severe immune-mediated adverse reactions, 
such as those were observed in MRX34 administration 
in several patients with advanced solid tumors [188], are 
other obstacles that remain to be overcome. Neverthe-
less, the development of the targeted delivery system in 
which miR mimics/anti-miRs were transported to the 
specific tissue, can improve the efficacy and safety of a 
miR-based therapy [179].

In total, considering the above-mentioned points, we 
believe that a safe therapeutic compound that restores 
disordered host cells to compensate deregulated miRNA 
at its physiological level rather than exogenously trans-
ferred miRNA mimics /anti-miRNAs could be benefi-
cial to resolve the challenges related to the miR-based 
therapeutics. Further research is needed to be directed to 
identifying these compounds and their molecular mecha-
nisms of action.

Conclusion
Taken together, the studies summarized in this review 
illustrate the various and multifaceted roles of miRNAs 
in the immunoregulatory functions of ECs. Although 
we attempted to provide a comprehensive review, how-
ever, an in-depth overview of all aspects related to this 
issue was not possible in the current paper due to space 

limitations. For example, with regard to this issue, one 
of the valuable aspects can be a deep understanding of 
the role of miRNAs in cross-talk between microbiota, 
ECs, and the immune system. However, it is very benefi-
cial and practical that reliable knowledge provided from 
a comprehensive review be translated into the develop-
ment of novel therapeutics supporting human health.
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