Skip to main content
. 2024 Nov 21;16(11):e74155. doi: 10.7759/cureus.74155

Table 5. Classification performance by preprocessing conditions and algorithms.

AUC: area under the curve; RF: random forest; MLP: multi-layer perceptron; AdaBoostM1: adaptive boosting

Preprocess Algorithm Accuracy Sensitivity Specificity κ coefficient AUC
Standardization J48 0.915 0.178 0.138 0.195 0.637
RF 0.918 0.134 0.138 0.264 0.877
MLP 0.920 0.065 0.225 0.204 0.936
AdaBoostM1 0.909 0.083 0.100 0.153 0.866
Mean 0.915 0.115 0.150 0.204 0.829
Standardization + synthetic minority oversampling technique J48 0.913 0.876 0.918 0.819 0.927
RF 0.916 0.857 0.927 0.824 0.973
MLP 0.906 0.884 0.916 0.807 0.970
AdaBoostM1 0.921 0.898 0.916 0.833 0.964
Mean 0.914 0.879 0.919 0.821 0.959