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Abstract
Pancreatic cancer (PC) is a malignancy of the gastrointestinal tract that is characterized by a poor prognosis. This study 
investigates the roles of immunogenic cell death (ICD) genes in the prognosis and progression of PC. Expression data for PC 
patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, while ICD 
genes were sourced from published literature. We explored the expression patterns and identified two distinct clusters based 
on ICD genes. Kaplan–Meier analysis, differential expression analysis, tumor mutational burden analysis, and immune cell 
infiltration analysis were performed on these clusters. An ICD gene-based risk model was developed, categorizing samples 
from the TCGA and GEO datasets into low- and high-risk groups. Additionally, we investigated the expression levels of 
the genes included in the risk model within the TCGA cohort and our own samples. Finally, a loss-of-function assay was 
conducted to assess the role of MYD88 in PC. Two clusters of PC samples were identified, patients in the ICD-low cluster 
exhibited a higher degree of immune cell enrichment. The survival time of patients in the low-risk group was longer than 
that of those in the high-risk group. The genes included in the risk model (CASP1, MYD88, and PIK3CA) showed upregu-
lated expression levels in tumor samples. Furthermore, the predictive accuracy of our risk model was validated using our 
own samples. Genetic inhibition of MYD88 led to significantly decreased proliferation and migration of PC cells in the 
loss-of-function assay. There were disparities in survival time and tumor immune microenvironment (TIME) between two 
ICD gene clusters. Additionally, we developed an ICD-related risk model that was validated as an independent prognostic 
indicator for patients with PC.
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Introduction

Pancreatic cancer (PC) is one of the most lethal malignan-
cies, with a median survival time of only 6 months [1]. 
Despite advancements in surgical treatment, chemotherapy, 
and immune checkpoint therapy in recent decades, outcomes 
for PC patients remain bleak, with a 5-year survival rate 
of only 8% [2, 3]. Furthermore, PC was the fourth leading 
cause of cancer-related fatalities in Europe in 2020 and is 
projected to become the second leading cause by 2030 [4, 5].

Immunotherapy has demonstrated advancements in the 
realm of PC; however, compared to other cancer types, 
research in this area remains in its nascent stages [6, 
7].  Immune checkpoint inhibitors serve to augment the 
immune system’s antitumor efficacy in PC by impeding the 
tumor cells’ evasions of immune surveillance. Despite initial 
advancements in utilizing immune checkpoint inhibitors for 
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PC treatment, the overall response rate remains modest [8]. 
Vaccine therapies tailored to tumor-specific antigens pos-
sess the potential to elicit the patient’s immune response 
against PC cells, with ongoing clinical trials assessing the 
efficacy of various vaccine formulations in PC patients [9, 
10]. CAR-T cell therapy represents a personalized immuno-
therapeutic approach involving the engineering of a patient’s 
own T cells for targeted tumor recognition and elimination 
[11]. Presently, investigations are underway on the prospec-
tive application of CAR-T cell therapy in managing PC [12]. 
Notwithstanding some headway in immunotherapy research 
for PC, persisting challenges encompass the immunosup-
pressive microenvironment characteristic of PC, inadequate 
tumor antigen expression levels, and tumor heterogeneity, all 
of which restrict the effectiveness of immunotherapy inter-
ventions [13]. As such, ongoing clinical investigations, novel 
immunotherapeutic initiatives, and tailored treatment strate-
gies are pivotal areas of focus within this research domain.

Upon exposure to external stimuli, tumor cells undergo 
cell death, shifting from evading the immune response to 
activating it. This change initiates the immune reaction 
against the tumor in the host, known as immunogenic cell 
death (ICD) [14]. Throughout the ICD process in cancer 
cells, various signaling molecules are released, notably cal-
reticulin displayed on the surface of the cell, High Mobil-
ity Group Box 1 (HMGB1) emitted by tumor cells, ATP 
molecules released from the cells, and heat shock proteins 
(HSP70 and HSP90) [15]. The released DAMPs can bind 
to Pattern Recognition Receptors (PRRs) on the surface of 
dendritic cells, which initiate a sequence of cellular reactions 
that eventually trigger both innate and adaptive immune 
responses.

This research focused on investigating the expression 
patterns of ICD genes in PC. The study revealed that the 
majority of these genes exhibited elevated expression lev-
els in PC. Furthermore, we performed a clustering analy-
sis of PC samples based on the expression of ICD genes 
and characterized the distinct clusters identified through 
survival analysis, Gene Ontology/Kyoto Encyclopedia of 
Genes and Genomes (GO/KEGG) enrichment analysis, 
mutation burden analysis, and immune infiltration analy-
sis. Subsequently, a predictive model was developed using 
the ICD gene expression data from The Cancer Genome 
Atlas (TCGA) PC samples, and its performance was vali-
dated in an independent Gene Expression Omnibus (GEO) 
dataset. The results indicated that patients classified as 
high-risk according to the predictive model experienced 
significantly shorter survival times compared to those clas-
sified as low-risk. Moreover, we conducted a thorough 
investigation into the expression of the ICD gene, specifi-
cally MYD88 Innate Immune Signal Transduction Adaptor 
(MYD88), in PC. Through loss-of-function and gain-of-
function assays, we outlined the potential mechanisms by 

which MYD88 may influence the onset and progression 
of PC. These findings provide valuable insights for pre-
dicting patient outcomes, identifying potential targets for 
immunotherapy, and improving the efficacy of immuno-
therapeutic interventions in PC.

Material and methods

Data collection

RNA-seq data and clinicopathological information for PC 
patients were collected from two different sources: TCGA 
database (https://​portal.​gdc.​cancer.​gov/) and the GEO 
database (https://​www.​ncbi.​nlm.​nih.​gov/​geo). The train-
ing set utilized PC samples from the TCGA-PAAD data-
set, while the testing set incorporated PC samples from 
the GSE183795 and GSE57495 datasets. Additionally, the 
scRNA-seq data was obtained using TISCH database (http://​
tisch1.​comp-​genom​ics.​org) based on GSE111672 dataset. 
To guarantee the study’s credibility, cases lacking survival 
data were excluded. Furthermore, a control group was 
incorporated for comparative assessment, which included 
full mRNA-seq information from healthy pancreas samples 
sourced from the Genotype-Tissue Expression (GTEx) ini-
tiative. Finally, to enhance the comparability of data across 
different sources and ensure the robustness of subsequent 
analyses, the potential batch effects were eliminated.

Consensus unsupervised clustering

The 34 ICD genes were acquired from published research, 
and attached in supplementary Table S2 [16]. To identify 
molecular clusters linked to ICD genes, we conducted unsu-
pervised consensus clustering using the R package ‘Consen-
susClusterPlus’. To ensure robustness, we obtained stable 
results by evaluating the optimal cluster numbers across a 
range from k = 2 to 9, repeated 1,000 times. The proportion 
of ambiguous clustering was used to ascertain the k value.

Identification of differentially expressed genes 
and functional enrichment

Differentially expressed genes (DEGs) were assessed with 
the R package ‘limma’. Significance criteria were defined 
as FDR p-values < 0.05 and an absolute log-fold change 
(logFC) > 1. The comparison of enriched pathways and 
biological functions with DEGs was conducted using GO, 
and KEGG through the ‘clusterProfiler’ R package, with a 
threshold of FDR p values below 0.05.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo
http://tisch1.comp-genomics.org
http://tisch1.comp-genomics.org
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Tumor mutational burden (TMB)

The TMB for every sample was acquired, followed by 
summarization and analysis with the assistance of the 
‘maftools’ package. Waterfall plots were used to visual-
ize the mutational data, and survival analysis of different 
TMBs was conducted with the help of the ‘survminer’ and 
‘survival’ packages.

Tumor‑infiltrating immune cells profiles

To compare the differences in tumor immune microenvi-
ronment between the two clusters, we used several analy-
ses. The ‘ESTIMATE’ package was used to calculate the 
tumor purity and immune scores initially (https://​bioin​
forma​tics.​mdand​erson.​org/​estim​ate) [17]. Then the ‘CIB-
ERSORT’ algorithm (https://​ciber​sort.​stanf​ord.​edu) and 
‘MCPcounter’ package (http://​github.​com/​ebecht/​MCPco​
unter) were employed to evaluate the levels of infiltrating 
immune cells [18]. Moreover, the differential expression 
of immune checkpoint key molecules and HLA molecules 
between two clusters were analyzed by t test. The criteria 
for significance were p value less than 0.05.

Creating and verifying the risk prediction model

Initially, we performed univariate Cox regression analysis 
in the TCGA-PAAD dataset to identify prognostic correla-
tion genes (p < 0.05) for establishing a risk model based 
on ICD genes. Following this, a Least Absolute Shrinkage 
and Selection Operator (LASSO) regression analysis was 
employed to develop and improve the risk model. Conse-
quently, the formula was established as followed:

Exp (gene) showed gene expression levels, whereas coef 
(gene) denoted the regression coefficient. The ‘survminer’ 
and ‘survival’ packages were employed to demonstrate the 
receiver operating characteristic (ROC) curves and the 
areas under the time-dependent ROC curves (AUCs). The 
risk model validation was conducted using the testing set.

Principal component analysis (PCA)

PCA was conducted to decrease dimensionality and iden-
tify characteristics from the pair of groups. The ‘scatter-
plot3d’ function was used in this analysis [19].

Risk score =
∑

[Exp (gene) × coef (gene)].

Nomogram and calibration curves

A nomogram was created that included the risk score 
along with additional clinicopathological characteristics. 
The nomogram allowed for forecasting the survival rates 
of individuals with pancreatic cancer at 1, 3, and 5 years. 
The accuracy of the predicted outcomes was assessed and 
depicted through the calibration curve.

Quantitative real‑time PCR

TRIzol (Takara Bio, Dalian, China) was used to extract total 
RNA from human samples and cells. Following this, the 
Prime Script RT Master Mix reagent (Takara Bio, Dalian, 
China) was used to convert the RNA into cDNA. The qRT-
PCR primer sequences were provided in supplementary 
Table S3, with GAPDH selected as the internal reference 
gene.

Cell culture

Pancreatic cell lines, MIA PaCa-2, Patu8988, SW-1990, 
and PDC 0034 were bought from Cell Bank of the Chi-
nese Academy of Sciences (Shanghai, China). The cells 
were maintained in Dulbecco’s modified Eagle’s medium 
(DMEM) with 10% fetal bovine serum (FBS) and 1% peni-
cillin/streptomycin (P/S). Culturing occurred in a humidified 
incubator at 37 °C with 5% CO2.

Gene knockdown and overexpression assays

Cells were seeded in a six-well plate. The next day, siRNA 
and the transfection agent (Lipo2000, Thermo Fisher, USA) 
were included as per the guidelines provided by the manu-
facturer. Approximately 48 h post-transfection, cells were 
harvested for validation of knockdown efficacy via qRT-
PCR. The efficient siRNA sequence targeting MYD88 was 
employed to generate short hairpin RNA (shRNA) using the 
GV112 vector. In the KPC1199 cells, Myd88 was down-
regulated through the CRISPR-Cas9 system. The sequences 
of the oligos for the small guide RNA (sgRNA) are pro-
vided below: sgMyd88: 5′—TGA​CGA​TTA​TCT​ACA​GAG​
CA—3′, sgLacZ: 5′—CCC​GAA​TCT​CTA​TCG​TGC​GG—3′. 
The sgRNA oligos were introduced into the Lenti-CRISPR 
V2 plasmid. The NM_002468.5 sequence was used for the 
MYD88 overexpression assay.

Western blot

The Western blot analysis was conducted following the 
protocol described in a prior study [20]. The primary 
antibodies used were: anti-MYD88 (1:1000, Servicebio, 
GB111554), anti-β-actin (1:5000, Servicebio, GB15003). 

https://bioinformatics.mdanderson.org/estimate
https://bioinformatics.mdanderson.org/estimate
https://cibersort.stanford.edu
http://github.com/ebecht/MCPcounter
http://github.com/ebecht/MCPcounter
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Goat anti-rabbit secondary antibody (1:5000, Abways, 
AB0101) was employed.

Cell counting Kit‑8

Cell growth tests were performed with the CCK-8 rea-
gent (CCK‐8, Yeasen, China). Cells were seeded at an 
appropriate density in 96-well plates, followed by mixing 
the CCK-8 reagent with the medium to achieve a final 
concentration of 10%. Following a 2-h period of incuba-
tion, the optical density at 450 nm was recorded for each 
well utilizing a Power Wave XS microplate reader manu-
factured by BIO‐TEK. The study was conducted multiple 
times on days 0 through 4 to assess growth potential, and 
the growth patterns were plotted using GraphPad Prism. 
The procedure was independently repeated three times.

Colony‐formation assays

In colony-formation experiments, 3000 cells/ml were 
seeded in six-well dishes. After a 2-week incubation, colo-
nies were collected, treated with a 4% paraformaldehyde 
solution, and then dyed with 0.5% (w/v) crystal violet. 
Image J was utilized for quantification. This experiment 
was replicated twice.

Transwell chamber assays

A total of 40,000 cells were seeded in transwell chambers 
using serum-free medium, while the lower chambers were 
supplemented with 10% FBS. Following a 2-day incuba-
tion period, the top compartment was rinsed with PBS, 

and cells were immobilized with 4% paraformaldehyde for 
around half an hour. Afterward, the cells were dyed with 
0.1% crystal violet and measured with ImageJ. The experi-
ment was independently replicated three times.

Subcutaneous and orthotopic xenograft model

Subcutaneous xenograft model was established by inject-
ing a total of 2 × 106 shNC or shMYD88 PATU8988 cells 
in 100 μL of DMEM into the right back flank of Athymic 
male nu/nu mice. After 30 days, the mice were euthanized, 
and the tumors were excised. Tumor volumes were calcu-
lated using the formula: Volume = 0.5 * length * width. 
Male C57BL/6 mice were used for establishing ortho-
topic xenograft models. KPC1199 cells (1 × 106) includ-
ing one experimental group (sgMyd88) and one control 
group (sgLacZ), were suspended in 20 µl of PBS and then 
transplanted into the body of the pancreas in C57BL/6 
mice. The mice were sacrificed three weeks after implanta-
tion. Tumor volumes were calculated using the formula: 
Volume = 0.5 * length * width.

Statistical analysis

The R (version 4.0.2) software was used to conduct all 
the bioinformatics analyses. GraphPad Prism 8.4.3 was 
used for analyzing numerical data. Statistical significances 
between groups were determined using the student’s t-test, 
or ANOVA, as applicable. The Kaplan–Meier survival 
curve was used to visualize survival, while the differ-
ences in survival time were compared by Log-rank test. 
Statistical significance was defined as P values < 0.05 for 
all results.

Results

Expression patterns and consensus unsupervised 
clustering of ICD genes in pancreatic cancer

Initially, the research examined the expression pattern of 
ICD genes in PC samples compared to normal samples. 
The study revealed significant differences in gene expres-
sion between PC and normal samples. The majority of ICD 
genes showed higher expression levels in cancer samples 
than in normal samples (Fig. 1A). Subsequently, utilizing 

Fig. 1   Identification of the ICD-related clusters in pancreatic cancer. 
A The expression patterns of ICD genes in pancreatic cancer samples 
and normal pancreas tissues. B The heatmap of consensus cluster-
ing solution (k = 2) in pancreatic cancer samples. C The expression 
of ICD genes in two clusters. D Kaplan–Meier curve of overall sur-
vival in two clusters. E Kaplan–Meier curve of progression free sur-
vival in two clusters. F The heatmap of differently expressed genes 
between two clusters. G The volcano plot of differently expressed 
genes between two clusters. H GO analysis of highly expressed genes 
in the ICD-high clusters. I KEGG enrichment analysis of highly 
expressed genes in the ICD-high clusters. J GO analysis of highly 
expressed genes in the ICD-low clusters. K KEGG enrichment analy-
sis of highly expressed genes in the ICD-low clusters. ***P < 0.001; 
**P < 0.01; *P < 0.05

◂
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consensus unsupervised clustering on the TCGA cohort, 
two distinct clusters (C1 and C2) were identified (Fig. 1B). 
Comparative analysis of these clusters revealed that the 
majority of ICD genes exhibited significantly elevated 
expression levels in cluster C1 as opposed to cluster C2 
(Fig. 1C). Therefore, cluster C1 was categorized as the 
ICD-high cluster, while cluster C2 was designated as ICD-
low cluster. Notably, survival analysis revealed a favorable 
prognosis for the low cluster of ICD (Fig. 1D, E).

Functional enrichment analysis of DEGs in distinct 
clusters of ICD

Following this, we conducted differential analysis between 
the low and high clusters of ICD, finding 2627 genes with 
varying expression levels (Fig. 1F, G). Subsequently, enrich-
ment analyses for GO, and KEGG were carried out on these 
genes. GO and KEGG analyses highlighted that DEGs 
upregulated in ICD-high cluster were enriched in regulation 
of T cell activation, leukocyte proliferation, extracellular 
matrix organization and Cytokine-cytokine receptor interac-
tion (Fig. 1H, I). The DEGs upregulated in ICD-low cluster 
were enriched in signal release, neurotransmitter secretion, 
and neuroactive ligand-receptor interaction (Fig. 1J, K).

Correlation of different clusters and TMB

Numerous studies have consistently demonstrated a strong 
correlation between TMB and patient prognosis [21–23]. To 
examine potential disparities in TMB between two clusters, 
we collected and organized the mutation data. The analysis 
revealed KRAS, TP53, SMAD4, and CDKN2A as the most 
frequently mutated genes in both clusters (Fig. 2A, B). Sur-
vival analysis clearly showed that patients with higher TMB 
had a much worse prognosis than those with lower TMB 
(Fig. 2C). Subsequent combined survival analysis consid-
ering TMB and clusters disclosed that patients with higher 
TMB and higher expression levels of ICD genes experienced 
the most unfavorable prognosis, whereas patients with lower 
TMB and lower expression levels of ICD genes showed a 
more favorable prognosis (Fig. 2D). Given that KRAS and 
TP53 were the two genes exhibiting the highest mutation 
frequencies in PC, we investigated the influences of muta-
tions in these genes on patient prognosis. Our initial find-
ings revealed a substantial decrease in the prognosis of PC 
patients carrying KRAS mutations, particularly those with 
a combination of KRAS mutations and higher expression 
levels of ICD genes who displayed the most unfavorable 

prognosis (Fig. 2E, F). Similarly, our analysis indicated an 
association between TP53 mutations and prognosis, with 
patients possessing TP53 mutations and higher expression 
levels of ICD genes experiencing a less favorable prognosis 
(Fig. 2G, H).

Analysis of the TIME in clusters with low and high 
levels of ICD

Increasing evidence suggests that tumor-infiltrating immune 
cells play a crucial role in the tumor microenvironment [24]. 
Thus, we investigated the variances in the TIME between the 
two clusters. At first, we examined the ESTIMATE score, 
immune score, stromal score, and tumor purity in both 
the ICD-high and ICD-low clusters. The results showed 
increased stromal, immune, and ESTIMATE scores in 
the ICD-high cluster, along with decreased tumor purity 
(Fig. 3A–D). Additionally, utilizing ssGSEA, we examined 
potential associations between distinct clusters and immune 
cell infiltration (Fig. 3E). The results showed the correla-
tion between various types of immune cells in PC (Fig. 3F). 
Notable variances in the presence of different types of 
immune cells, including B cells, CD8 T lymphocytes, and 
cytotoxic lymphocytes, were observed among these clusters. 
Specifically, these immune cells were more abundant in the 
ICD-high cluster, indicating an enhanced immune response 
in the TIME of this cluster (Fig. 3G, H). Additionally, we 
investigated the differences in expression of HLA molecules 
within these clusters and found increased levels in the ICD-
high cluster, indicating potential anti-cancer immune reac-
tions (Fig. 3I). Finally, an analysis of the differences in the 
main molecules of immune checkpoints among the clusters 
showed increased levels in the ICD-high cluster, providing 
possible clues for predicting the reaction to immune check-
point inhibitors (Fig. 3J).

Construction of the prediction model for ICD genes 
in PC

We conducted a univariate COX regression analysis on the 
TCGA dataset to create a predictive model for genes associ-
ated with ICD. This analysis revealed that five genes, namely 
CASP1, IFNG, IL1R1, MYD88, and PIK3CA, were signifi-
cantly correlated with patient prognosis (Fig. 4A). Subse-
quently, following univariate Cox regression analysis, we 
performed LASSO regression analysis on these five genes 
to construct a prognostic model (Supplementary Table S1). 
The results revealed that the prognostic model included four 
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Fig. 2   Tumor mutational burden (TMB) analysis in the two clus-
ters. A, B Visual waterfall plots of mutated genes in two clusters. C 
Kaplan–Meier curve of H-TMB and L-TMB samples. D Kaplan–
Meier curve stratified by clusters and TMB status. E Kaplan–Meier 

curve of KRAS-Mutant and KRAS-Wild samples. F Kaplan–Meier 
curve stratified by clusters and KRAS mutation status. G Kaplan–
Meier curve of TP53-Mutant and TP53-Wild samples. H Kaplan–
Meier curve stratified by clusters and TP53 mutation status
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genes (CASP1, IFNG, MYD88, and PIK3CA) (Fig. 4B, C). 
Individual risk scores were calculated for each sample using 
a designated formula. Subsequently, individuals were cat-
egorized into high-risk and low-risk groups based on the 
median risk score. As the risk score escalated, the high-
risk group demonstrated a decrease in survival rates and 
an increase in mortality compared to the low-risk group 
(Fig. 4D, E). The heatmap indicated that the expression of 
these four genes was increased in patients classified as high-
risk, implying a notable role of these genes in the advance-
ment of PC (Fig. 4F). Survival analysis exhibited a strong 
association between the risk score and patient outcomes, 
indicating that individuals in the high-risk category had sig-
nificantly poorer outcomes compared to those in the low-risk 
category (Fig. 4G). To validate the feasibility of the model, 
the GEO dataset was employed for external validation and 
to assess its accuracy. The results demonstrated that the vali-
dation set showed parallel performance to the training set. 
With the risk score increasing, the survival rates of patients 
decreased (Fig. 4H, I). Analysis of gene expression showed 
increased levels of these four genes in patients at high risk 
(Fig. 4J). Additionally, patients with a higher risk level had 
worse outcomes in comparison to patients with a lower risk 
level (Fig. 4K). Collectively, these findings supported the 
robust predictive capacity of the model and its potential for 
clinical application.

Assessment of predictive capacity: risk model 
versus other clinical characteristics

First of all, PCA was employed to assess the risk signa-
ture’s grouping capability. By combining whole-genome 
expression profiles with 34 ICD genes and a risk model, 
the analysis successfully divided samples into two distinct 
risk groups, demonstrating the risk model’s ability to effec-
tively stratify samples (Fig. 5A–C). We next compared the 

prognostic prediction capabilities of the risk model with 
other clinicopathological characteristics through ROC curve 
analysis. The analysis validated the risk score as the most 
effective predictor among the variables studied (Fig. 5D–G). 
Moreover, these results were corroborated through the use 
of the c-index (Fig. 5H). Cox regression was used to evalu-
ate the model’s individual influence on the outcome of PC 
patients. The results confirmed the risk model as a signifi-
cant and independent prognostic factor, exerting a substan-
tial influence on PC patient outcomes (Fig. 5I, J). The devel-
opment of a nomogram ultimately offered a tangible and 
numerical approach for forecasting outcomes in individuals 
with PC (Fig. 5K). Calibration curves were used to assess 
the dependability and consistency of the nomogram, reveal-
ing a strong correlation between the projected and observed 
survival rates (Fig. 5L). These findings collectively indicated 
that the risk model developed in this study exhibited stable 
and reliable prognostic prediction capabilities for patients 
with PC.

Assessment of the validity and predictive 
significance of genes within the model

Based on the preceding results, a prognostic model for PC 
was constructed utilizing ICD genes. The model showed 
robust predictive ability and acted as an independent prog-
nostic indicator for PC patients, including four distinct genes. 
In order to investigate the functions of these four genes in 
PC more comprehensively, their expression profiles were 
initially downloaded from the GEPIA (http://​gepia.​cancer-​
pku.​cn/). The findings revealed elevated expression levels of 
CASP1, MYD88, and PIK3CA in PC tissues (Fig. 6A–D). 
Subsequently, the levels of expression of these genes in cancer 
cells were examined utilizing single-cell datasets. The find-
ings indicated that in addition to their expression in immune 
cells, these genes demonstrated elevated expression in cancer 
cells (Fig. 6E–I). Furthermore, leveraging the TCGA dataset, 
we explored the influence of these four genes’ expression on 
the prognoses of patients with PC. The findings revealed that 
elevated expression of these four genes collectively exerted 
an adverse effect on patient prognosis (Fig. 6J–M). The dis-
covery of these genes suggested that they were crucial in the 
advancement of PC.

Validation of the risk model in our own PC samples

To enhance the model’s accuracy, we validated it using our 
PC samples. Initially, we assessed the expression levels of 

Fig. 3   The differences of tumor immune microenvironment between 
two clusters. A–D Comparison of ESTIMATE score, immune score, 
stromal score, and tumor purity between the two clusters. E The dis-
tributions of infiltrating immune cells between the two clusters cal-
culated by CIBERSORT algorithm. F The correlations of infiltrating 
immune cells in pancreatic cancer samples calculated by CIBER-
SORT algorithm. G The scores of infiltrating immune cells between 
the two clusters calculated by MCPcounter package. H The distinc-
tion of infiltrating immune cells between the two clusters calculated 
by MCPcounter package. I Comparison of the expression of HLA 
molecules between the two clusters. J Comparison of the expres-
sion of immune checkpoint key molecules between the two clusters. 
***P < 0.001; **P < 0.01; *P < 0.05

◂

http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
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the four genes in PC and adjacent normal tissues through 
qRT-PCR. Our findings revealed significant upregulation of 
CASP1, MYD88, and PIK3CA in PC compared to the adja-
cent normal samples, aligning with earlier results and high-
lighting the pivotal roles of these genes in PC progression 
(Fig. 7A–D). Subsequently, the expression levels of these 
four genes were integrated using the established risk score 
formula, enabling the categorization of patients into high-risk 
and low-risk groups based on their respective risk scores. Sur-
vival analysis results indicated that individuals in the high-
risk group had significantly worse outcomes than those in the 
low-risk group, consistent with previous research findings 
(Fig. 7E). Furthermore, the two groups were compared in 
terms of patient stage, as well as CA19-9 and CEA levels. 
The examination showed that there was a greater percentage 
of patients in advanced stages III and IV within the group 
at high risk, as well as increased levels of CA19-9 and CEA 
(Fig. 7F–H). To confirm the expression levels of these genes 
in PC, we conducted IHC staining on both tumor tissues and 
adjacent normal tissues from PC patients, demonstrating ele-
vated expression of these genes within the tumors (Fig. 7I). 
In summary, the risk model exhibited remarkable accuracy 
and robustness, demonstrating its efficacy not only within the 
database but also within our patient cohort.

MYD88 promoted PC cells proliferation 
and migration in vitro

Studies have demonstrated the significant involvement of 
MYD88 in tumorigenesis. However, its specific role in PC 
remains uncertain. Therefore, we investigated its function 
in the forthcoming experiments. We evaluated the impact of 
MYD88 on PC progression by examining the proliferation 
and migration of PC cells. Subsequent to the transfection 
of siRNA targeting MYD88, the efficiency of knockdown 
was validated at the mRNA and protein levels (Fig. 8A, 

B). In addition, two cell lines were selected for exogenous 
overexpression (Fig. 8C). The CCK-8 assay indicated that 
reducing MYD88 expression effectively suppressed in vitro 
cell proliferation (Fig. 8D). On the contrary, the overexpres-
sion of MYD88 led to the enhancement of their proliferation 
(Fig. 8E). Similarly, the colony-formation assay produced 
consistent results (Fig. 8F–H). Moreover, we explored the 
effect of MYD88 on the migration rate of PC cells. The 
results showed a notable decrease in the migratory capac-
ity of PC cells following MYD88 knockdown, as well as 
a significant increase in their migratory ability following 
MYD88 overexpression (Fig. 8I–K). The above data showed 
that MYD88 had a significant impact on the growth and 
migration of PC cells.

MYD88 genetic inhibition suppressed the growth PC 
cells in vivo

To verify the influence of MYD88 genetic inhibition on the 
proliferation of PC cells in vivo, we established the sub-
cutaneous xenograft model. The result showed that mice 
injected with MYD88 knockdown cells displayed a reduced 
tumor burden compared to the control group (Fig. 9A). In 
terms of tumor volume, the mice injected with NC cells 
exhibited larger tumors compared to the mice injected with 
shMYD88 cells (Fig. 9B, C). Additionally, immunohisto-
chemical results also showed that the ki-67 positivity rate in 
the shMYD88 group was significantly lower than that in the 
NC group (Fig. 9D). Subsequently, we established the ortho-
topic xenograft model to corroborate the findings. Consistent 
with the subcutaneous tumor results, the tumor burden in the 
mice injected with sgMyd88 cells was significantly smaller 
than that in the mice injected with sgLacZ cells (Fig. 9E-
G). The immunohistochemical results indicated that the ki-
67and Myd88 positivity rates in the sgMyd88 group was 
significantly lower than that in the sgLacZ group (Fig. 9H). 
All these results indicated that MYD88 knockout signifi-
cantly inhibits the proliferation of PC cells in vivo.

Discussion

Pancreatic cancer, a highly aggressive tumor of the gastro-
intestinal tract, typically presents insidiously and carries a 
poor prognosis for patients. Treatment modalities for PC pri-
marily include surgical intervention, chemotherapy, radio-
therapy, and targeted therapy. Surgical intervention is a com-
mon therapeutic approach for PC, allowing for the complete 

Fig. 4   Construction of the risk model based on ICD genes in pancre-
atic cancer. A The results of the Univariate Cox regression analysis 
conducted in TCGA-PAAD dataset. B Cross-validation plot for the 
results of LASSO regression analysis. C Plots for LASSO expres-
sion coefficients of the ICD genes. D The risk score of each sample 
in the TCGA cohort. E The risk score and survival status of each 
sample in the TCGA cohort. F The expression levels of four genes in 
TCGA samples. G Kaplan–Meier curve of overall survival between 
two groups in TCGA cohort. H The risk score of each sample in the 
GEO cohort. I The risk score and survival status of each sample in 
the GEO cohort. J The expression levels of four genes in GEO sam-
ples. K Kaplan–Meier curve of overall survival between two groups 
in GEO cohort
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excision of tumors in early-stage cases. Unfortunately, most 
patients are ineligible for surgical intervention by the time 
of diagnosis due to missing the window for surgical treat-
ment [25].

Immunotherapy represents a novel approach in cancer 
treatment, leveraging the innate immune system to target 
cancer cells. PC presents a significant challenge because it is 
often detected at a late stage and shows limited responsive-
ness to traditional treatments like chemotherapy and radia-
tion therapy. Consequently, immunotherapy appears as a 
promising strategy to enhance the therapeutic outcomes of 
PC. However, immunotherapy still has significant limita-
tions in the treatment of PC. Initially, the microenvironment 
of PC may harbor numerous immune-suppressive cells and 
immune evasion mechanisms, thereby impeding the efficacy 
of immunotherapy [26]. Furthermore, PC cells often present 
insufficient antigen expression levels, impeding the capac-
ity of immune cells to recognize and eradicate tumor cells 
[27]. Hence, immunotherapy for PC continues to encounter 
challenges, necessitating further exploration of enhanced 
treatment strategies to optimize its effectiveness.

ICD refers to the process of cell death that occurs under 
specific conditions, playing an important role in activat-
ing the immune system and regulating immune responses 
[28, 29]. Unlike non-immunogenic cell death, the cell 
fragments or organelles generated by ICD can serve as 
antigens presented to immune cells. This process, in turn, 
facilitates the activation of immune cells and immune 
responses [30, 31]. ICD can be triggered through diverse 
mechanisms, encompassing apoptosis, necrosis, necrop-
tosis, and various other pathways leading to cellular 
demise [32, 33]. This mode of cell death can arise from a 
range of external and internal factors like chemotherapy 
agents, radiation therapy, viral infections, and other agents 
[34–36]. The cellular constituents and signaling molecules 
liberated during ICD can be engulfed and metabolized 

by dendritic cells or other antigen-presenting cells, ulti-
mately kickstarting an immune response [37]. PC often 
frequently evades immune surveillance through multiple 
mechanisms, one of which includes inhibiting the initia-
tion of ICD. ICD can elicit the immune system’s response 
against tumors; however, in PC, tumor cells may dampen 
immune reactions by altering ICD pathways and imped-
ing relevant signaling cascades. Consequently, researchers 
are actively investigating methods to restore or enhance 
ICD in PC cells to enhance the efficacy of immunotherapy 
[38, 39]. They aim to develop novel treatment approaches 
to improve the survival outcomes and quality of life for 
patients with PC.

Recent research has examined the role of ICD-related 
signatures in the progression of PDAC [40–42]. However, 
these studies primarily focus on the prognostic value of these 
signatures based on publicly available datasets. In our study, 
we established a prognostic model using the TCGA dataset 
and validated it with the GEO database; additionally, we 
conducted preliminary validation of the model’s reliabil-
ity in our own cohort. We also investigated the expression 
levels of the genes in the signature in PDAC compared to 
adjacent normal tissue using IHC. Furthermore, we assessed 
the effects of MYD88 on pancreatic cancer progression both 
in vitro and in vivo for the first time, which has not been 
previously documented in the literature.

This study first examined the expression patterns of ICD 
genes in PC and observed that the majority of genes dem-
onstrated significantly heightened expression levels in this 
disease. Cluster analysis revealed that patients with elevated 
expression of these genes exhibited inferior overall survival 
(OS) and disease-free survival (DFS), highlighting the 
significant involvement of ICD in the advancement of PC. 
Moreover, by conducting functional enrichment and immune 
infiltration analyses on two clusters of samples, we uncov-
ered substantial disparities. The findings indicated that the 
DEGs in these sample clusters primarily show enrichment 
in immune responses and the activation of immune cells. 
Analysis of immune infiltration also uncovered a greater 
presence of immune cells in the ICD-high cluster. Moreo-
ver, numerous immune checkpoint regulators that modulate 
immune responses exhibited higher expression levels within 
this cluster. The results collectively suggested notable vari-
ances in the TIME between the two patient clusters, offering 
insights into the responsiveness of immunotherapy in PC.

Subsequent to these findings, we constructed a prog-
nostic model using ICD genes from the TCGA dataset and 
evaluated its efficacy in an external validation cohort. This 

Fig. 5   Validation of the stability of the risk model. A Principal com-
ponent analysis of all genes. B Principal component analysis of ICD 
genes. C Principal component analysis of risk score. D The ROC 
curves of the risk model in the TCGA cohort. E–G The ROC curves 
of 1-, 3-, and 5-year overall survival for the risk score and other clini-
cal characteristics. H The c-index for the risk score and other clini-
cal characteristics. I The results of Univariate Cox regression analysis 
in TCGA cohort based on risk score and other clinical characteris-
tics. J The results of Multivariate Cox regression analysis in TCGA 
cohort based on risk score and other clinical characteristics. K The 
nomogram established by risk score and other clinical characteristics 
in the TCGA cohort. L 1-, 3-, 5-year nomogram calibration curves. 
***P < 0.001; **P < 0.01; *P < 0.05
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Fig. 6   Validation of the expression and prognostic value of genes in 
the model. A–D Comparison of expression levels of four genes in 
tumor and normal samples. E The cell types revealed by the scRNA-

seq dataset GSE111672. F–I The expression levels of four genes in 
different cell types. J–M Kaplan–Meier curves of four genes in the 
model. ***P < 0.001; **P < 0.01; *P < 0.05
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Fig. 7   validation of the risk model in our own samples. A–D Com-
parison of expression levels of four genes between normal and tumor 
samples. E Kaplan–Meier curve of overall survival between two 
groups in our own samples. F The differences of tumor stage between 
two groups in our own samples. G, H The differences of tumor mark-

ers (CA19-9 and CEA) between two groups in our own samples. I 
Representative CASP-1, MYD88, and PIK3CA IHC staining images 
in normal and tumor samples. Scale bar, 25  μm. ***P < 0.001; 
**P < 0.01; *P < 0.05
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model, consisting of the genes CASP1, MYD88, IFNG, and 
PIK3CA, revealed that individuals with higher risk scores 
had significantly worse prognoses compared to those with 
lower risk scores. As per COX regression analysis, this prog-
nostic model served as an independent risk factor in PC. The 
ROC curves indicated that this model demonstrated superior 
predictive capability for the prognosis of PC patients when 
compared to other clinical characteristics. Moreover, we 
validated the accuracy of this model in our own samples, 
yielding consistent results that revealed patients at high risk 
had a poorer prognosis. These findings collectively affirmed 
that the prognostic model based on ICD genes possessed 
accurate predictive ability for prognosis. The model dem-
onstrated clinical validity and assisted clinicians in making 
precise clinical decisions.

CASP1 (Caspase-1) is an important protease closely 
associated with inflammation and cellular apoptosis. Abnor-
mal expression of CASP1 in certain tumors is linked to 
key processes such as tumor development. Several studies 
propose a close association between CASP1 activity and 
the progression and metastasis of pancreatic cancer [43]. 
Moreover, specific medications could potentially influence 
the therapeutic effectiveness in pancreatic cancer treatment 
through the regulation of CASP1 activity [44]. MYD88 is a 
vital signaling molecule that plays a pivotal role in immune 
responses and regulating inflammation [45, 46]. In tumors, 
research on MYD88 is also receiving significant attention. 
The function of MYD88 in tumors may involve aspects such 
as tumor growth, progression, and immune evasion [47]. 
Several studies propose a close association between aberrant 

MYD88 expression and the onset and progression of diverse 
tumors, encompassing lymphomas and solid tumors [48]. 
Furthermore, MYD88 is also considered a potential thera-
peutic target for some tumors, and drug development target-
ing MYD88 is currently underway [49]. The PIK3CA gene 
encodes the PI3Kα protein kinase subunit, a member of the 
phospholipase family, playing a crucial role in cell prolif-
eration, growth, and survival pathways [50, 51]. PIK3CA 
mutations are detected in multiple malignancies, such as 
pancreatic cancer, where the abnormal activation of PIK3CA 
is intricately connected to tumor cell proliferation, invasion, 
and metastasis. This underscores the significant potential 
importance of therapeutic approaches aimed at targeting 
PIK3CA in treating this disease [52, 53].

In our study, we identified increased levels of CASP1, 
MYD88, and PIK3CA in pancreatic cancer, observed in both 
public databases and our clinical specimens. Moreover, indi-
viduals with elevated expression of these genes experienced 
significantly worse outcomes than those with lower levels, 
highlighting the substantial influence of these genes on PC 
progression. Diminishing MYD88 expression demonstrated 
a remarkable effect on the proliferation and migration of PC 
cells in vitro. Nevertheless, further investigations are war-
ranted to elucidate the roles of these genes in PC and their 
impact on disease advancement.

Despite these findings, our results have certain limitations. 
First, the small sample size may introduce bias, emphasizing 
the need for validation with a larger cohort in future studies. 
Therefore, we plan to include additional PDAC samples to 
further validate the reliability of our model. Second, although 
we explored the role of MYD88 in PDAC, the functions of 
the other genes in the model remain unclear. Moving forward, 
we aim to investigate the effects of these remaining genes on 
PDAC through both in vitro and in vivo experiments. While 
we found that these genes are upregulated in PDAC via IHC, 
additional samples are required for validation. Furthermore, 
although our study identified MYD88 as a promoter of PDAC 
progression, the underlying mechanisms remain elusive. We 
will continue to explore these potential mechanisms using both 
in vitro and in vivo approaches.

Fig. 8   The effects of MYD88 on PC cells in  vitro. A The mRNA 
knockdown efficiency of MYD88 in MIA PaCa-2 and Patu8988. B 
The knockdown efficiency of MYD88 in MIA PaCa-2 and Patu8988 
validated by Western blot assay. C The overexpression efficiency of 
MYD88 in SW-1990 and PDC 0034 validated by Western blot assay. 
D The effect of MYD88 knockdown on the proliferation of PC cells 
demonstrated through the CCK-8 assay. E The effect of MYD88 
overexpression on the proliferation of PC cells demonstrated through 
the CCK-8 assay. F–H The effects of MYD88 knockdown or over-
expression on the proliferation of PC cells demonstrated through the 
colony-formation assay. I–K The effects of MYD88 knockdown or 
expression on the migration of PC cells demonstrated through the 
transwell assay. ***P < 0.001; **P < 0.01; *P < 0.05
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