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Abstract
Background  Existing biomarkers and models for predicting response to programmed cell death protein 1 monoclonal anti-
body in advanced squamous-cell non-small cell lung cancer (sqNSCLC) did not have enough accuracy. We used data from 
the ORIENT-3 study to construct artificial neural network (ANN) systems to predict the response to sintilimab for sqNSCLC.
Methods  Four ANN systems based on bulk RNA data to predict disease control (DC), immune DC (iDC), objective response 
(OR) and immune OR (iOR) were constructed and tested for patients with sqNSCLC treated with sintilimab. The mecha-
nism exploration on the bulk and the spatial level were performed in patients from the ORIENT-3 study and the real world, 
respectively.
Findings  sqNSCLC patients with different responses to sintilimab showed each unique transcriptomic spectrum. Four 
ANN systems showed high accuracy in the test cohort (AUC of DC, iDC, OR and iOR were 0.83, 0.89, 0.93 and 0.94, 
respectively). The performance of ANN systems was better than that of linear model systems and showed high stability. 
The mechanism exploration on the bulk level suggested that patients with lower ANN system scores (worse response) had a 
higher ratio of immune-related pathways enrichment. The mechanism exploration on the spatial level indicated that patients 
with better response to immunotherapy had fewer clusters of both tumor and cytotoxicity T cell spots.
Interpretation  The four ANN systems showed high accuracy, robustness and stability in predicting the response to sintilimab 
for patients with sqNSCLC.
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Abbreviations
ANN	� Artificial neural network
DC	� Disease control
FFPE	� Formalin-fixed paraffin-embedded
FGA	� Fraction of copy number-altered genome
GO	� Gene ontology

GSEA	� Gene set enrichment analysis
GSVA	� Gene set variation analysis
IHC	� Immunohistochemistry
KEGG	� Kyoto encyclopedia of genes and genomes
mAb	� Monoclonal antibody
NES	� Normalized enrichment score
PD-1	� Programmed cell death protein 1
PD-L1	� Programmed death ligand 1
sqNSCLC	� Squamous-cell non-small cell lung cancer
TIDE	� Tumor immune dysfunction and exclusion
TIME	� Tumor immune microenvironment
TMB	� Tumor mutation burden

Introduction

Lung cancer, one of the most frequently diagnosed cancer 
types, is the leading cause of cancer-related deaths around 
the world [1, 2], and non-small cell lung cancer (NSCLC) 
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accounts for 85% of patients with lung cancer [3]. Immu-
notherapy, especially programmed cell death protein 1 
(PD-1)/programmed death ligand 1 (PD-L1) monoclonal 
antibody (mAb), brought benefits to patients with advanced 
NSCLC. The efficacy of PD-1/PD-L1 mAb monotherapy or 
combined with chemotherapy in the first- and posterior-line 
treatment was limited, with objective response rate (ORR) 
of 43.3–64.8% [4–6] and 13.6–25.5% [7, 8], respectively. To 
identify patients could benefit from PD-1/PD-L1 mAb, many 
studies focus on developing biomarkers, and the most com-
mon used in patients with NSCLC were PD-L1 [5], tumor 
mutation burden (TMB) [9] and fraction of copy number-
altered genome (FGA) [10]. However, the existing biomark-
ers did not show enough accuracy [11], and some of them 
might play different roles in squamous-cell non-small cell 
lung cancer (sqNSCLC) and non-sqNSCLC [12].

Recently, deep learning had been used in the diagnosis 
of malignant tumor and show high accuracy [13]. There-
fore, predictive model constructed by deep learning might 
help to identify eligible patients who will benefit most from 
PD-1/PD-L1 mAb. Some studies had provided signatures or 
models to predict the response to immunotherapy for pan-
cancer [14, 15], but the robustness of these were limited. 
Perhaps, due to the heterogeneity between different types 
of malignant tumors, models established based on a spe-
cific tumor type only have better predictive ability for that 
type of tumor, and generalized use of models might result 
in incorrect results. In NSCLC, there are many difference 
between sqNSCLC and non-sqNSCLC, including cell of 
origin, genomic alteration, pathway alteration, etc. [16]. 
Besides, because of lack of driver gene alteration, PD-1/
PD-L1 mAb plays more important roles in sqNSCLC than 
non-sqNSCLC. For this reason, it is necessary to construct 
specialized predictive models for sqNSCLC.

ORIENT-3 was an open-label, multicenter, randomized 
controlled phase 3 study that recruited patients with stage 
IIIB/IIIC/IV sqNSCLC after failure with first-line platinum-
based chemotherapy, which had response records and RNA 
data [8]. This study used the RNA data of ORIENT-3 study 
to construct artificial neural network (ANN) systems to pre-
dict the response to sintilimab for patients with sqNSCLC, 
and tested the accuracy, robustness and stability of these 
ANN systems. Besides, both bulk and spatial transcriptomic 
data were used to explore the potential mechanism of these 
ANN systems and provide possible therapy targets.

Methods

Study design

There were three cohorts designed in this study. The cohort 
1 and the cohort 2 were 61 and 49 patients with RNA data 

from sintilimab arm and docetaxel arm of the ORIENT-3 
study [8], respectively. The cohort 3 was three patients 
treated with PD-1 mAb combined with chemotherapy from 
the real world. The efficacy and RNA data of the cohort 1 
and 2 were obtained from the ORIENT-3 study [8]. The clin-
icopathological characteristics of the cohort 3 were obtained 
from the clinical records, and the tumor specimens were 
formalin-fixed paraffin-embedded (FFPE) samples from 
the tissue bank of Department of Pathology, Cancer Hospi-
tal, Chinese Academy of Medical Science (CAMS). In the 
cohort 3, the tumor responses were determined according to 
the Response Evaluation Criteria in Solid Tumors version 
1.1, and the progression-free survival (PFS) was defined as 
the duration from the initial of first time of immunotherapy 
in the advanced tumor therapy to the date of disease progres-
sion or the last follow-up.

Transcriptomic spectrum between different 
responses

The 59 patients with response data in the cohort 1 were 
used to performed transcriptomic spectrum. The confirmed 
best of response (BORC) results were classed into response 
(R, including complete response [CR] and partial response 
[PR]), stable disease (StD, S) and progressive disease (PD, 
P). For immune BOR (iBOR), the results were classed into 
immune response (iR, including immune CR [iCR] and 
immune PR [iPR]), immune StD (iStD, iS) and immune 
unconfirmed PD (iUPD, iP). Uni-variable logistic regres-
sion was used to calculate the odds ratio (OR) of different 
BORC (R versus S + P, S versus R + P and P versus R + S) 
and iBOR (iR versus iS + iP, iS versus iR + iP and iP versus 
iR + iS) results to the residue other patients for each gene.

Gene set enrichment analysis (GSEA) was performed 
by “clusterProfiler” package [17], information of gene 
sets in “HALLMARK”, “Kyoto Encyclopedia of Genes 
and Genomes (KEGG)” and “Gene Ontology (GO)” was 
obtained from www.​gsea-​msigdb.​org/​gsea/​msigdb/​index.​jsp. 
A total of 1350 gene sets associated tumor and its microenvi-
ronment were analyzed as a point of importance. The 1,350 
gene sets were summarized into six classes by us accord-
ing to the information of these gene sets provided on the 
molecular signatures database (MSigDB), including 421 
“Immunity,” 127 “Cell cycle,” 315 “Metabolism & energy,” 
286 “Genetic and epigenetic information,” 129 “extracel-
lular matrix (ECM) & metastasis” and 72 “Cell death” gene 
sets. The gene sets with raw P < 0.05 & FDR < 0.25 were 
considered as statistically significant.

ANN systems construction

RNA data were normalized based on the expression of the 
sum of two house keeping genes (ACTB and GAPDH), then 

http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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were converted logarithmically. The ANN systems construc-
tion flowchart was shown in Figure S1 and performed inde-
pendently for disease control (DC, R + S), immune DC (iDC, 
iR + iS), objective response (OR, R) and immune OR (iOR, 
iR). The 59 patients from the cohort 1 with both response 
and RNA data were randomly divided into the training 
cohort (70%) and the test cohort (30%). Receiver operat-
ing characteristic (ROC) curve were used in the training 
cohort to select genes, and the top 30 significant (P < 0.05, 
area under the curve [AUC​] of ROC curve > 0.75 or < 0.25, 
ranked by random forest method [“randomForest” package, 
https://​cran.r-​proje​ct.​org/​doc/​Rnews/​Rnews_​2002-3.​pdf]) 
genes were used to construct ANN models. If the signifi-
cant genes were fewer than 30, all significant genes would 
be used to construct ANN models. The “neuralnet” package 
(https://​CRAN.R-​proje​ct.​org/​packa​ge=​neura​lnet) was used 
to construed ANN models. The number of hidden neurons 
was based on Nh = (4n2 + 3)/(n2 − 8) (Nh, the number of hid-
den neurons; n, the number of input neurons) [13]. Three 
hundred times of threefold cross validation were performed 
to obtain 900 ANN models and test the accuracy of them. 
The final predicted scores of the ANN system (900 ANN 
models) were equal to the weighted average of output values 
of all ANN models. Finally, the accuracy of the ANN system 
was tested in the test cohort.

ANN systems evaluation

First, according linear models’ system was also built and 
was compared with the ANN system to evaluate the effec-
tiveness of the ANN system. Second, to evaluate the clini-
cal practicality, the best cut-off of the final predicted scores 
of the ANN system and according linear models’ system 
were determined by the Youden indexes of both the train-
ing and the test cohort. Third, the correlation between the 
expression of each gene constructing the ANN system and 
the final predicted scores were explored by Pearson correla-
tion coefficient to evaluated the internal correlation of the 
ANN system. Finally, the AUC​ and width of according 95% 
confidence interval [CI] of each ANN system with all com-
bination of gene expression missing were tested to evaluate 
the stability of the ANN system. In the stability evaluation, 
the number of missing genes were ranged from one to seven, 
and the expression of these missing genes were replaced by 
the mean normalized expression of them in 59 patients from 
the cohort 1.

Mechanism exploration on bulk level

The final predicted scores of the four ANN systems were cal-
culated for patients from the cohort 1 and cohort 2, and the 
correlation between the final predicted scores and the activa-
tion of pathways as well as tumor immune microenvironment 

(TIME) were explored. In pathway enrichment analysis, 
GSEA and gene set variation analysis (GSVA) were per-
formed by “clusterProfiler” [17] and “GSVA” [18] package, 
respectively. The information and classification of refer-
ence gene sets were the same as the part of “Transcriptomic 
spectrum between different responses.” In TIME analysis, 
“ESTIMATE” algorithm was used to calculate the stromal 
and immune scores by “estimate” package [19]. Besides, 
“CIBERSORT” [20], “quanTIseq” [21] and single sample 
GSEA (ssGSEA) [18] were performed to calculate the infil-
tration fractions or scores of immune cells. The reference 
gene sets of ssGSEA contained the marker genes of 28 kinds 
of immune cells [14].

Mechanism exploration on spatial level

5μm FFPE slides of patients from the cohort 3 were prepared 
and incubated followed by hematoxylin–eosin (HE) stain-
ing. Tissue imaging was conducted following the application 
of approximately 100 µL of 85% Glycerol (Thermofisher, 
Catalog number 15514011). The Visium slide was inserted 
into a cassette and incubated. Pre-hybridization, library 
preparation, encompassing probe ligation, probe release and 
extension, probe elution, and FFPE library assembly were 
processed according to the Visium Spatial Gene Expression 
User Guide (10× Genomics, User Guide CG000407 Rev C, 
human transcriptome Product number 1000338) and all rea-
gents were from the Visium Spatial Gene Expression for 
FFPE Reagent Kit (10× Genomics). The completed librar-
ies were subjected to sequencing on the Novaseq6000 plat-
form (Illumina). The raw spatial sequencing RNA data were 
normalized by the “Seurat” [22] package for the following 
analysis.

The final predicted scores of the four ANN systems were 
calculated for patients from the cohort 3, and the correla-
tion between the final predicted scores and the activation of 
pathways (calculated by “GSVA” [18]) were explored. The 
“ESTIMATE” [19], “CIBERSORT” [20] and “quanTIseq” 
[21] were used to evaluated tumor purity and the infiltra-
tion of cytotoxic T lymphocyte (CTL), then the tumor cells 
dominant spots (tumor spots) and spots with relative high 
infiltration level of CTL (CTL spots) were identified. RNA 
data of tumor and CTL spots from each patients were scaled 
and used to performed principal component analysis (PCA). 
Then, the principal components were used to performed 
uniform manifold approximation and projection (UMAP) 
to further dimension reduction. K-means method was used 
to group tumor and CTL spots into different clusters, the 
optimal number of clusters was determined by the “NbClust” 
[23] package.

Cell–cell communication analysis was performed by the 
“CellChat” [24] package, and the “CellChatDB.human” was 
used as the reference. Pseudotime analysis was performed by 

https://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf
https://CRAN.R-project.org/package=neuralnet
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“monocle” [25–27] package, and the expression of S100A2 
and some of keratin-related genes was used to determine the 
direction of trajectory.

Statistical analysis

R software (version 4.2.1, https://​www.r-​proje​ct.​org) was 
employed for all the statistical analysis. Loupe Browser 
(version 6.5.0, https://​suppo​rt.​10xge​nomics.​com) was used 
to assist tumor spots identification. Spearman correlation 
analysis was performed for the final predicted score, to cal-
culate the relationship between the final predicted scores 
and gene expression, GSVA score as well as infiltration frac-
tion or score of immune cells. In this study, raw P < 0.05 & 
FDR < 0.25 were considered statistically significant.

Role of the funding source

This work was supported by the National Science and 
Technology Major Project for Key New Drug Development 
(2017ZX09304015). Professor Yuankai Shi had roles in data 

collection, data analysis, data interpretation, and writing of 
the manuscript. Professor Yuankai Shi had full access to 
all the dataset of this study and the decision to submit for 
publication.

Findings

Patient baseline characteristics

Study flowchart was shown in Fig. 1. Patients’ clinicopatho-
logic characteristics of the cohort 1 (n = 61), the cohort 
2 (n = 49) and the cohort 3 (n = 3) were summarized in 
Table 1. Most of the patients in the cohort 1 and 2 as well as 
all patients in the cohort 3 were male and smoker. The age 
distribution of the three cohorts were similar. All patients 
suffered locally advanced or metastatic sqNSCLC. In the 
cohort 1 and 3, patients received PD-1 mAb, and all patients 
in the cohort 1 received sintilimab alone, whereas patients 
in the cohort 3 received PD-1 mAb (two received tisleli-
zumab and one received pembrolizumab) combined with 

Fig. 1   Study flowchart. NE: not 
evaluable; R: response; S: sta-
ble; P: progressive; iR: immune 
response; iS: immune stable; 
iP: immune progressive; ANN: 
artificial neural network; DC: 
disease control; iDC: immune 
disease control; OR: objective 
response; iOR: immune objec-
tive response; GSVA: gene set 
variation analysis; GSEA: gene 
set enrichment analysis; TIME: 
tumor immune microenviron-
ment; ssGSEA: single sample 
gene set enrichment analysis; 
PD-1: programmed cell death 
protein 1; mAb: monoclonal 
antibody

https://www.r-project.org
https://support.10xgenomics.com
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chemotherapy. The ORR and disease control rate (DCR) 
of the cohort 1 were 23.7% and 74.6%, respectively. There 
were two patients with PR and one patient with StD in the 
cohort 3.

Transcriptomic spectrum between different 
responses

The top 10 up-regulated and down-regulated genes between 
different responses were shown in Fig. 2. To further under-
stand the transcriptomic characteristics between different 
responses, the GSEA were performed. There were 11.4% 
(36/315) “Metabolism & energy”, 11.2% (47/420, one 
gene set was not available [NA]) “Immunity” and 10.5% 
(30/286) “Genetic and epigenetic information” gene sets 
were enriched in the R group, 96.9% (123/127) “Cell cycle”, 
84.6% (242/286) “Genetic and epigenetic information” and 
77.8% (56/72) “Cell death” gene sets were enriched in the S 
group, 59.7% (77/129) “ECM & metastasis” gene sets were 
enriched in the P group (Fig. S2A). In terms of iBOR, the 
results were similar to BORC (Fig. S2B). When the sta-
tistically significant gene sets were selected, there were 
79.5% (101/127) “Cell cycle”, 56.3% (161/286) “Genetic 
and epigenetic information” and 23.6% (17/72) “Cell death” 

gene sets were enriched in the S group, whereas almost no 
gene set was enriched in the R and P group, and this result 
was also observed in the iBOR (Fig. S2C&D). Normalized 
enrichment score (NES) of all 1350 gene set between dif-
ferent responses were shown in Fig. S2E, and the S and iS 
group had the most enrichment gene sets.

Construction and evaluation of ANN systems

In the construction of ANN system for DC, 22 genes were 
screened by ROC (Fig. S3A), and the importance of these 
22 genes were ranked by random forest method (Fig. S3B). 
Normalized expression was used as input neurons to con-
structed ANN system for DC. Each ANN model in this sys-
tem contained three layers with 22 input neurons, four hid-
den neurons and one output neuron, respectively (Fig. 3A). 
The ANN system showed high accuracy in both the training 
cohort and the test cohort, with the AUC​ of 1.000 (95% CI 
1.000–1.000) and 0.827 (95% CI 0.612–1.000), respec-
tively, whereas the according linear models’ system also 
showed high accuracy in both the training cohort and the 
test cohort, with the AUC​ of 1.000 (95% CI 1.000–1.000) 
and 0.885 (95% CI 0.721–1.000), respectively (Fig. 3B). The 
best cut-off of the final predicted scores of the ANN system 

Table 1   Clinicopathologic 
characteristics of all patients in 
this study

SD standard deviation, PD-1 programmed cell death protein 1, mAb monoclonal antibody, CR complete 
response, PR partial response, StD stable disease, PD progressive disease, NE not evaluable according to 
Response Evaluation Criteria in Solid Tumors version 1.1 criteria, NA not available

Characteristics Cohort 1 (n = 61) Cohort 2 (n = 49) Cohort 3 (n = 3)

Sex, n (%)
Male 57 (93.4) 42 (85.7) 3 (100.0)
Female 4 (6.6) 7 (14.3) 0
Age (years)
Mean ± SD 59.5 ± 8.8 59.4 ± 8.3 62.7 ± 3.5
Median (min, max) 61.0 (43.0, 74.0) 59.0 (34.0, 72.0) 63.0 (59.0, 66.0)
 > 60, n (%) 32 (52.5) 21 (42.9) 2 (66.7)
 ≤ 60, n (%) 29 (47.5) 28 (57.1) 1 (33.3)
Smoking status, n (%)
Current smoker/quitted 55 (90.2) 38 (77.6) 3 (100.0)
Non-smoker 6 (9.8) 11 (22.4) 0
Staging, n (%)
Stage IIIB 8 (13.1) 3 (6.1) 1 (33.3)
Stage IIIC 1 (1.6) 2 (4.1) 0
Stage IV A 29 (47.5) 27 (55.1) 1 (33.3)
Stage IVB 23 (37.7) 17 (34.7) 1 (33.3)
Best of response to PD-1 mAb
CR 1 (1.6) NA 0
PR 13 (21.3) NA 2 (66.7)
StD 30 (49.2) NA 1 (33.3)
PD 15 (24.6) NA 0
NE 2 (3.3) NA 0
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and according linear models’ system were 0.8003 and 
14.8159, respectively (Fig. S3C). The correlation between 
the expression of each gene constructing the ANN system 
and the final predicted scores were weak, with Pearson cor-
relation coefficient ranged from − 0.50 to 0.38 (Fig. 4A). 
The AUC​ of the ANN system with all combination of one 
to seven missing genes were 0.947–0.974, 0.926–0.974, 
0.908–0.974, 0.879–0.974, 0.850–0.976, 0.812–0.974 
and 0.786–0.974, respectively (Fig. 4B, the AUC​ without 
missing gene was 0.974); the width of 95% CI of the ANN 
system with all combination of one to seven missing genes 
were 0.062–0.117, 0.060–0.173, 0.060–0.212, 0.062–0.246, 
0.062–0.278, 0.064–0.283 and 0.065–0.302, respectively 

(Fig. 4B, the width of 95% CI without missing gene was 
0.062). The AUC​ of the ANN system and the width of 
according 95% CI with all combination of one to two miss-
ing genes were showed in Fig. S4A.

In the construction of ANN system for iDC, 47 genes 
were screened by ROC (Fig. S3D), and the importance 
of these 47 genes were ranked by random forest method 
(Fig. S3E). Normalized expression of the top 30 genes were 
used as input neurons to constructed ANN system for iDC. 
Each ANN model in this system contained three layers with 
30 input neurons, four hidden neurons and one output neu-
ron, respectively (Fig. 3C). The ANN system showed high 
accuracy in both the training cohort and the test cohort, 

Fig. 2   The top 10 up-regulated and down-regulated genes between 
different responses in the cohort 1. iBOR: immune best of response; 
BORC: confirmed best of response; iCR: immune complete response; 
iPR: immune partial response; iStD: immune stable disease; iUPD: 

immune unconfirmed progressive disease; CR: complete response; 
PR: partial response; StD: stable disease; PD: progressive disease; R: 
response; S: stable; P: progressive; iR: immune response; iS: immune 
stable; iP: immune progressive
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with the AUC​ of 1.000 (95% CI 1.000–1.000) and 0.893 
(95% CI 0.728–1.000), respectively, whereas the according 
linear models’ system did not show high accuracy in the 
test cohort, the AUC​ were 0.969 (95% CI 0.913–1.000) and 
0.518 (95% CI 0.134–0.901) in the training cohort and the 

test cohort, respectively (Fig. 3D). The best cut-off of the 
final predicted scores of the ANN system and according lin-
ear models’ system were 0.8239 and -110.1015, respectively 
(Fig. S3F). The correlation between the expression of each 
gene constructing the ANN system and the final predicted 

Fig. 3   Structure of ANN systems and ROC curve of ANN systems 
and linear model systems for DC A and B, iDC (C and D), OR (E 
and F) and iOR (G and H). ANN: artificial neural network; ROC: 

receiver operating characteristic; DC: disease control; iDC: immune 
disease control; OR: objective response; iOR: immune objective 
response
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scores were weak, with Pearson correlation coefficient 
ranged from − 0.47 to 0.45 (Fig. 4C). The AUC​ of the ANN 
system with all combination of one to seven missing genes 
were 0.968–0.992, 0.946–0.995, 0.921–0.997, 0.895–1.000, 
0.868–1.000, 0.836–1.000 and 0.824–1.000, respectively 
(Fig. 4D, the AUC​ without missing gene was 0.988); the 
width of 95% CI of the ANN system with all combination of 
one to seven missing genes were 0.023–0.072, 0.015–0.109, 
0.011–0.170, 0.000–0.223, 0.000–0.265, 0.000–0.296 and 
0.000–0.307, respectively (Fig. 4D, the width of 95% CI 
without missing gene was 0.030). The AUC​ of the ANN 
system and the width of according 95% CI with all combina-
tion of one to two missing genes were showed in Fig. S4B.

In the construction of ANN system for OR, 48 genes were 
screened by ROC (Fig. S3G), and the importance of these 
48 genes were ranked by random forest method (Fig. S3H). 
Normalized expression of the top 30 genes were used as 
input neurons to constructed ANN system for OR. Each 
ANN model in this system contained three layers with 30 
input neurons, four hidden neurons and one output neuron, 
respectively (Fig. 3E). The ANN system showed high accu-
racy in both the training cohort and the test cohort, with 
the AUC​ of 1.000 (95% CI 1.000–1.000) and 0.929 (95% 
CI 0.776–1.000), respectively; whereas the according lin-
ear models’ system didn’t show high accuracy in the test 
cohort, the AUC​ were 0.903 (95% CI 0.811–0.996) and 
0.446 (95% CI 0.000–0.924) in the training cohort and the 
test cohort, respectively (Fig. 3F). The best cut-off of the 
final predicted scores of the ANN system and according 

linear models’ system were 0.2673 and 28.3683, respec-
tively (Figure S3I). The correlation between the expression 
of each gene constructing the ANN system and the final pre-
dicted scores was weak, with Pearson correlation coefficient 
ranged from − 0.25 to 0.64 (Fig. 4E). The AUC​ of the ANN 
system with all combination of one to seven missing genes 
were 0.879–0.995, 0.817–1.000, 0.776–1.000, 0.751–1.000, 
0.722–1.000, 0.692–1.000 and 0.656–1.000, respectively 
(Fig. 4F, the AUC​ without missing gene was 0.990); the 
width of 95% CI of the ANN system with all combination of 
one to seven missing genes were 0.015–0.187, 0.000–0.236, 
0.000–0.272, 0.000–0.285, 0.000–0.322, 0.000–0.345 and 
0.000–0.361, respectively (Fig. 4F, the width of 95% CI 
without missing gene was 0.026). The AUC​ of the ANN 
system and the width of according 95% CI with all combina-
tion of one to two missing genes were showed in Fig. S4C.

In the construction of ANN system for iOR, 20 genes 
were screened by ROC (Figure S3J), and the importance 
of these 20 genes were ranked by random forest method 
(Figure S3K). Normalized expression was used as input 
neurons to constructed ANN system for iOR. Each ANN 
model in this system contained three layers with 20 input 
neurons, four hidden neurons and one output neuron, 
respectively (Fig. 3G). The ANN system showed high 
accuracy in both the training cohort and the test cohort, 
with the AUC​ of 0.994 (95% CI 0.981–1.000) and 0.938 
(95% CI 0.830–1.000), respectively, whereas the accord-
ing linear models’ system did not show high accuracy in 
the test cohort, the AUC​ were 0.951 (95% CI 0.889–1.000) 

Fig. 4   Pearson correlation coef-
ficients between expression of 
input genes and predicted score, 
and stability of ANN systems 
for DC (A and B), iDC (C and 
D), OR (E and F) and iOR (G 
and H). ANN: artificial neural 
network; DC: disease control; 
iDC: immune disease control; 
OR: objective response; iOR: 
immune objective response; 
AUC​: area under the curve; CI: 
confidence interval
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and 0.738 (95% CI 0.415–1.000) in the training cohort 
and the test cohort, respectively (Fig.  3H). The best 
cut-off of the final predicted scores of the ANN system 
and according linear models’ system were 0.6681 and 
10,327,416,144,840.5996, respectively (Figure S3L). 
The correlation between the expression of each gene con-
structing the ANN system and the final predicted scores 
were weak, with Pearson correlation coefficient ranged 
from − 0.41 to 0.59 (Fig. 4G). The AUC​ of the ANN system 
with all combination of one to seven missing genes were 
0.895–0.975, 0.852–0.969, 0.803–0.972, 0.783–0.969, 
0.758–0.965, 0.730–0.961 and 0.709–0.959, respectively 
(Fig. 4H, the AUC​ without missing gene was 0.965); the 
width of 95% CI of the ANN system with all combina-
tion of one to seven missing genes were 0.057–0.164, 
0.068–0.278, 0.065–0.322, 0.068–0.337, 0.077–0.351, 
0.083–0.357 and 0.087–0.363, respectively (Fig. 4H, the 
width of 95% CI without missing gene was 0.079). The 

AUC​ of the ANN system and the width of according 95% 
CI with all combination of one or two missing genes were 
showed in Fig. S4D.

Mechanism exploration on bulk level

In GSVA results of ANN system predicted scores, almost 
no gene set was enriched in the high efficacy group, more 
“Immunity” (27.4% [115/420] vs. 0 [0/420]), “ECM & 
metastasis” (74.4% [96/129] vs. 0 [0/129]) and “Cell death” 
(50.0% [36/72] vs. 2.8% [2/72]) gene sets were enriched in 
patients without DC (Fig. 5A); more “Immunity” (15.2% 
[64/420] vs. 0 [0/420]), “ECM & metastasis” (48.1% 
[62/129] vs. 0 [0/129]) and “Cell death” (15.3% [11/72] vs. 
1.4% [1/72]) gene sets were enriched in patients without 
iDC (Fig. 5B); no gene set was enriched in patients without 
OR (Fig. 5C); more “Immunity” (14.8% [62/420] vs. 0.5% 
[2/420]), “Cell cycle” (23.6% [30/127] vs. 0.8% [1/127]), 

Fig. 5   Mechanism exploration on bulk level. GSVA results of ANN 
system for DC (A), iDC (B), OR (C) and iOR (D). GSEA results of 
ANN system for DC (E), iDC (F), OR (G) and iOR (H). (I) TIME 
results. GSVA: gene set variation analysis; ANN: artificial neural net-
work; DC (Efficacy): disease control; iDC: immune disease control; 
OR: objective response; iOR: immune objective response; GSEA: 

gene set enrichment analysis; TIME: tumor immune microenviron-
ment; ECM: extracellular matrix; NA: not available; ssGSEA: single 
sample gene set enrichment analysis; B: B cell; CD4T: CD4+ T cell; 
Treg: regulatory T cell; CD8T: CD8+ T cell; M: macrophage; NK: 
natural killer cell; DC (Class): dendritic cell
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“Genetic and epigenetic information” (41.6% [119/286] vs. 
1.7% [5/286]) and “Cell death” (33.3% [24/72] vs. 0 [0/72]) 
gene sets were enriched in patients without iOR (Fig. 5D). 
The GSEA results (Fig. 5E–H) of ANN system prediction 
scores were similar with the GSVA results. The pathway 
enrichment results without consideration of statistical sig-
nificance were showed in Fig. S5.

The TIME results showed that most immune cells and 
scores were not related with efficacy of sintilimab, some 
negative relationships were observed, while positive rela-
tionships were rare (Fig. 5I).

Mechanism exploration on spatial level

In the cohort 3, the patient with BOR of StD and PFS of 3.4 
months (progressed) was defined as P1 (poor response); the 
patient with BOR of PR and PFS of 6.1 months (progressed) 
was defined as P2 (medium response); the patient with BOR 
of PR and PFS of 9.2 months (not progressed) was defined 
as P3 (good response). The four ANN system prediction 
scores of three patients were in Fig. 6A. The GSVA scores 
of most T cell related gene sets (98.6% [70/71]) in the two 
patients with PR were lower than that with StD, and 21.1% 
(15/71) gene sets (defined as type I gene sets) showed low-
est scores in the patient with longer PFS (9.2 months), 
whereas 77.5% (55/71) gene sets (defined as type II gene 
sets) showed lowest scores in the patient with shorter PFS 
(6.1 months, Fig. 6B).

There were 586, 487 and 865 spots detected from the 
P1, P2 and P3, respectively. Moreover, 249, 196 and 362 
spots from the P1, P2 and P3, respectively, were identified 
as tumor spots by results of HE staining and “ESTIMATE” 
[19], 48, 36 and 98 spots from the P1, P2 and P3, respec-
tively, were identified as CTL spots by results of “CIBER-
SORT” [20] and “quanTIseq” [21]. The best clustering num-
ber of tumor spots was seven (Fig. S6A and Fig. 6C), three 
(Fig. S6B and Fig. 6D) and two (Fig. S6C and Fig. 6E) in 
the P1, P2 and P3, respectively; the best clustering number 
of CTL spots was four (Fig. S6D and Fig. 6F), two (Fig. S6E 
and Fig. 6G) and two (Fig. S6F and Fig. 6H) in the P1, P2 
and P3, respectively. Spots in the same cluster were also 
close in the spatial distribution (Fig. S6G–I and Fig. 6I–K).

Results of cell–cell communication analysis showed that 
P1 with poor response to immunotherapy had the mini-
mum communication count (Fig. 7A and Fig. S7A); P2 
with medium response to immunotherapy had the medium 
communication count (Fig. 7B and Fig. S7B); P3 with good 
response to immunotherapy had the maximum communi-
cation count (Fig. 7C and Fig. S7C). The communication 
strength showed similar results (Fig. 7D–F and Fig. S7D–F). 
In terms of the complex of communications, the P1 were 
mainly had internal signals of each clusters, whereas the 
P2 had signals between tumor clusters at the same time; 

as for the P3, the communications linked different tumor 
and CTL clusters together. Therefore, P1 with the maximum 
number of clusters showed minimum communication, which 
represented the highest heterogeneity, while the P3 had the 
opposite.

Results of pseudotime analysis showed that different 
tumor clusters were located in different sites of trajectory 
(Fig. 7G–I). The expression of S100A2 and some of ker-
atin-related genes was used to determine the direction of 
trajectory (Fig. 7J–L and Fig. S7G–L), and the distribution 
of pseudotime values were different among tumor clusters 
(Fig. 7M–O).

Discussion

Immunotherapy had brought clinical benefits to patients 
with lung cancer, but tools on predicting the efficacy of 
immunotherapy were still limited both in quantity and 
accuracy. The most commonly used predictive tool was 
PD-L1 [5], which was an index determined by the immu-
nohistochemistry (IHC) staining of PD-L1. Some predic-
tive tools were calculated by multiple indexes and complex 
methods, like (TMB) [9], FGA [10], immunophenoscore 
(IPS) [14], Tumor Immune Dysfunction and Exclusion 
(TIDE) score [15] and IFN-γ-related mRNA profile [28]. 
These predictive tools were built in one or some types of 
cancer, then were generically used in other types of cancer, 
which might brought inaccuracy and misleading results. 
For example, TMB played different roles in different types 
of cancer, in the type I cancers (including lung adenocar-
cinoma, bladder cancer, melanoma and colorectal cancer), 
TMB was related to better response to immunotherapy, 
while TMB was unrelated or related to worse response to 
immunotherapy in the type II cancers, including esopha-
geal cancer, sqNSCLC, breast cancer, glioma, clear cell 
renal cell carcinoma, head and neck squamous cell car-
cinoma and gastric cancer [12]. Therefore, the same pre-
dictive tool had different predictive values among types 
of cancer. Although, the TIDE score had distinguished 
input types as NSCLC, melanoma and other, sqNSCLC 
and non-sqNSCLC were still mixed together [15]. Our 
previous study showed that better response to immu-
notherapy in lung adenocarcinoma was related to more 
antitumor immune cell (including CD8+ T cell and type I 
macrophage) and less protumor immune cell (regulatory T 
cell and type II macrophage) infiltration, moreover better 
response was also related to more active immune-related 
gene sets [29]. In this study, better response to immuno-
therapy in sqNSCLC almost not related to immune cell 
infiltration, and better response was related to less active 
immune-related gene sets, which suggested that sqNSCLC 
and non-sqNSCLC were different on transcriptomic level 
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and the mechanism of response to immunotherapy might 
be different. As a result, it is necessary to build predic-
tive tools for sqNSCLC excluding other histologic types 
of lung cancer.

This study had built four ANN systems to predict 
response to sintilimab in sqNSCLC, which showed higher 
accuracy than according linear models’ systems except 
the DC model. The correlation between the expression of 

Fig. 6   Mechanism exploration on spatial level. Predicted scores of 
four ANN systems (A) and GSVA results of 71 T cell related gene 
sets (B) in three patients from the cohort 3. Clustering result of tumor 
spots for P1 (C), P2 (D) and P3 (E). Clustering result of CTL spots 
for P1 (F), P2 (G) and P3 (H). Spatial distribution of tumor spots and 

CTL spots for P1 (I), P2 (J) and P3 (K). ANN: artificial neural net-
work; GSVA: gene set variation analysis; CTL: cytotoxic T lympho-
cyte; DC: disease control; iDC: immune disease control; OR: objec-
tive response; iOR: immune objective response; UMAP: uniform 
manifold approximation and projection
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each gene constructing the ANN system and the final pre-
dicted scores were weak because of the nonlinear fitting of 
ANN model. Moreover, stability of the four ANN systems 
was evaluated to simulate the real world usage scenarios, 
for example expression of some genes were NA because 
of different panel of test. We used the mean normalized 

expression of missing genes in 59 patients from the cohort 
1 to replace the missing values, and evaluated influences of 
missing genes with the number from one to seven. Results 
of stability evaluation showed that the AUC​ of most com-
binations of gene expression missing were over than 0.80, 
and the width of according 95% CI were less than 0.20, 

Fig. 7   Results of cell–cell communication analysis and pseudotime 
analysis. Net plot of interaction counts for P1 (A), P2 (B) and P3 (C). 
Net plot of interaction strength for P1 (D), P2 (E) and P3 (F). Distri-
bution of different tumor spot clusters in trajectory for P1 (G), P2 (H) 

and P3 (I). Identification of the direction of trajectory by the expres-
sion of S100A2 for P1 (J), P2 (K) and P3 (L). S100A2: S100 calcium 
binding protein A2; CTL: cytotoxic T lymphocyte
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which meant the four ANN systems had high stability. 
This study had explored the relationship between final 
predicted scores of the four ANN systems and pathways 
activities. Interestingly, more “Immunity” gene sets were 
enriched in the low efficacy group with lower predicted 
scores. Moreover, results of TIME didn’t provide any valu-
able explanation.

To further validate this seemingly contradictory phenom-
enon, spatial sequencing was performed in the independ-
ent cohort 3. Similar to results of the bulk level, the GSVA 
scores of most T cell related gene sets in the two patients 
with PR were lower than that with StD on the spatial level. 
Further analysis based on the spatial information was per-
formed, and results showed that patient with worse response 
to immunotherapy accompanied with more clusters of tumor 
and CTL spots and weaker cell–cell communications. In 
other words, worse response might be related to higher het-
erogeneity. A recent study suggested that although higher 
heterogeneity resulted by more subclones of tumor provided 
more mutation and neoantigen burden, but response to these 
subclones might not prime an efficient antitumor immunity 
[30]. Therefore, higher heterogeneity of tumor might lead 
to higher heterogeneity of CTL in TIME, the latter would 
result in higher diversity of immune response and might per-
formance as more “Immunity” gene sets enrichment, which 
represented lower join force of cytotoxic and was not con-
ducive to the effectiveness of immunotherapy. Many genes 
used as input neurons to constructed ANN systems were 
related to intratumoral heterogeneity and TIME.

This study constructed four ANN systems to predict the 
response to immunotherapy specially in sqNSCLC and 
explored potential mechanism on the bulk and the spatial 
level. Compared with constructing gene signatures in other 
studies, ANN system with high fitting efficiency could 
avoid the instability caused by different reference back-
ground genes. This study used 300 times of threefold cross 
validation to reduce the randomness in model construction. 
Removing input genes and replacing them with mean values 
was used to evaluate the stability of ANN systems, providing 
experience for the use in the future when some input genes 
are missing. For patients with sqNSCLC who will receive 
sintilimab, the baseline tissue samples can be sequenced and 
the RNA data are used as input to calculate the prediction 
scores according to our ANN systems. The binomial pre-
diction results can also acquire base on our recommended 
thresholds. For those with better efficacy prediction results, 
sintilimab could bring benefits, whereas other treatments 
would be better for those with worse efficacy prediction 
results. There were still some limits in this study. The sample 
size used in model construction and mechanism exploration 
needed to be improved. Moreover, due to the nonlinear fit-
ting of ANN model, it was difficult to explain the relation-
ship between input genes and final predicted scores.

The four ANN systems showed high accuracy, robust-
ness and stability in predicting the response to sintilimab 
for patients with sqNSCLC, and lower intratumoral het-
erogeneity and higher join force of cytotoxic might be 
the potential mechanism of patients with better response.
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