Table 5. Classification performance by preprocessing conditions and algorithms.
Preprocess | Algorithm | Accuracy | Sensitivity | Specificity | κ coefficient | AUC |
Standardization | J48 | 0.915 | 0.178 | 0.138 | 0.195 | 0.637 |
RF | 0.918 | 0.134 | 0.138 | 0.264 | 0.877 | |
MLP | 0.920 | 0.065 | 0.225 | 0.204 | 0.936 | |
AdaBoostM1 | 0.909 | 0.083 | 0.100 | 0.153 | 0.866 | |
Mean | 0.915 | 0.115 | 0.150 | 0.204 | 0.829 | |
Standardization + synthetic minority oversampling technique | J48 | 0.913 | 0.876 | 0.918 | 0.819 | 0.927 |
RF | 0.916 | 0.857 | 0.927 | 0.824 | 0.973 | |
MLP | 0.906 | 0.884 | 0.916 | 0.807 | 0.970 | |
AdaBoostM1 | 0.921 | 0.898 | 0.916 | 0.833 | 0.964 | |
Mean | 0.914 | 0.879 | 0.919 | 0.821 | 0.959 |