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Abstract
Background Predicting mortality in sepsis-related acute kidney injury facilitates early data-driven treatment 
decisions. Machine learning is predicting mortality in S-AKI in a growing number of studies. Therefore, we conducted 
this systematic review and meta-analysis to investigate the predictive value of machine learning for mortality in 
patients with septic acute kidney injury.

Methods The PubMed, Web of Science, Cochrane Library and Embase databases were searched up to 20 July 2024 
This was supplemented by a manual search of study references and review articles. Data were analysed using STATA 
14.0 software. The risk of bias in the prediction model was assessed using the Predictive Model Risk of Bias Assessment 
Tool.

Results A total of 8 studies were included, with a total of 53 predictive models and 17 machine learning algorithms 
used. Meta-analysis using a random effects model showed that the overall C index in the training set was 0.81 (95% 
CI: 0.78–0.84), sensitivity was 0.39 (0.32–0.47), and specificity was 0.92 (95% CI: 0.89–0.95). The overall C-index in the 
validation set was 0.73 (95% CI: 0.71–0.74), sensitivity was 0.54 (95% CI: 0.48–0.60) and specificity was 0.90 (95% CI: 
0.88–0.91). The results showed that the machine learning algorithms had a good performance in predicting sepsis-
related acute kidney injury death prediction.

Conclusion Machine learning has been shown to be an effective tool for predicting sepsis-associated acute kidney 
injury deaths, which has important implications for enhancing risk assessment and clinical decision-making to 
improve sepsis patient care. It is also eagerly anticipated that future research efforts will incorporate larger sample 
sizes and multi-centre studies to more intensively examine the external validation of these models in different patient 
populations, allowing for a more in-depth exploration of sepsis-associated acute kidney injury in terms of accurate 
diagnostic efficacy across a diverse range of model and predictor types.

Trial registration This study was registered with PROSPERO (CRD42024569420).
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Introduction
Sepsis is a life-threatening organ dysfunction due to a 
dysregulated host response to infection [1]. Sepsis-asso-
ciated acute kidney injury (S-AKI) is one of the most 
common organ dysfunctions in hospitalised and critically 
ill patients [2]. S-AKI accounts for 45-70% of AKI cases 
in the ICU, with a mortality rate of 60-80% [3, 4]. Sep-
sis is one of the leading causes of death globally, affect-
ing more than 19  million people each year, so S-AKI is 
an important public health issue [5, 6]. In the early stages 
of AKI, there are no obvious clinical symptoms, and the 
diagnosis of AKI is based on a decrease in renal function 
(increased creatinine or decreased urine output), but the 
diagnosis of AKI is usually delayed until the actual renal 
function is abnormal [7, 8]. Although some novel bio-
markers such as blood and urine can identify AKIs at an 
early stage [9, 10]. However, the diagnostic reliability of 
individual biomarkers is imprecise and lacks tissue cor-
relation. It is well known that there is no effective treat-
ment for AKI other than renal replacement therapy. Early 
identification of high-risk individuals and effective inter-
vention can help improve the prognosis and survival of 
S-AKI patients [11, 12].

Machine learning can use big data analytics to predict 
future events and can help clinicians make accurate diag-
noses and treatments [13]. Machine learning is capable 
of handling complex, large amounts of health data and 
is widely used in the construction of clinical predictive 
models [14]. Recent studies have shown that machine 
learning algorithms achieve better performance in pre-
dicting S-AKI prognosis [15–17]. However, there is a 
deficiency of systematic evidence on the prediction of 
S-AKI mortality risk. Therefore, we conducted this sys-
tematic review and meta-analysis to assess the predictive 
value of machine learning for S-AKI mortality risk and to 
provide guidance for the development and updating of 
S-AKI mortality risk prediction tools.

Methods
The study protocol was registered with the international 
prospective systematic evaluation registry PROSPERO 
(CRD42024569420) and was conducted in accordance 
with the standard guidelines provided by the Preferred 
Reporting Items for Systematic Reviews and Meta-Analy-
ses PRISMA-2020.

Literature search
Systematic literature searches were performed using 
PubMed, Web of Science, Cochrane Library and Embase. 
Our search strategy used a combination of subject 
terms and free words. We limited the search language 
to English. Two researchers independently searched the 
literature (Xiangui Lv and Xinwei Chen), and any dis-
agreements were resolved by a third researcher (Chao 

Huang).The details of the search are given in Additional 
fle 2. The main search terms included machine learning, 
sepsis, acute kidney injury, and death.20 July 2024 was 
the last date of the search.

Inclusion and exclusion criteria

Inclusion criteria
(1) Study subjects aged ≥ 18 years; (2) Study subjects 
with sepsis; (3) Study designs included cohort studies, 
case-control studies, and cross-sectional studies; (4) The 
outcome event predicted by the model was mortality, a 
machine learning prediction model was constructed, and 
the process of model building, validation, and evaluation 
was described.

Exclusion criteria
(1) Risk factor studies only, without complete risk model-
ling; (2) Case series, case reports, randomised controlled 
trials and descriptive surveys; (3) Guidelines, expert 
opinions, reviews and animal studies; (4) Language: other 
than English; (5) Inaccessibility of original text or incom-
plete data.

Literature screening and data extraction
After the literature search was completed, it was 
imported into EndNote X9 for management. Literature 
was screened by 2 researchers (Xiangui Lv and Chao 
Huang) by reading the title, abstract and other informa-
tion of the literature and strictly following the inclusion 
and exclusion criteria in order to select eligible studies. 
If the 2 researchers did not agree on the final inclusion 
of literature, a 3rd senior researcher (Daiqiang Liu) was 
sought for judgement and agreement.

Data extraction
After confirming the inclusion of the literature, download 
and read the original article in its entirety. A table was 
generated to record all relevant data. All extracted data 
items were collected according to the Cochrane guidance 
for data collection and the Critical Appraisal and Data 
Extraction for Systematic Reviews of Prediction Model-
ling Studies (CHARMS) checklist [18], including year of 
publication, type of study, country, data sources, Patient 
characteristics, AKI diagnostic criteria, Study Outcome, 
Delete missing variables, Missing variables imputation 
method, Predictor selection, machine learning algo-
rithms, type of validation, Calibration indicators and so 
on. The primary outcomes included in the study were C 
index, sensitivity and specificity.

Risk of Bias Assessment
The Prediction Model Risk of Bias Assessment Tool 
(PROBAST) was used to evaluate the risk of bias in the 
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included studies [18]. PROBAST includes two parts: risk 
of bias evaluation and applicability evaluation. The risk 
of bias evaluation is conducted in four areas: Partici-
pants, Predictors, Outcome, and Analysis, and each area 
contains 2/3/6/9 landmark questions. The evaluation of 
applicability was conducted in 3 domains: participants, 
predictors, and outcomes. The evaluation of the risk of 
bias of all the included literature was done independently 
by 2 researchers (Daiqiang Liu and Chen Xinwei), and 
the disagreement was discussed and resolved by negotia-
tion, and if there was still disagreement, the decision was 
arbitrated by the third researcher (Huang Chao).

Statistical analysis
A meta-analysis of the evaluation metrics (C-index, sen-
sitivity and specificity) of the machine learning mod-
els was performed by applying STATA 14.0 software. 
If the C-index did not have a 95% CI or SE, the SE was 
estimated using the calculation proposed by Debray et 
al. [19]. The random effects model was preferred in the 
meta-analysis of the C-index given the presence of differ-
ent variables and parameter inconsistencies in the learn-
ing model. In addition, we used bivariate mixed-effects 
models for sensitivity and specificity meta-analyses.

Results
Study selection
A total of 312 publications were searched through vari-
ous databases, including PubMed (n = 78), Embase 
(n = 209), Web of Science (n = 6), and Cochrane Library 
(n = 19). Through a cascade of screening, eight papers 
met the inclusion criteria and were included in our study, 
Fig. 1 shows the PRISMA flowchart.

Study characteristics
The 8 studies were published between 2022 and 2024, 
with investigators from China and were retrospective 
cohort studies. A total of 59,094 patients were enrolled 
across five studies. Data were obtained from public data-
bases such as MIMIC-IV, MIMIC-III, eICU and hospital 
electronic medical record data. Seven studies included 
adult patients aged 18 years and older [15, 16, 20–24], 
One study included elderly patients aged 65 years or 
older [17]. Five studies focused on in-hospital mortal-
ity outcomes [15–17, 21, 24], three studies focused on 
mortality at 28 days after admission to ICU [20, 22, 23]. 
Detailed characteristics of the included studies are shown 
in Table 1.

Features of machine learning Algorithme
In the included studies, all authors used a variety of dif-
ferent machine learning methods to construct multiple 
predictive models. These algorithms are then compared 
to determine the machine learning algorithm that 

performs best. A total of 53 models were constructed in 
8 studies, and 17 machine learning algorithms were used, 
including Random Forest (RF), Extreme Gradient Boost 
(XGBoost), Logistic Regression (LR), Support Vector 
Machine (SVM), K Nearest Neighbor (KNN),Multilayer 
perceptron(MLP), Naive Bayes(NB), Adaptive 
Boosting(AdaBoost), Categorical Boosting(CatBoost), 
Decision Tree(DT), Gradient Boosting Machines(GBM), 
Neural Network(ANN), Gradient Boosting Decision 
Tree(GBDT), Light Gradient Boosting Machine (Light-
GBM), Rpart, Support Vector Classifer(SVC), Least abso-
lute shrinkage and selection operator(LASSO).

Regarding the types of machine learning algorithms, RF 
and XGBoost had the highest frequency (n = 8), followed 
by LR (n = 7), SVM (n = 5), and KNN (n = 4). Distribution 
of machine learning algorithms used in the 8 studies is 
shown in Fig.  2. XGBoost showed the best predictive 
performance in 5 studies [15, 20–23]. CatBoost showed 
the best predictive performance in 2 studies [17, 24]. RF 
showed the best predictive performance in 1 study [16]. 
However, choosing the right machine learning algorithm 
cannot completely determine the performance of the 
model, because the performance of the model may also 
be affected by the choice of predictors, hyperparameters 
and other factors [25]. The model has adopted different 
interpolation methods such as XGBoost, MiceForest, 
and KNN in handling missing data. Fan et al. adopted 
the Reduced Feature Elimination (RFE) algorithm to dis-
cover the key predictive factors of their machine learn-
ing model [17, 20, 24]. Logistic Regression [15], Lasso 
Regression [15, 21], Random Forest [15], XGBoost [22], 
and Boruta algorithms [23] are used to select the most 
important predictive factors for predicting S-AKI mor-
tality. There were 3 studies with internal and external 
validation [15, 20, 24], 5 study with internal validation 
[16, 17, 21–23]. The characteristics of the machine learn-
ing model are shown in Table 2. Machine learning model 
performance, including C-index, accuracy, sensitivity, 
specificity, and F1 score, was used to assess and char-
acterise model performance. Detailed information on 
model performance is provided in Additional fle 3. The 
C-index ranged from 0.574 to 0.987 and performed well 
in most studies.

Quality of evidence and risk of bias
The risk of bias assessment was carried out indepen-
dently by two evaluators (Xiangui Lv and Xinwei Chen), 
and any discrepancies were resolved by a third evaluator 
(Chao Huang). The PROBAST assessment tool was used 
to evaluate the risk of bias of the prediction models. The 
assessment was conducted in four domains: participants, 
predictors, outcome and analysis. 4 studies were consid-
ered to be at high risk of bias in the predictors domain 
[15, 22–24], which may be attributed to the fact that the 
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retrospective study data were obtained from a multi-
centre clinical database and not using a unified method 
to evaluate predictive factors. In the evaluation of out-
comes, due to the specificity of the outcome indicator of 
death, the results of the evaluations related to the defini-
tion of outcomes in the included studies were all at low 
risk of bias. The inclusion of the model validation set is 
mostly generated through random sampling for inter-
nal validation, with only three multicenter studies hav-
ing independent external validation datasets. The risk of 
bias assessment of the included studies is shown below 
in Fig. 3.

Statistical analysis
The meta-analysis using the random effects model 
showed that the C index in the training set was 0.81 (95% 

CI: 0.78–0.84), the sensitivity was 0.39 (0.32–0.47), and 
the specificity was 0.92 (95% CI: 0.89–0.95). The sub-
group analyses of the C index in the training set were 
0.80 (95% CI: 0.76–0.83) for the LR model, 0.85 (95% CI: 
0.76–0.94) for the RF model, 0.85 (95% CI 0.78, 0.91) for 
the XGBoost model, and 0.76 (95% CI 0.73, 0.79) for the 
SVM model. (Forest plot of c-index meta-analysis of pre-
diction models for S-AKI death prediction in the training 
set are shown in Fig. 4, and the results of the sensitivity-
specific meta-analysis in the training set are shown in 
Fig. 5).

The C index in the validation set was 0.73 (95% CI: 
0.71–0.74), with a sensitivity of 0.54 (95% CI: 0.48–0.60) 
and a specificity of 0.90 (95% CI: 0.88–0.91). The sub-
group analyses of the C-index of the validation set were 
0.74 (95% CI: 0.70–0.78) for the LR model, 0.73 (95% CI: 

Fig. 1 PRISMA study selection flowing chart
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Table 1 Characteristic of the included studies
Author Year Study 

design
Country Data sources Disease background AKI 

diagnostic 
criteria

Study 
outcome

Lei Dong [15] 2024 Retrospec-
tive cohort

China MIMIC-IV、MIMIC-III、Beijing 
Friendship Hospital af-
filiated with Capital Medical 
University

Sepsis patients aged 18–89 in ICU 2012 KDIGO In-hospital 
mortality

Zhiyan Fan 
[20]

2023 Retrospec-
tive cohort

China MIMIC-IV, Hangzhou First 
People’s Hospital Affiliated to 
Zhejiang University School of 
Medicine

Sepsis patients over 18 years old 
in ICU

2012 KDIGO 28d mortality

Tianyun Gao 
[16]

2024 Retrospec-
tive cohort

China MIMIC-IV Sepsis patients over 18 years old 
in ICU

2012 KDIGO In-hospital 
mortality

Xunliang Li 
[21]

2023 Retrospec-
tive cohort

China MIMIC-IV Adult patients with sepsis who 
developed AKI within 48 h after 
ICU admission.

2012 KDIGO In-hospital 
mortality

Xiaoqin Luo 
[22]

2022 Retrospec-
tive cohort

China MIMIC-IV、eICU Adult patients with sepsis who 
developed AKI within 48 h after 
ICU admission.

2012 KDIGO 28d mortality

Jie Tang [17] 2024 Retrospec-
tive cohort

China MIMIC-IV Sepsis patients over 65 years old 
in ICU

2012 KDIGO In-hospital 
mortality rate

Jijun Yang 
[23]

2023 Retrospec-
tive cohort

China MIMIC-IV Sepsis patients over 18 years old 
in ICU

2012 KDIGO 28 day 
mortality

Hongshan 
Zhou [24]

2023 Retrospec-
tive cohort

China MIMIC-IV、Xiangya Hospital 
of Central South University 
and Xiangya Third Hospital of 
Central South University

Sepsis patients over 18 years old 
in ICU

2012 KDIGO In-hospital 
mortality

S-AKI, Sepsis-associated acute kidney injury; NA, Not Applicable

Fig. 2 Distribution of machine learning algorithms
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Table 2 Machine learning model features
Author Age (years) Death/S-

AKI cases
Machine learning 
algorithme

Best 
Algorithm

Delete 
missing 
variables

Imputa-
tion 
method

Predictor 
selection

Validation Calibra-
tion 
indicators

Lei 
Dong

NA 1769/7544 LR, Lasso, Rpart, RF, 
XGBoost, and ANN

XGBoost >30% KNN LR, Lasso, 
and RF

Bootstrap and 
external validation

Calibra-
tion curve, 
Brier 
score, and 
kappa 
coefficient

Zhiyan 
Fan

NA NA/2599 LR, RF, XGBoost, MLP, 
and SVC

XGBoost >30% MiceForest Recursive 
feature 
elimination

Random sampling 
and external 
validation

NA

Tianyun 
Gao

67.0 ± 16.1 2352/12,196 KNN, XGBoost, NB, DT, 
SVM, linear/rbf ), RF, 
and LR

RF >25% MiceForest RF 10-fold 
cross-validation

Calibra-
tion curve

Xun-
liang Li

68.7(57.2,79.6) 1629/8129 LR, SVM, KNN, DT, RF, 
and XGBoost

XGBoost NA MiceForest LASSO Random sampling Calibra-
tion curve

Xiaoqin 
Luo

69 (58,79) NA/9537 XGBoost, RF, and SVM XGBoost NA XGBoost XGBoost Random sampling Calibra-
tion curve

Jie Tang 77 (71, 84) 1813/6613 LR, SVM, GBM, 
AdaBoost, 
XGBoost、CatBoost, 
NB, NN, MLP, KNN, 
and RF

CatBoost >5% KNN Recursive 
feature 
elimination

Random sampling Calibra-
tion plot

Jijun 
Yang

67(57,78) 1940/9158 LR, RF, GBM, and 
XGBoost

XGBoost >20% RF Boruta 
algorithm

5-fold cross 
validation

Calibra-
tion curve

Hong-
shan 
Zhou

67.7 ± 15.2 16,154/3318 KNN, AdaBoost, MLP, 
SVM, LR, NB, GBDT, 
RF, LightGBM, and 
XGBoost

CatBoost NA KNN Recursive 
feature 
elimination

Random sampling 
and external 
validation

NA

Fig. 3 Risk of bias assessment
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0.69–0.78) for the RF model, 0.78 (95% CI 0.75, 0.81) for 
the XGBoost model, 0.73 (95% CI 0.67, 0.79) for the MLP 
model, and 0.71 (95% CI 0.67, 0.79) for the SVM model 
was 0.71 (95% CI 0.69, 0.74), NB model was 0.73 (95% CI 

0.66, 0.80), and KNN model was 0.68 (95% CI 0.59, 0.77). 
The results showed that the machine learning models 
had good performance in predicting sepsis-related acute 
kidney injury death prediction. (Forest plot of c-index 

Fig. 4 Forest plot of C-index meta-analysis of prediction models for S-AKI death prediction in the training set
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meta-analysis of prediction models in the validation set 
for the prediction of S-AKI deaths are shown in Fig.  6, 
and the results of meta-analysis of the sensitivity specific-
ity in the validation set are shown in Fig. 7).

Discussion
This study is a systematic review evaluating the predictive 
potential of machine learning models for predicting the 
risk of death in S-AKI. 53 prognostic prediction models 
from 8 studies were investigated, and our survey incorpo-
rated 17 different machine learning Algorithms, includ-
ing RF, XGBoost, LR, SVM, KNN, MLP, NB, AdaBoost, 
CatBoost, DT, GBM, ANN, GBDT, LightGBM, Rpart, 
SVC, and LASSO. This systematic evaluation and meta-
analysis highlights the invaluable role of machine learn-
ing models in predicting the risk of death in patients with 
S-AKI, and that these predictive models exhibit good 
predictive performance, supported by high c-index values 
in both the training and validation sets. The C index was 
0.81 (95% CI: 0.78–0.84) in the training set and 0.73 (95% 
CI: 0.71–0.74) in the validation set. In addition, the train-
ing set sensitivity was 0.39 (0.32–0.47) and specificity was 
0.92 (95% CI: 0.89–0.95). The validation set sensitivity 

was 0.54 (95% CI: 0.48–0.60) and specificity was 0.90 
(95% CI: 0.88–0.91). The results of this study suggest that 
machine learning performs well in predicting the risk of 
death from S-AKI and can be used as a potential tool for 
predicting the risk of death from sepsis-related acute kid-
ney injury. This has important implications for clinicians 
to enhance risk assessment and clinical decision making 
to improve S-AKI patient care.

RF, XGBoost, and LR are the top three popular machine 
learning algorithms for S-AKI mortality risk prediction. 
The C-index of the XGBoost model was 0.85 (95% CI 
0.78, 0.91) in the training set and 0.78 (95% CI 0.75, 0.81) 
in the validation set. XGBoost, as a machine learning 
technique, is optimised for speed and scalability, making 
it one of the most efficient gradient boosting algorithms 
available. It is efficient and flexible in dealing with miss-
ing data, and is able to assemble weak predictive models 
to construct accurate predictive models [26]. Due to its 
excellent accuracy values and performance, XGBoost has 
been considered the best algorithm for machine learning 
and prediction competitions and is widely used to predict 
adverse clinical outcomes [27].Therefore, we propose to 
advance the development of XGBoost-based predictive 

Fig. 5 The results of the sensitivity-specific meta-analysis in the training set
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Fig. 6 Forest plot of C-index meta-analysis of prediction models in the validation set for the prediction of S-AKI deaths
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models for use in a wide range of diseases. Based on our 
findings, machine learning has demonstrated excellent 
predictive capabilities in sepsis-associated acute kid-
ney injury, further highlighting its potential to improve 
patient care and outcomes.

Conclusion
This systematic evaluation and meta-analysis examined 
the valuable role of machine learning models in predict-
ing the risk of death in S-AKI patients. The results show 
that machine learning has good performance in identify-
ing the risk of death in S-AKI, but its predictive accuracy 
still needs to be improved. This has important implica-
tions for enhancing risk assessment and clinical decision 
making to improve sepsis patient care. In our study, we 
found that the XGBoost model exhibited the best predic-
tive performance and was most commonly used to pre-
dict the risk of sepsis-related acute kidney injury death. 
We also eagerly look forward to incorporating larger 
sample sizes and multicentre studies in future research 
efforts to more deeply examine these models for exter-
nal validation in different patient populations, which 
will allow us to explore the precise diagnostic effects of 

S-AKI, across a variety of model and predictor types, in 
more depth.

Limitations
Undoubtedly, our study is not without limitations. 
Firstly, despite our comprehensive search, the number of 
included studies was still small, probably due to our focus 
on English language publications. Second, the diversity 
of included models led to heterogeneity, and the dif-
ferent variables included in the models may be some of 
the sources of the heterogeneity observed in our study. 
Again, most of the studies in this review used MMIC and 
eICU datasets to develop and evaluate models. Future 
research should use external datasets to validate machine 
learning models to ensure their stability and applicabil-
ity in a wider population. Finally, this study focused on 
the accuracy of machine learning in predicting the risk 
of death from S-AKI and did not include risk factors that 
contribute to death from acute kidney injury in sepsis.
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Fig. 7 The results of the sensitivity-specific meta-analysis in the validation set
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