Skip to main content
. 2024 Dec 21;24:1454. doi: 10.1186/s12879-024-10380-6

Table 2.

Machine learning model features

Author Age (years) Death/S-AKI cases Machine learning algorithme Best Algorithm Delete missing variables Imputation method Predictor selection Validation Calibration indicators
Lei Dong NA 1769/7544 LR, Lasso, Rpart, RF, XGBoost, and ANN XGBoost >30% KNN LR, Lasso, and RF Bootstrap and external validation Calibration curve, Brier score, and kappa coefficient
Zhiyan Fan NA NA/2599 LR, RF, XGBoost, MLP, and SVC XGBoost >30% MiceForest Recursive feature elimination Random sampling and external validation NA
Tianyun Gao 67.0 ± 16.1 2352/12,196 KNN, XGBoost, NB, DT, SVM, linear/rbf), RF, and LR RF >25% MiceForest RF 10-fold cross-validation Calibration curve
Xunliang Li 68.7(57.2,79.6) 1629/8129 LR, SVM, KNN, DT, RF, and XGBoost XGBoost NA MiceForest LASSO Random sampling Calibration curve
Xiaoqin Luo 69 (58,79) NA/9537 XGBoost, RF, and SVM XGBoost NA XGBoost XGBoost Random sampling Calibration curve
Jie Tang 77 (71, 84) 1813/6613 LR, SVM, GBM, AdaBoost, XGBoost、CatBoost, NB, NN, MLP, KNN, and RF CatBoost >5% KNN Recursive feature elimination Random sampling Calibration plot
Jijun Yang 67(57,78) 1940/9158 LR, RF, GBM, and XGBoost XGBoost >20% RF Boruta algorithm 5-fold cross validation Calibration curve
Hongshan Zhou 67.7 ± 15.2 16,154/3318 KNN, AdaBoost, MLP, SVM, LR, NB, GBDT, RF, LightGBM, and XGBoost CatBoost NA KNN Recursive feature elimination Random sampling and external validation NA