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Abstract
Background
Motor evoked potential (MEP) monitoring is a commonly employed method in neurosurgery to prevent
postoperative motor dysfunction. However, it has low prediction accuracy for postoperative paralysis. This
study aimed to develop a decision tree (DT) model for predicting postoperative motor function using MEP
monitoring data.

Methodology
In this retrospective cohort study, we used datasets, comprising 14 variables including MEP amplitudes,
obtained from 125 patients who underwent brain tumor resection with intraoperative MEP monitoring at our
hospital. Prediction models were developed using DT and receiver operating characteristic (ROC) curve
analyses. Model performance was assessed for accuracy, sensitivity, specificity, kappa (κ) coefficient, and
area under the ROC curve (AUC) for internal and external validation. For the external validation of the
classification model, we retrospectively collected data from an additional 28 patients who underwent brain
tumor surgery with MEP monitoring.

Results
The amplitude of the last measured MEP and amplitude ratio were independent predictors of outcomes. The
DT model achieved an accuracy of 0.921, sensitivity of 0.917, specificity of 0.923, and AUC of 0.931 using the
internal test. In comparison, the ROC curve based on the amplitude of the last measured MEP achieved a
sensitivity of 0.875, specificity of 0.906, and AUC of 0.941. External validation was performed and the DT
model was superior to prediction by cutoff values from ROC curves in terms of accuracy, sensitivity,
specificity, and κ coefficient.

Conclusions
Our study suggested the usefulness of DT modeling for predicting postoperative paralysis. However, this
study has several limitations, such as the retrospective design and small sample size of the validation
dataset. Nonetheless, the DT modeling presented in this study might be applicable to surgeries using MEP
monitoring and is expected to contribute to devising treatment strategies by predicting postoperative motor
function in various patients.

Categories: Other, Neurosurgery
Keywords: brain tumor, decision tree, machine learning, motor evoked potentials, paralysis

Introduction
Multidisciplinary treatment improves tumor removal and survival rates in cases requiring brain tumor
resection [1]. Similarly, intraoperative neurophysiological monitoring improves functional prognosis [1,2].
However, radical brain tumor resection increases the risk of poor functional prognosis [3]. New development
of postoperative defects is associated with a reduction in overall survival [4]. Thus, accurate prediction of
postoperative motor function in patients with brain tumors would be useful for treatment planning and
improving postoperative quality of life. Intraoperative assessment of motor function is important for
avoiding persistent postoperative motor dysfunction. Intraoperative motor evoked potentials (MEPs) are
measured for assessing motor function during surgery [5]. Myogenic MEP monitoring detects the derivative
signal of compound muscle action potentials by transcranial or direct electrical stimulation of the motor
cortex [6]. However, MEPs could be affected by various factors, including anesthetics, blood pressure, and
the patient’s motor function, which can lead to false positives termed anesthetic fade [7,8]. Furthermore,

1 1 2 2 1

1 1 1 1 1

 Open Access Original Article

How to cite this article
Yuno T, Nakade Y, Nakada M, et al. (November 21, 2024) Predicting Postoperative Motor Function After Brain Tumor Resection With Motor
Evoked Potential Monitoring Using Decision Tree Analysis. Cureus 16(11): e74155. DOI 10.7759/cureus.74155

https://www.cureus.com/users/645955-takeo-yuno
https://www.cureus.com/users/684226-yusuke-nakade
https://www.cureus.com/users/891102-mitsutoshi-nakada
https://www.cureus.com/users/891099-masashi-kinoshita
https://www.cureus.com/users/891105-masako-nakata
https://www.cureus.com/users/891106-shiori-nakagawa
https://www.cureus.com/users/692200-hiroyasu-oe
https://www.cureus.com/users/891111-mika-mori
https://www.cureus.com/users/893047-takashi-wada
https://www.cureus.com/users/891112-hajime-kanamori
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


despite various studies evaluating MEP monitoring [8,9], whether it could help predict or prevent
postoperative motor dysfunction remains unclear.

Such uncertainty about MEP monitoring may have a variety of effects, including confounding the surgeon
and excessive therapeutic intervention in patients. In addition, MEP monitoring has limitations due to the
lack of consensus on alert criteria for intraoperative MEP assessment and on the importance of MEP
amplitude attenuation for distinguishing between temporary and permanent deficits [10]. Accurate
assessment of postoperative motor function using MEP monitoring data not only solves these problems but
also provides other benefits, such as enabling appropriate rehabilitation planning.

Machine learning (ML) prediction models are useful for predicting disease and postoperative outcomes [11-
13]. ML has been used for preoperatively predicting postoperative motor dysfunction and other problems
after adult spinal deformity surgery [14]. Among the ML algorithms used, a decision tree (DT) analysis model
is simple to understand and can be easily visualized [13,15]. DT is an ML algorithm that is useful for risk and
decision analysis. To date, there have been no reports on the application and usefulness of ML techniques,
particularly the DT model, for predicting postoperative motor dysfunction in patients with brain tumors
based on MEP monitoring data.

Therefore, in this retrospective observational study, we developed and evaluated a DT model using MEP
monitoring data for postoperatively predicting motor function, over two months, based on manual muscle
testing in patients who underwent brain tumor surgery.

Materials And Methods
Patients
This retrospective observational study used routinely collected data from 129 patients who underwent brain
tumor surgery with MEP monitoring at the Department of Neurosurgery, Kanazawa University Hospital,
between April 2016 and February 2021. We excluded patients with undetectable baseline MEPs and those
with postoperative stroke or cerebral hemorrhage that resulted in paralysis (Figure 1). Motor function was
assessed in all patients at least two months after surgery. The median time for assessing motor function was
3.5 months after surgery. In the stable group, there was no postoperative motor dysfunction in the muscles
that were not included in the analysis. Postoperative motor dysfunction was defined as a postoperative
reduction of at least one manual muscle testing grade. Recorded patient data included baseline values, such
as age, sex, body mass index, preoperative motor weakness, lesion side, tumor location, method of MEP
stimulation, and MEP monitoring. We also recorded postoperative values, such as pathological diagnosis,
operative time, baseline MEP amplitude, changes in intraoperative MEP response (vs. baseline amplitude),
the amplitude of the last measured MEP, and amplitude ratio (last measured/baseline amplitude). The
collected data comprised six numerical values (e.g., MEP amplitude) and eight nominal attributes (e.g., sex).

FIGURE 1: Study flow diagram.
A. Decision tree model building and internal test. B. External validation.

ROC: receiver operating characteristic

Intraoperative motor evoked potential monitoring
Intraoperative MEP monitoring was performed using a neurophysiological monitoring system (Neuro
Master; Nihon Kohden, Tokyo, Japan). Regarding MEP monitoring, the examiner (e.g., laboratory technician)
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monitored the waveform and reported to the surgeon if it declined. Disposable nerve conduction study
electrodes (Nihon Kohden) were placed in the target muscle on the opposite side of the affected location,
including in the abductor pollicis brevis, abductor digiti minimi, anterior tibialis, and abductor hallucis. The
muscles to be monitored intraoperatively were determined by the surgeon. When more than one muscle was
monitored in patients, we included only the muscle mostly affected by surgery, in consultation with the
surgeon, in this analysis.

The motor cortex was stimulated either by transcranial stimulation (strength of stimulation, 50-200 mA;
train of stimulation, 5; pulse duration, 0.2-0.5 ms) or by direct cortical stimulation (strength of stimulation,
10-30 mA; train of stimulation, 5; pulse duration, 0.2 ms). Suprathreshold stimulation intensity was used.
The baseline MEP was measured before brain tumor excision, followed by MEP waveform monitoring. When
the MEP amplitude decrease was greater than 50%, it was reported to surgeons [5,6].

Preprocessing
Our data were imbalanced having fewer cases compared with those without postoperative motor
dysfunction. As this might affect the prediction model performance, a synthetic minority oversampling
technique (SMOTE) was used [16]. This method, proposed by Chawla et al. [16], was based on the k-nearest
neighbors method. In a preliminary study, we used nine different SMOTE percentages (100-900%) and found
optimal prediction performance with 800%. Using this as the SMOTE oversampling value, the number of
positive samples was increased from eight to 72 instances.

These datasets had a high attribute-to-data ratio. Therefore, only features with significant differences
depending on the presence or absence of postoperative motor dysfunction were used for modeling. As the DT
algorithm used for evaluating the association between MEP monitoring data and postoperative motor
function did not require standardization, the only preprocessing method applied was SMOTE.

Decision tree model development
WEKA version 3.8.6 (Waikato University, Hamilton, New Zealand) was used for data mining. In a preliminary
study, several different types of supervised classification methods in the WEKA toolkit were used for
predicting postoperative motor dysfunction. Based on previous reports [11,17], we used three basic
classification algorithms and an ensemble algorithm. The basic classification algorithm methods were C4.5
(using WEKA’s J48), random forest, and artificial neural network (WEKA’s multi-layer perceptron). The
ensemble algorithm used was adaptive boosting (WEKA’s AdaBoostM1) combined with J48. The following
parameters were used for the DT model: a confidence factor of 0.16 and a minimum required leaf node
sample number of 3.

Classification performance assessment
In this study, the 10-fold cross-validation method was used to develop a prediction model and evaluate
classification performance (Figure 1). DT model performance was evaluated by assessing overall accuracy:
true-positive + true-negative/(true-positive + true-negative + false-positive + false-negative), sensitivity:
true-positive/(true-positive + false-negative), specificity: true-negative/(false-positive + true-negative),
kappa (κ) coefficient, and area under the receiver operating characteristic (ROC) curve (AUC). The overall
accuracy was defined as the ratio of correctly predicted patients. Sensitivity was determined by the
percentage of patients wherein postoperative motor dysfunction was correctly predicted. Specificity
measured the proportion of patients with favorable postoperative motor function outcomes who were
correctly predicted. An ROC curve was constructed by plotting the percentage of true positives versus the
percentage of false positives. The optimal classifier should have an AUC approaching 1.0, whereas a value of
0.5 was equivalent to a random guess. κ coefficient was used to assess the agreement of the results. Values
of κ coefficient in the ranges of 0.41-0.60, 0.61-0.80, and 0.81-1.00 were defined as moderate, substantial,
and perfect agreement, respectively [18]. Additionally, the algorithm performance was compared using a
pairwise comparison between schemes using the standard t-test with the WEKA Experimenter tool.

Additional external validation dataset
Considering external validation of the classification model, we retrospectively collected data from additional
patients who underwent brain tumor surgery with MEP monitoring at our hospital between January 2021 and
March 2024. Patients with incomplete clinical information were excluded from this study. Ultimately, 28
patients were included in the additional testing dataset (Figure 1).

Statistical analysis
Continuous variables, expressed as means and standard deviations, were compared using the Mann-Whitney
U test. Statistical significance was set at p-values <0.05. Fisher’s exact test or the chi-square test was used for
comparing categorical variables. We performed binary logistic regression analysis with postoperative motor
dysfunction as the outcome variable. Statistically significant variables (p < 0.05) were fitted into the
multivariate regression model with a forward-backward stepwise selection method to determine the
independent predictors of postoperative paralysis. Bell curve for Excel (Social Survey Research Information

 

2024 Yuno et al. Cureus 16(11): e74155. DOI 10.7759/cureus.74155 3 of 11

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


Co., Ltd, Shinjuku, Japan) and MATLAB (MathWorks, Natick, MA, USA) were used for statistical analyses.

Results
Baseline characteristics
Overall, 129 patients underwent surgery for brain tumor removal with MEP monitoring. Four patients were
excluded based on the exclusion criteria; thus, 125 patients were included in this study. This patient group
included four pediatric patients aged between six and 15 years. Evaluating the motor function of the muscles
monitored by MEP more than two months after surgery revealed that, in eight (6.4%) patients, motor
function levels had decreased compared with preoperative levels, whereas 117 (93.6%) patients showed no
change in motor function. Patient characteristics are presented in Table 1. The amplitude of the last
measured MEP and amplitude ratio were significantly lower in the postoperative motor function decline
group (Table 1, Figure 2). Moreover, preoperative motor weakness and changes in intraoperative MEP
responses were significantly associated with postoperative motor function.

Characteristic
Postoperative motor function

Test statistics P-value
Stable (n = 117) Decline (n = 8)

Age, years 57.6 (18.7) 59.75 (11.1) U = 448.0 0.844

Sex

χ2 = 2.811 0.094Male 52 6

Female 65 2

Body mass index, kg/m2 22.7 (3.7) 21.7 (2.3) U = 404 0.594

Preoperative motor weakness

N/A 0.039Positive 30 3

Negative 87 5

Pathological diagnosis

χ2 = 3.942 0.268

Meningioma 54 2

Glioblastoma 25 4

Schwannoma 8 0

Others 30 2

Side of lesion

χ2 = 2.439 0.295
Left 49 3

Right 51 6

Others 17 0

Tumor location

χ2 = 5.504 0.239

Frontal lobe 19 1

Temporal lobe 14 3

Falx 9 0

Convexity 18 0

Others 57 4

Operative time, min 553.7 (205.9) 583.1 (252.7) U = 448.5 0.879

Methods of stimulation

N/A 0.147Transcranial 64 2

Direct cortical 53 6

Muscle monitored by MEP
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Abductor pollicis brevis 73 5

χ2 = 0.250 0.732Abductor digiti minimi 24 2

Tibialis anterior 2 0

Abductor hallucis 18 1

Amplitude of baseline MEP, μV 919.8 (1085.9) 394.9 (620.5) U = 275.0 0.052

Changes in intraoperative MEP response (vs. baseline amplitude)

N/A 0.039MEP decline >50% 30 5

MEP decline ≤50% 87 3

Amplitude of last measured MEP, μV 976.8 (1079.5) 52.7 (92.0) U = 55.5 <0.001

Amplitude ratio: last measured/baseline, % 149.4 (126.7) 55.7 (63.9) U = 203.0 0.008

TABLE 1: Overview of patient characteristics.
Continuous variables are expressed as mean (standard deviation).

Continuous variables were compared using the Mann–Whitney U test. Fisher’s exact test or the chi-square test was used for comparing categorical
variables. Statistical significance was set at p-values <0.05. For statistical analysis methods that do not use test statistics (e.g., Fisher’s exact test), this
field was marked as not applicable.

N/A: not applicable; MEP: motor evoked potential

FIGURE 2: A. The amplitude of the last measured MEP. B. Amplitude
ratio: last measured/baseline MEP amplitudes (Mann–Whitney U test).
MEP: motor evoked potential

Predictors of postoperative motor dysfunction using multivariable
analyses
The results of multivariate regression analysis to assess the factors associated with predicting postoperative
motor dysfunction are listed in Table 2. The amplitude of the last measured MEP (odds ratio (OR) = 0.9867;
95% confidence interval (CI) = 0.9746-0.9990; p = 0.0344) and the amplitude ratio (OR = 0.9839; 95% CI =
0.9682-0.9998; p = 0.0477) were independent risk factors for the postoperative motor dysfunction. Figure 3
shows the ROC curve for the cutoff value to determine postoperative motor function based on the amplitude
of the last measured MEP and amplitude ratio. The ROC curve based on the amplitude of the last measured
MEP achieved an AUC of 0.941, a sensitivity of 0.875, and a specificity of 0.906 (p < 0.001). This ROC curve
indicated that the appropriate cutoff value was 98.0 μV. The ROC curve for the amplitude ratio showed an
AUC of 0.783, sensitivity of 0.750, and specificity of 0.821 (p < 0.014). The ROC curve indicated that the
appropriate cutoff value was 76.4%.
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Characteristic β coefficient Odds ratio 95% CI Wald P-value

Amplitude of the last measured motor evoked potential -14.2399 0.9867 0.9746 0.9990 4.4768 0.0344

Rate of amplitude: last measured/baseline -2.0322 0.9839 0.9682 0.9998 3.9217 0.0477

Preoperative motor weakness -0.6882 0.2160 0.0292 1.5971 2.2541 0.1333

TABLE 2: Predictors of postoperative motor dysfunction using binary logistic regression
analysis.
Model χ2: p < 0.01.

The multivariate regression model with a forward-backward stepwise selection method was used to determine independent predictors of postoperative
paralysis.

CI: confidence interval

FIGURE 3: Prediction performance and area under the ROC curves of
the amplitude of the last measured MEP and amplitude ratio using
internal tests.
ROC curves are drawn using these two variables and the AUCs are compared. The two variables are used to
calculate a cutoff value to discriminate postoperative motor function.

ROC: receiver operating characteristic; MEP: motor evoked potential; AUC: area under the curve

Prediction performance of the decision tree model
Figure 4 shows the DT model of postoperative motor dysfunction. Regarding developing the DT model,
variables were selected from the items that showed significant differences or significant associations in
patient characteristics. The DT model used the following four variables for postoperative motor function
prediction: preoperative motor weakness, changes in intraoperative MEP response, the amplitude of the last
measured MEP, and amplitude ratio. As our data were imbalanced, with fewer cases of postoperative motor
dysfunction compared with cases of stable motor function, we oversampled using SMOTE to increase the
eight cases to 72. Using the internal test, the DT model achieved an overall accuracy of 0.921, sensitivity of
0.917, specificity of 0.921, and AUC of 0.931.
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FIGURE 4: DT model for predicting postoperative motor function and
prediction performance using the internal test.
Regarding the DT, the elliptical node represents the condition, and the rectangular node represents the predicted
outcome, i.e., stable or decline in postoperative motor function. Starting from the root node (i.e., “Amplitude of last
measured MEP ≤98 μV”), the corresponding value of the patient is compared with the condition in the root node. If
the patient’s last measured MEP amplitude is less than 98 μV, the next node is “Preoperative motor weakness”;
alternatively, the algorithm jumps to the “Changes in intraoperative MEP response” node. The patient’s attribute
values continue to be compared with other internal nodes of the tree until a rectangular node is reached, at which
point the outcome prediction is obtained. The amplitude of the last measured MEP is the root node of the DT. It
rates the function of the corticospinal tract and is crucial for predicting postoperative motor function. In patients
with the last measured MEP amplitude >98 μV, changes in intraoperative MEP responses are of significance, and
the corresponding postoperative motor function will be stable if “Changes in intraoperative MEP response” decline
to less than 50%. In patients with the last measured MEP amplitude below 98 μV, preoperative motor weakness
plays a significant role, and postoperative motor function would decline if the patient shows preoperative motor
weakness.

DT: decision tree; MEP: motor evoked potential

Table 3 presents the prediction performance of the cutoff value from the ROC curve of the amplitude of the
last measured MEP and DT model in the 28 external validation datasets. Using the optimal cutoff value of
the amplitude of the last measured MEP yielded an overall accuracy of 0.623, sensitivity of 0.500, and
specificity of 0.654. However, the DT model achieved an overall accuracy of 0.857, sensitivity of 1.000, and
specificity of 0.846. The confusion matrix results are presented in Table 4. The κ coefficients, which
indicated the degree of agreement between predicted and actual values, were 0.054 (p = 0.662) for the
optimal cutoff value of the last measured MEP amplitude and 0.4440 (p = 0.005) for the DT model. Regarding
the validation using Fisher’s exact test, the predicted number of fits between the DT model and cutoff values
were significantly different (p = 0.010).

Prediction method Accuracy Sensitivity Specificity

Cutoff value from the ROC curve (amplitude of the last measured motor evoked potential) 0.623 0.500 0.654

J48 (decision tree) 0.857 1.000 0.846

TABLE 3: Prediction performance for external validation.
ROC: receiver operating characteristic
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Cut-off value from the ROC curve
Predicted

J48 (decision tree)
Predicted

Decline Stable Decline Stable

Actual
Decline 1 1

Actual
Decline 2 0

Stable 9 17 Stable 4 22

κ = 0.054 (p = 0.662) κ = 0.440 (p = 0.005)

TABLE 4: Confusion matrix of external validation.
ROC: receiver operating characteristic

Discussion
In this study, a postoperative motor function prediction model was developed using DT analysis of clinical
and MEP monitoring data of patients with brain tumors who underwent tumor resection with MEP
monitoring. The DT model showed high accuracy for predicting postoperative motor function after brain
tumor resection when applied to an additional independent dataset. In this DT model, all elements used to
make forecasts and their selection criteria are explicitly described. This high explanatory power is an
advantage of this model. The results indicated that this DT-based model was more useful for predicting
postoperative motor function than using the traditional cutoff MEP amplitude values from ROC curves.

Among the ML algorithms, the DT model applied in this study is easy to read, providing interpretable and
logical rules. Furthermore, the DT model results indicated important classification attributes. These
characteristics of DT analysis make it suitable for the analysis of MEPs, which are affected by various factors.
The conventional prediction of postoperative paralysis based on MEP amplitude values and amplitude ratios
is difficult because the multiple factors involve complicated evaluation. In contrast, DTs use multiple factors
to build a predictive model and improve accuracy, demonstrating the clinical usefulness of the DT model.

Furthermore, a unique feature of this study was the use of the SMOTE oversampling technique. This
technique has previously been used to improve the accuracy of a prediction model for diabetes development
based on cardiopulmonary function recordings [19]. In our preliminary study, the classification performance
of the DT model was also improved using SMOTE, increasing the eight identified cases to 72 postoperative
paralysis cases. When standardization and SMOTE were applied for preprocessing, AdaBoostM1
demonstrated the highest accuracy, sensitivity, and κ coefficient (Table 5). However, the DT model showed
no significant difference in classification performance compared with other complex algorithms, such as
AdaBoostM1 (Table 6).
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Preprocess Algorithm Accuracy Sensitivity Specificity κ coefficient AUC

Standardization

J48 0.915 0.178 0.138 0.195 0.637

RF 0.918 0.134 0.138 0.264 0.877

MLP 0.920 0.065 0.225 0.204 0.936

AdaBoostM1 0.909 0.083 0.100 0.153 0.866

Mean 0.915 0.115 0.150 0.204 0.829

Standardization + synthetic minority oversampling
technique

J48 0.913 0.876 0.918 0.819 0.927

RF 0.916 0.857 0.927 0.824 0.973

MLP 0.906 0.884 0.916 0.807 0.970

AdaBoostM1 0.921 0.898 0.916 0.833 0.964

Mean 0.914 0.879 0.919 0.821 0.959

TABLE 5: Classification performance by preprocessing conditions and algorithms.
AUC: area under the curve; RF: random forest; MLP: multi-layer perceptron; AdaBoostM1: adaptive boosting

Algorithm Accuracy Significant Sensitivity Significant Specificity Significant κ coefficient Significant AUC Significant

J48 0.906

No

0.885

No

0.886

No

0.801

No

0.928

No

Adaboost M1 0.920 0.908 0.891 0.830 0.972

TABLE 6: Comparison of prediction performance for J48 and AdaboostM1.
The algorithm performance was compared using a pairwise comparison between schemes using the standard t-test with the WEKA Experimenter
tool. This analysis adopted a significance level of 0.05.

AUC: area under the curve; AdaBoostM1: adaptive boosting

The resulting DT model was superior to the ROC of the last measured MEP amplitude in terms of sensitivity
and specificity using the internal test. The first branch of the DT model was the last measured MEP
amplitude and used a value of 98 μV for this variable as a criterion. The results of the DT model, which
showed more cases of postoperative motor dysfunction when the last measured MEP amplitude was below 98
μV, supported the relationship between MEP amplitude and postoperative motor function. An amplitude of
98 μV in the last measured MEP was also the cutoff value calculated by the ROC curve. Furthermore, several
reports have shown that the MEP amplitude criterion for predicting permanent motor dysfunction is less
than 100 µV [20-22]. Thus, the findings of these reports and the criterion for the first branch of DT in this
study were similar. Many studies have used an amplitude decrease of greater than 50% of the baseline
waveform as a warning criterion [9]. In this study, the amplitude ratio formed the fourth branch of the DT,
suggesting that it was not as important as the amplitude of the last measured MEP for predicting paralysis.
This may be due to the divergence of baseline amplitude and preoperative motor functions.

According to the external validation results (Table 3), the DT model showed better classification
performance compared with that based on the ROC curve cutoff value. Based on the confusion matrix, only
the κ coefficient of the DT model was significant (Table 4). Fisher’s exact test showed that the predicted
number of fits for the DT model and cutoff values were significantly different. These results indicated that
applying the DT model could have the potential to reduce false positives, which are often problematic for
MEP monitoring. These results can be attributed to ML algorithms, such as DT models, which use multiple
factors to make predictions. In other words, for predicting events involving multiple variables, such as MEP
monitoring, the results suggest that ML is effective. Another feature of DT modeling is its ability to
accommodate both continuous and categorical variables. Due to these advantages, DT analysis is widely
used in biomedical sciences [23,24]. For example, DT models have been used in neurosurgery to predict
long-term outcomes after poor-grade aneurysmal subarachnoid hemorrhage [13] and identify prognostic
factors for survival in patients with recurrent glioblastoma [15]. The DT model is a visual representation of
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the decision-making process and can be easily applied and interpreted. Considering these features, a DT
model using MEP monitoring data, such as the one in this study, may aid in clinical decisions, such as
determining the extent of intraoperative resection of tumors and choice of postoperative therapy, and may
help develop guidelines for evaluating MEP monitoring data. However, the clinical integration of the DT
model among other facilities is currently difficult due to challenges in standardization and generalizability.
It may be possible for each institution to develop its own DT model, validate it, and implement it in clinical
practice.

This study has some limitations. First, this was a retrospective study and, despite its promising results,
additional prospective studies are needed. Second, this study was conducted at a single institution; thus,
further multicenter studies are needed to generalize the predictive model using DTs. Third, although the
motor function assessments in this study were performed more than two months after surgery, the
assessment timing was not consistent, preventing the exclusion of rehabilitation effects. Fourth, the
external validation sample size was small, with only two paralytic cases. Therefore, the accuracy and
sensitivity estimates in our external validation may be unreliable, hindering the generalization of the DT
model. Fifth, postoperative data (e.g., laboratory data) were not used for model creation. In addition, other
confounding factors that might have affected prediction accuracy included the amount of intraoperative
blood loss, intraoperative blood pressure, amount of intravenous anesthesia used, consciousness status
before and after surgery, performance differences between monitoring devices, and differences in
postoperative therapy. In the future, creating a more accurate model by using such data might be possible.
Finally, the participants’ MEP monitoring data were produced by a mixture of transcranial and cortical
stimulation, with different stimulation parameters, which may have affected the results. Further studies are
needed to validate these findings, ideally using a larger cohort with a unified stimulation method and
incorporating postoperative examination data as an additional feature in model reconstruction. Moreover,
prospective studies may further clarify the utility of the DT model by comparing its paralysis prediction
performance with that of the existing models across multiple consistent time points.

Conclusions
We developed a DT model for predicting paralysis that used MEP monitoring data of patients who underwent
brain tumor surgery. This model demonstrated high accuracy for predicting postoperative motor function
using both internal and external validation tests. The DT model is simple to use and can be used to predict
postoperative motor function in patients undergoing brain tumor resection using intraoperative MEP
monitoring. Although prospective and multicenter studies are needed for generalization purposes, this DT
model may assist in the planning of treatment strategies by predicting postoperative motor function in
various patients.
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