Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 May;139(2):449–459. doi: 10.1042/bj1390449

The purification and amino acid sequence of cytochrome c-552 from Euglena gracilis

G W Pettigrew 1
PMCID: PMC1166302  PMID: 4374934

Abstract

Cytochrome c-552 from Euglena gracilis was purified and the amino acid sequence determined. The protein is a single peptide chain of 87 residues with the haem prosthetic group bound through two thioether linkages to two cysteine residues near the amino-terminal region. The amino acid sequence shows some similarities to mitochondrial cytochrome c and to two prokaryote c-type cytochromes. The sequence, taken with the known characteristics of cytochrome c-552, indicates that it is an f-type cytochrome. The possible functional and evolutionary significance of these features in common is discussed. Detailed evidence for the amino acid sequence of Euglena cytochrome f has been deposited as Supplementary Publication SUP 50027 at the British Library, Lending Division (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7QB, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973) 131, 5.

Full text

PDF
452

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMBLER R. P. THE AMINO ACID SEQUENCE OF PSEUDOMONAS CYTOCHROME C-551. Biochem J. 1963 Nov;89:349–378. doi: 10.1042/bj0890349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ambler R. P., Brown L. H. The amino acid sequence of Pseudomonas fluorescens azurin. Biochem J. 1967 Sep;104(3):784–825. doi: 10.1042/bj1040784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ambler R. P., Wynn M. The amino acid sequences of cytochromes c-551 from three species of Pseudomonas. Biochem J. 1973 Mar;131(3):485–498. doi: 10.1042/bj1310485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balian G., Click E. M., Bornstein P. Structure of rat skin collagen 1-CB8. Amino acid sequence of the hydroxylamine-produced fragment HA1. Biochemistry. 1971 Nov 23;10(24):4470–4478. doi: 10.1021/bi00800a019. [DOI] [PubMed] [Google Scholar]
  5. Boardman N. K. The photochemical systems of photosynthesis. Adv Enzymol Relat Areas Mol Biol. 1968;30:1–79. doi: 10.1002/9780470122754.ch1. [DOI] [PubMed] [Google Scholar]
  6. Bornstein P. Structure of alpha-1-CB8, a large cyanogen bromide produced fragment from the alpha-1 chain of rat collagen. The nature of a hydroxylamine-sensitive bond and composition of tryptic peptides. Biochemistry. 1970 Jun 9;9(12):2408–2421. doi: 10.1021/bi00814a004. [DOI] [PubMed] [Google Scholar]
  7. Cusanovich M. A., Meyer T., Tedro S. M., Kamen M. D. The question of histidine content in c-type cytochromes. Proc Natl Acad Sci U S A. 1971 Mar;68(3):629–631. doi: 10.1073/pnas.68.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DAVENPORT H. E., HILL R. The preparation and some properties of cytochrome f. Proc R Soc Lond B Biol Sci. 1952 Apr 24;139(896):327–345. doi: 10.1098/rspb.1952.0016. [DOI] [PubMed] [Google Scholar]
  9. Dickerson R. E., Takano T., Eisenberg D., Kallai O. B., Samson L., Cooper A., Margoliash E. Ferricytochrome c. I. General features of the horse and bonito proteins at 2.8 A resolution. J Biol Chem. 1971 Mar 10;246(5):1511–1535. [PubMed] [Google Scholar]
  10. Dickerson R. E. The structures of cytochrome c and the rates of molecular evolution. J Mol Evol. 1971;1(1):26–45. doi: 10.1007/BF01659392. [DOI] [PubMed] [Google Scholar]
  11. Dus K., Sletten K., Kamen M. D. Cytochrome c2 of Rhodospirillum rubrum. II. Complete amino acid sequence and phylogenetic relationships. J Biol Chem. 1968 Oct 25;243(20):5507–5518. [PubMed] [Google Scholar]
  12. Fisher W. R., Taniuchi H., Anfinsen C. B. On the role of heme in the formation of the structure of cytochrome c. J Biol Chem. 1973 May 10;248(9):3188–3195. [PubMed] [Google Scholar]
  13. Goodwin T. W., Morton R. A. The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem J. 1946;40(5-6):628–632. doi: 10.1042/bj0400628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hartley B. S. Strategy and tactics in protein chemistry. Biochem J. 1970 Oct;119(5):805–822. doi: 10.1042/bj1190805f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kamen M. D., Horio T. Bacterial cytochromes. I. Structural aspects. Annu Rev Biochem. 1970;39:673–700. doi: 10.1146/annurev.bi.39.070170.003325. [DOI] [PubMed] [Google Scholar]
  16. Katoh S., San Pietro A. The role of C-type cytochrome in the Hill reaction with Euglena chloroplasts. Arch Biochem Biophys. 1967 Feb;118(2):488–496. doi: 10.1016/0003-9861(67)90377-3. [DOI] [PubMed] [Google Scholar]
  17. Laycock M. V. The amino acid sequence of cytochrome c-553 from the Chrysophycean alga Monochrysis lutheri. Can J Biochem. 1972 Dec;50(12):1311–1325. doi: 10.1139/o72-176. [DOI] [PubMed] [Google Scholar]
  18. Margoliash E. The molecular variations of cytochrome c as a function of the evolution of species. Harvey Lect. 1971;66:177–247. [PubMed] [Google Scholar]
  19. McLachlan A. D. Repeating sequences and gene duplication in proteins. J Mol Biol. 1972 Mar 14;64(2):417–437. doi: 10.1016/0022-2836(72)90508-6. [DOI] [PubMed] [Google Scholar]
  20. Nelson N., Racker E. Partial resolution of the enzymes catalyzing photophosphorylation. X. Purification of spinach cytochrome f and its photooxidation by resolved photosystem I particles. J Biol Chem. 1972 Jun 25;247(12):3848–3853. [PubMed] [Google Scholar]
  21. Offord R. E. Electrophoretic mobilities of peptides on paper and their use in the determination of amide groups. Nature. 1966 Aug 6;211(5049):591–593. doi: 10.1038/211591a0. [DOI] [PubMed] [Google Scholar]
  22. PERINI F., KAMEN M. D., SCHIFF J. A. IRON-CONTAINING PROTEINS IN EUGLENA. I. DETECTION AND CHARACTERIZATION. Biochim Biophys Acta. 1964 Jul 29;88:74–90. doi: 10.1016/0926-6577(64)90155-x. [DOI] [PubMed] [Google Scholar]
  23. PERINI F., SCHIFF J. A., KAMEN M. D. IRON-CONTAINING PROTEINS IN EUGLENA. II. FUNCTIONAL LOCALIZATION. Biochim Biophys Acta. 1964 Jul 29;88:91–98. doi: 10.1016/0926-6577(64)90156-1. [DOI] [PubMed] [Google Scholar]
  24. Raven P. H. A multiple origin for plastids and mitochondria. Science. 1970 Aug 14;169(3946):641–646. doi: 10.1126/science.169.3946.641. [DOI] [PubMed] [Google Scholar]
  25. Salemme F. R., Freer S. T., Xuong N. H., Alden R. A., Kraut J. The structure of oxidized cytochrome c 2 of Rhodospirillum rubrum. J Biol Chem. 1973 Jun 10;248(11):3910–3921. doi: 10.2210/pdb1c2c/pdb. [DOI] [PubMed] [Google Scholar]
  26. Stellwagen E., Rysavy R., Babul G. The conformation of horse heart apocytochrome c. J Biol Chem. 1972 Dec 25;247(24):8074–8077. [PubMed] [Google Scholar]
  27. Sugeno K., Narita K., Titani K. The amino acid sequence of cytochrome c from Debaryomyces kloeckeri. J Biochem. 1971 Oct;70(4):659–682. doi: 10.1093/oxfordjournals.jbchem.a129681. [DOI] [PubMed] [Google Scholar]
  28. Takano T., Kallai O. B., Swanson R., Dickerson R. E. The structure of ferrocytochrome c at 2.45 A resolution. J Biol Chem. 1973 Aug 10;248(15):5234–5255. [PubMed] [Google Scholar]
  29. Timkovich R., Dickerson R. E. Recurrence of the cytochrome fold in a nitrate-respiring bacterium. J Mol Biol. 1973 Sep 5;79(1):39–56. doi: 10.1016/0022-2836(73)90268-4. [DOI] [PubMed] [Google Scholar]
  30. Yamanaka T., Okunuki K. Comparison of Chlorobium thiosulphatophilum cytochrome c-555 with c-type cytochromes derived from algae and nonsulphur purple bacteria. J Biochem. 1968 Mar;63(3):341–346. [PubMed] [Google Scholar]
  31. van Beeumen J. J., Ambler R. P. Netherlands Society for Microbiology meeting at Delft on 25 October 1972. Homologies in the amino acid sequences of cytochrome c-555 from the green photosynthetic bacteria "Chloropseudomonas ethylica" and Chlorobium thiosulfatophilium. Antonie Van Leeuwenhoek. 1973;39(2):355–356. doi: 10.1007/BF02578868. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES