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Abstract
Background Allo-HSCT is a curative therapy for patients with transfusion-dependent thalassemia (TDT). The high 
incidence of transplant-related complications is becoming an obstacle to safe and effective unrelated donor (URD) 
transplantation.

Methods In this retrospective study, we reported the survival outcomes and complications of transplantation in 
thalassemia patients using a novel regimen consisting of pre-transplantation immunosuppression (PTIS) and modified 
myeloablative conditioning based on intravenous busulfan, cyclophosphamide, fludarabine, and rabbit anti-human 
thymocyte immunoglobulin.

Results A total of 88 thalassemia patients received the novel conditioning regimen (NCR group), while 118 patients 
received the conventional conditioning regimen (CCR group). The median age at HSCT in the NCR group was older (7 
years vs. 4 years, p < 0.05). No patient in the NCR group experienced primary graft failure, while the 3-year probabilities 
of OS and TFS were 96.6% and 93.2%, respectively. Even when the intensity of conditioning was reduced, OS (94.8% 
vs. 94.3%, p = 0.848) and TFS (89.8% vs. 92.5%, p = 0.663) in URD transplants in the NCR group were comparable to 
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Background
Thalassemia is a major health problem for millions of 
people worldwide and is the most common single-gene 
disorder. Although transfusion and iron chelation could 
improve the life expectancy of patients with transfusion-
dependent thalassemia (TDT), a significant proportion of 
the population does not have the adequate access to the 
regular transfusion and iron chelation in the real world. 
Although gene therapy strategies have shown encourag-
ing results in recent trials [1, 2], most of them are only 
available in clinical trials and their long-term safety is 
unclear. Allogeneic hematopoietic stem cell transplanta-
tion (HSCT) remains the most available curative therapy 
for patients with TDT.

Human leukocyte antigen (HLA)-matched sib-
lings are recognized as the ideal donors for allogeneic 
HSCT in TDT, but their availability is limited. Alterna-
tive donor transplantation strategies have been investi-
gated to overcome the higher rates of graft-versus-host 
disease (GVHD) and the delayed immune reconstitu-
tion. Given the unique clinical and biological aspects of 
TDT, investigators have developed various protocols to 
enhance immunosuppression, including azathioprine 
and hydroxyurea, courses of dexamethasone (Dex) and 
fludarabine (Flu) before conditioning regimen, Flu or 
anti-human thymocyte immunoglobulin (ATG) contain-
ing conditioning regimen, post-transplant cyclophospha-
mide (PTCY) or T-cell depletion strategies [3–8].

In previous studies, the myeloablative conditioning reg-
imen consisting of a combination of busulfan (Bu), Flu, 
cyclophosphamide (Cy) and rabbit anti-human thymo-
cyte immunoglobulin (ATG) has shown promising results 
in unrelated donor peripheral blood stem cell transplan-
tation (UD-PBSCT) with a 3-year overall survival (OS) 
of 94% and thalassemia-free survival (TFS) of 92%. In 
particularly, an increasing proportion of patients with 
an unfavorable high-risk subgroup are now undergoing 
HSCT nowadays. The complications of bacterial and fun-
gal infections [9], mixed chimerism [10], and immune-
mediated cytopenia [11, 12] have been the major 
challenges following HSCT in the high-risk subgroup. 
Anurathapan and colleagues performed an intensive pre-
conditioning immunoablation followed by a myeloabla-
tive conditioning regimen in patients, classified as a very 
high-risk subgroup or undergoing haploidentical related 

donor transplantation, with encouraging results [3–5]. 
The same approach was also applied to patients with thal-
assemia and sickle cell disease (SCD), demonstrating that 
pre-transplantation immunosuppression (PTIS) effec-
tively eliminated the antibodies against donor-specific 
HLA (DSA) and facilitated engraftment with sustained 
donor chimerism [13]. However, this strategy has not yet 
been widely adopted in unrelated donor transplantation.

Therefore, we introduced this concept into the regi-
men of TDT patients receiving unrelated or sibling donor 
transplantation. Multidrug PTIS therapy followed by a 
modified myeloablative conditioning regimen was intro-
duced to prolong the duration of immunosuppression 
treatment and reduce the transplant conditioning inten-
sity (TCI) score. In this retrospective study, we report 
the effects of the novel conditioning regimen (NCR) in 
reducing chemotherapy side effects of chemotherapy and 
transplant-related mortality in pediatric patients with 
TDT.

Methods
Patients
This retrospective study was approved by the Ethics 
Committee of Sun Yat-sen Memorial Hospital of Sun 
Yat-sen University and registered in the Chinese medical 
research Registry (MR-44-23-018929). Consent had been 
sought from patients and their parents for research. From 
July 2007 to December 2022, 206 consecutive patients 
with TDT who received their first HSCT from either 
well-matched unrelated donors (n = 113) or matched sib-
ling donors (n = 93) at Sun Yat-Sen Memorial Hospital. 
88 patients with TDT accepted PTIS systemic therapy in 
the NCR protocol between August 2018 and December 
2022. To evaluate the safety and efficacy of the novel con-
ditioning regimen, 118 patients with TDT from the same 
center who received conventional conditioning regimen 
(CCR) without PTIS between July 2007 and September 
2017 were included as a control group. The follow-up 
continues until 5 years after transplant. All patients were 
diagnosed with TDT based on their genotype and trans-
fusion-dependent phenotype.

those in the CCR group, while the risk of autoimmune hemolytic anemia (AIHA) (0% vs. 15.1%) was lower. In addition, 
the NCR group had lower rates of mixed chimerism (7.1%).

Conclusions URD transplantation can achieve a comparable prognosis to matched sibling donor (MSD) 
transplantation with a lower incidence of AIHA due to PTIS and modified myeloablative conditioning regimen.

Keywords transfusion-dependent β-thalassemia, hematopoietic stem cell transplantation, unrelated donor 
transplantation, pre-transplantation immunosuppression, children
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Conditioning regimens
Conventional conditioning regimen
The conventional conditioning regimen (CCR) consisted 
of intravenous Bu (12.8 mg/kg, divided day − 9 to day − 6), 
Flu (150 mg/m2, divided day − 7 to day − 3), Cy (200 mg/
kg for class I and II patients, while 180  mg/kg for class 
III according to the Nanfang (NF) risk classification [14], 
divided day − 5 to day − 2) and ATG (10-11  mg/kg for 
URD while 7.5  mg/kg for MSD, divided day − 5 to day 
− 2). All patients received eight weeks of oral azathioprine 
(1.5  mg/kg, daily) and hydroxyurea (15  mg/kg, daily) 
prior to Bu conditioning or until intolerable side effects 
of azathioprine and hydroxyurea occurred.

Novel conditioning regimen (NCR)
A novel conditioning regimen (NCR) is consisted by mul-
tidrug PTIS including courses of Dex and Flu and a mod-
ified version of CCR. The NCR was administered in two 
phases. The multidrug PTIS included oral azathioprine 
(1.5 mg/kg, daily) and hydroxyurea (15 mg/kg, daily) from 
day − 90 to day − 14 to suppress bone marrow expansion 
until leukocytes < 1.5 × 109/L or platelets < 50 × 109/L. 
Patients received one or two courses of intravenous Flu 
(40 mg/m2, daily) and Dex (25 mg/m2

, daily) for 5 days, 
administered from day − 70 to day − 38. One course of 
Flu and Dex was given to patients who received an MSD 
transplant if they were older than 7 years or classified as 
a high-risk subgroup. One course of PTIS was given in 
10/10 and 9/10 HLA-matched URD transplants. Two 
courses of PTIS were given in 8/10 HLA-matched URD 
transplants or high-risk subgroup without MSD. Panel 
reactive antibody (PRA) titers were monitored before and 
during PTIS, and intravenous immunoglobulin (IVIG) at 
0.5 g/kg was given on day 1 and day 2 if PRA was positive. 
Rituximab, bortezomib or plasmapheresis were used in 
patients with high PRA positive (> 30%). Subsequently, all 
patients received a myeloablative conditioning regimen, 
including Flu (total dose of 150 mg/m2, divided day − 10 
to day − 6), Bu (total dose of 12.8 mg/kg, divided day − 7 
to day − 4), Cy (total dose of 120 mg/kg, divided day − 3 

to day − 2), and ATG (total dose of 10  mg/kg for URD, 
6-7.5 mg/kg for MSD, divided day − 5 to day − 2) (Fig. 1).

Graft-versus-host disease prophylaxis
Post-transplant GVHD prophylaxis consisted of cyclo-
sporin A (CsA) given at a dose of 2.5-3  mg/kg daily 
adjusted according to plasma concentration (200 ± 50 ng/
mL), and mycophenolate mofetil (MMF) 20 mg/kg daily 
until day + 28. Methotrexate (MTX) was administered on 
days + 1, +3, + 6 and + 11 post-transplant at 15, 10, 10 and 
10 mg/m2, respectively.

End-points and definitions
The risk classification of HSCT was based on the Nan-
fang (NF) classification [14], according to age at trans-
plantation, serum ferritin level, and liver size. The 
primary endpoints were overall survival (OS, death from 
any cause) and thalassemia-free survival (TFS, graft fail-
ure or death from any cause). Engraftment was defined as 
the first of three consecutive days with an ANC greater 
than 0.5 × 109 /L and a platelet count greater than 20 × 109 
/L for seven consecutive days without transfusion sup-
port. Hemoglobin engraftment was defined as the first of 
seven consecutive days on which the hemoglobin count 
exceeded 80 g/L without transfusion support. Quantita-
tive chimerism monitoring was performed using short 
tandem repeat (STR)-based PCR techniques [15]. Com-
plete donor chimerism was defined as more than 95% 
donor cells in peripheral blood after HSCT, whereas 
stable mixed chimerism (MC) was defined as having less 
than 95% donor cells without transfusion-dependency. 
Primary graft failure was defined as zero of donor chime-
rism and lack of hematological recovery within the first 
month after transplantation, while secondary graft rejec-
tion was defined as decline in donor chimerism to less 
than 5% and recurrence of transfusion dependence after 
engraftment. Acute and chronic GVHD were diagnosed 
and graded according to consensus criteria [16, 17].

Invasive fungal diseases are diagnosed clinically 
through pathogen culture and high-resolution chest CT 
scan. Patient with positive blood culture was diagnosed 

Fig. 1 Schematic diagram of the program consisting of multidrug pretransplant immune hematopoietic suppression therapy including courses of dexa-
methasone and fludarabine followed by a modified myeloablative conditioning regimen. The post-transplant GVHD prophylaxis consisted of CsA, MMF 
and short-term MTX. See Methods section for details
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with bacteremia. AIHA was diagnosed when patients had 
a positive direct antiglobulin test and clinical hemolysis. 
Posterior reversible encephalopathy syndrome (PRES) 
was diagnosed by magnetic resonance imaging and clini-
cal symptoms, including headache, seizures, impaired 
consciousness and visual disturbances. Post-transplant 
lymphoproliferative disorders (PTLD) were diagnosed 
according to the 2017 WHO classification [18]. Before 
transplantation, patients’ serum samples were collected 
for measurement of panel reactive antibody (PRA) titer 
using the enzyme-labelled immunosorbent assay method. 
PRA > 10% was considered positive, while PRA ≥ 30% was 
considered strong positive. Pre- and post-transplant lym-
phocyte subsets, including CD3-CD16 + CD56+ (natu-
ral killer [NK] cells), CD3+ (total T-cells), CD3 + CD4+ 
(helper T-cells), CD3 + CD8+ (cytolytic T-cells) and 
CD19+ (B-cells) subsets, were measured using the flow 
cytometry method described in previous literature [19]. 
Fluorescence-conjugated monoclonal antibodies (CD3, 
CD16, CD56, CD4, CD8, CD19, BD multitest 6-color 
TBNK, San Jose, CA, USA) were added to the mononu-
clear cells. Samples were analyzed on a Beckman navios 
cytometer (Beckman Coulter Life Science) and then ana-
lyzed using Navios tetra software (Beckman Coulter Life 
Science).

Statistical analysis
Specific database and follow-up Center made sure the 
data integrity in the certain degree. There was no absence 
of data on survival outcomes in this study. A portion of 
the patients had their PRA titers and lymphocyte subsets 
monitored during PTIS, the missing data were excluded 
from the analysis. Statistical analysis was performed 
using SPSS version 28.0 (IBM Corp.). All p values were 
two-sided, and statistical significance was set at p < 0.05. 
Quantitative variables were presented as median and 
interquartile range, and qualitative variables as frequen-
cies and percentages. The Wilcoxon Mann-Whitney 
U test or Kruskal-Wallis H test was used for compari-
sons of quantitative variables, while Fisher’s exact test 
was used for qualitative variables. Repeated measures 
pre- and post-transplant data were evaluated using the 
Wilcoxon signed rank test. The primary endpoints were 
calculated using the Kaplan-Meier estimates and the 
log-rank test. Confounding was controlled by propen-
sity score and Cochran-Mantel-Haenszel test. Compar-
ing the pre-transplantation characteristics, it was found 
that the transplant ages was significantly older in NCR 
group compared to CCR group (p < 0.05), which was 
considered as confounding factor. Propensity score was 
calculated based on Logistic regression and transformed 
to quadripartite variation by quartile and the median 
as the dividing values. Subsequently, Cochran-Mantel-
Haenszel test was conducted to explore the association 

between different conditioning regimens and transplant 
complications.

Results
Patient characteristics
206 patients with TDT were included in this study. The 
comparison of the characteristics of the NCR and CCR 
groups were list in Table 1. Of all transplants, 88 patients 
received NCR with a median age of 7 years (range, 4–10), 
while 118 patients received CCR with a median age of 4 
years (range, 3–7) and the median follow-up of 46 and 
46.3 months, respectively. No patient was lost to fol-
low-up. The majority of the patients in two groups were 
classified as intermediate and high risk before transplan-
tation according to the NF risk stratification criteria. 
Prior to transplantation, 27.1% and 13.5% of the patients 
in the NCR and CCR groups, respectively, had a strong 
positive PRA titer.

Engraftment and transplant-related complications
No patients in the NCR group experienced primary graft 
failure. The median neutrophil engraftment time was 
13 days (range, 12 to14 days). The median platelet and 
hemoglobin recovery times were 17 days (range, 13 to 
26.5 days) and 15 days (range, 12 to 19 days), respectively. 
In the NCR group, thirteen patients (14.8%) had late 
phase grade III-IV hemorrhagic cystitis. Eight patients 
(9.1%) had VOD. Fungal infection and bacteremia 
occurred in 4.5% (4/88) and 8.0% (7/88) of cases respec-
tively. Twenty-two patients (25.0%) had CMV DNAemia 
and three had CMV disease without associated mortal-
ity. Forty-nine patients (55.7%) experienced Epstein-Barr 
virus reactivation while two patients (2.3%) developed 
PTLD. None of the patients in the NCR group developed 
AIHA. Two patients (2.3%) were diagnosed with PRES 
(Supplementary Information).

The complications after unrelated and sibling donor 
transplantation undergoing different conditioning regi-
mens were compared in Table  2. It was observed that 
the incidence of fungal infection was significantly lower 
in the NCR group (5.0%) compared to the CCR group 
(26.4%) among URD grafts (p = 0.004). Meanwhile, the 
novel conditioning regimen showed a positive effect on 
immune-related complications. The incidence of AIHA 
was significantly lower in the NCR group compared to 
the CCR group in both unrelated (p = 0.006) and related 
(p = 0.014) transplants. In addition, the NCR group had 
significantly lower rates of mixed chimerism in MSD 
transplants (p = 0.007).

Thirty-one patients (35.2%) experienced grade II-IV 
acute GVHD while seventeen patients (19.3%) experi-
enced grade III-IV acute GVHD. None of the patients 
died from severe aGVHD. Twelve patients (13.6%) devel-
oped limited chronic GVHD and five (5.7%) developed 
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extensive chronic GVHD. There was no difference in the 
incidence of GVHD between the NCR and CCR groups 
in URD grafts.

Survival
The OS (p = 0.848) and TFS (p = 0.663) in different con-
ditioning regimens for unrelated donor transplantation 
were not significantly different (Fig.  2a and b). In MSD 
transplantation, the OS (p = 0.135) and TFS (p = 0.056) are 
slightly higher in the NCR group than in the CCR group 
without statistical significance (Fig. 2c and d).

In the NCR group, the 3-year probabilities of OS and 
TFS were 96.6% (confidence interval (CI), 90.4–99.3%) 
and 93.2% (CI, 85.7–97.5%), respectively (Fig.  3). There 
were three cases of transplant-related mortality. One 
patient died of pneumonia and acute cerebral infarc-
tion. One patient developed intestinal cGVHD and died 

of multi-organ failure. One patient developed severe 
cGVHD and died of respiratory failure. Three patients 
developed secondary graft failure. One had AIHA pre-
transplantation and platelet antibody positive with an 
8/10 HLA-matched unrelated donor, while the other two 
patients had strong positive PRA titer prior to transplan-
tation. When sibling (MSD) and unrelated (MUD) donors 
were compared, the OS (100% vs. 94.8%, p = 0.231) and 
TFS (100% vs. 89.8%, p = 0.087) were not statistically dif-
ferent (Fig. 4a and b). Taking into account the degree of 
allelic HLA matching, outcomes were compared between 
matched sibling donor (MSD), matched unrelated donor 
(MUD) and mismatched unrelated donor (MMUD). The 
3-year OS in the MMUD group was 96.4% compared to 
93.6% in the MUD group and 100% in the MSD group 
(p = 0.091, Fig.  4c). The corresponding probabilities for 
TFS were 85.7%, 93.8% and 100% (p = 0.430, Fig. 4d).

Table 1 Characteristics of the NCR and CCR groups
Characteristics CCR group (N = 118) NCR group (N = 88) p
Age, median (range) [years] 4(3,7) 7(4,10) < 0.001
Sex
 Male, n (%) 84(71.2) 54(61.4) 0.138
 Female, n (%) 34(28.8) 34(38.6)
Serum ferritin, median (range)
[µg/L]

1802.0(1254.0,2689.5) 2113.5 (1199.5, 2700.8) 0.552

Risk group, n (%) (N = 116) (N = 88)
 Low-risk 30(25.9) 13((14.8) 0.019
 Medium-risk 86(74.1) 72 (81.8)
 High-risk 0(0) 3(3.4)
Donor/patient ABO-match, n (%)
 Match 75(63.6) 41(46.6) 0.015
 Mismatch 43(36.4) 47 (53.4)
PRA before, n (%) [N = 89] [N = 70]
 Negative (≤ 10%) 52(58.4) 42 (60.0) 0.018
 Positive (11–29%) 25(28.1) 9(12.9)
 Strongly positive (≥ 30%) 12(13.5) 19(27.1)
Donor source, n (%)
 Matched sibling donor 65(55.1) 28(31.8)
 Unrelated donor 53(44.9) 60(68.2)
HLA matching status, n (%)
 10/10 matched 99(83.9) 60(68.2)
 9/10 matched 16(13.6) 26(29.5)
 8/10 matched 3(2.5) 2(2.3)
Stem cell source, n (%)
 BM 2(1.7) 0
 PBSC 51(43.2) 60(68.2)
 UCB 1(0.8) 0
 BM + PBSC 50(42.4) 17(19.3)
 BM + UCB 8(6.8) 5(5.7)
 PBSC + UCB 2(1.7) 0
 BM + PBSC + UCB 4(3.4) 6(6.8)
Follow-up, median (range) [months] 46.3(24.7,68.6) 46.0(25.0,52.6)
* Abbreviations: CCR, conventional conditioning regimen; NCR, novel conditioning regimen;  PRA, panel reactive antibody; BM, bone marrow; PBSC, peripheral 
blood stem cells; UCB, umbilical cord blood. Median (range) refers to the median value and the interquartile range
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Immune reconstitution
Twenty-eight patients had their PRA titers monitored 
during PTIS. PRA titers decreased significantly after 
PTIS (p = 0.002, Table  3). Meanwhile, lymphocyte sub-
sets were measured in forty-six patients. The number of 
all lymphocyte types decreased significantly after PTIS 
(p < 0.001, Table  3). The kinetics of immune reconstitu-
tion were studied in forty-one patients (Fig. 5). At month 
6 post-SCT, all patients with sustained engraftment had 
regained the mean absolute counts of 1498 ± 1093 cells/

uL for T cells, 310 ± 221 cells/uL for B cells, and 333 ± 306 
cells/uL for NK cells.

Discussion
This is the first study on the use of PTIS in both related 
and unrelated donor transplantation for TDT. In this 
study, we introduced a novel program consisting of mul-
tidrug PTIS therapy and a modified myeloablative con-
ditioning regimen. The safety and efficacy of this novel 
conditioning regimen in children with TDT was pre-
sented by the retrospective analysis. A notable finding of 

Table 2 Complications after unrelated and sibling donor transplantation undergoing different conditioning regimen
Variables, n (%) Unrelated donor transplantation Sibling donor transplantation

CCR 
group
(n = 53)

NCR 
group
(n = 60)

OR/
differ-
ence 
value

95% CI p CCR 
group
(n = 65)

NCR 
group
(n = 28)

OR/
differ-
ence 
value

95% CI p

Mixed chimerism 5(9.4) 1(1.7) 0.247 0.029–2.074 0.198 27(41.5) 2(7.1) 0.112 0.023–0.554 0.007*

GVHD
 Acute, grade II-IV 23(43.4) 28(46.7) 1.355 0.611–3.007 0.455 15(23.1) 3(10.7) 0.460 0.118–1.798 0.264
 Chronic 10(18.9) 15(25.0) 1.380 0.538–3.540 0.503 8(12.3) 2(7.1) 0.388 0.071–2.125 0.275
Fungal infection 14(26.4) 3(5.0) 0.164 0.048–0.560 0.004 14(21.5) 1(3.6) 0.123 0.013–1.198 0.071
Bacteremia 6(11.3) 4(6.7) 0.716 0.185–2.774 0.629 8(12.3) 3(10.7) 0.634 0.137–2.932 0.560
PRES 5(9.4) 2(3.3) 0.356 0.069–1.836 0.217 5(7.7) 0(0) 0.077 0.012–0.142 0.314▲

PTLD 2(3.8) 2(3.3) 1.263 0.155–10.314 0.828 0(0) 0(0)
AIHA 8(15.1) 0(0) 6.763 0.055–0.247 0.006▲ 15(23.1) 0(0) 0.231 0.129–0.333 0.014▲

Abbreviations: CCR, conventional conditioning regimen; NCR, novel conditioning regimen; ANC, absolute neutrophil count; PLT, blood platelet; GVHD, graft versus 
host disease; AIHA, autoimmune hemolytic anemia; PRES, posterior reversible encephalopathy syndrome; PTLD, posttransplant lymphoproliferative disorders

*The differences are statistically significant. The difference analysis for complications except AIHA and PRES between two groups was performed using the 
propensity score and Cochran-Mantel-Haenszel test

▲The difference analysis for AIHA and PRES between two groups was performed using the chi-square test

Fig. 2 Estimated OS (a) and TFS (b) for thalassemia patients receiving UD-HSCT and the OS (c) and TFS (d) for patients receiving MSD-HSCT in the NCR 
and CCR groups
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this study is that the novel conditioning regimen reduced 
the risk of fungal infection, mixed chimerism, and 
immune-related complications, while the outcome of 
unrelated donor transplantation is equivalent to matched 
sibling donor transplantation, despite the older age and 
higher risk of transplantation and higher probability of 
positive PRA titers.

Older transplant age and hepatomegaly have been 
shown to be associated with inferior outcomes. It has 
been suggested that patients older than 7 years and with 
hepatomegaly should be defined as a very high-risk sub-
group [20–22]. A multicenter study [23] reported that, 
after adjusting for donor type and conditioning regimen, 

the 5-year OS were 84% for patients aged 7 to 15 years 
and 63% for those aged 16 to 25 years. In another Indian 
study [24], the estimated OS for recipients aged > 7 years 
was only 90%. It is recommended that HSCT should be 
performed before the age of 7 years or before the onset of 
organ damage caused by severe iron overload and other 
thalassemia-related complications [22, 25]. In this study, 
despite the older age of transplantation of median age 
of over 7 years in NCR group, the NCR has overcome 
the disadvantages of age and unrelated donor, achieving 
comparable prognosis as in MSD.

Furthermore, PRA is another risk factor affecting 
engraftment in patients with thalassemia, which has been 

Fig. 4 Estimated OS (a) and TFS (b) for thalassemia patients receiving MSD and UD-HSCT based on the novel conditioning regimen (MSD: UD = 28:60). 
Taking into account the degree of allelic HLA matching, the OS (c) and TFS (d) were further compared between MSD, MUD and MMUD (MSD: MUD: 
MMUD = 28:32:28)

 

Fig. 3 Estimated OS and TFS of 88 thalassemia patients undergoing HSCT based on the novel conditioning regimen
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associated with multiple transfusions before transplanta-
tion [26, 27]. Our previous study found that PRA had a 
negative effect on DNA synthesis and the colony forma-
tion of CD34+ cord blood cells in vitro [28]. Transplants 
in PRA-positive recipients had a higher transplant-
related mortality associated with poor graft function and 
vascular complications [27, 29]. Taking up the challenge 
of the high-risk subgroup with older transplant age and 
strong positive PRA, our center is trying to optimize 
this preparative backbone by adding PTIS and reducing 
the intensity of the conditioning regimen. It was showed 
that exposure to fludarabine led to a sustained loss of 
STAT1, which was essential for cell-mediated immunity, 

contributing to the prolonged period of immunosup-
pression [30], while dexamethasone-mediated T cell sup-
pression diminished immature T cells [31]. Rituximab 
or bortezomib were used to eliminate plasma cells and 
memory B cells responsible for the production of anti-
HLA antibodies, while plasmapheresis contributed to the 
elimination of PRA. Prior HSCT, low-dose chemotherapy 
with fludarabine and dexamethasone, or plasmapher-
esis alone or in combination with rituximab, bortezomib, 
sirolimus, high-dose IVIG, splenectomy [32], or T-cell 
depletion [11, 12] can prevent AIHA and pure red cell 
aplasia in PRA-positive recipients. According to the 
results, PTIS suppressed the immunity and depleted 

Table 3 The change of immune status under immunosuppressive therapy before transplantation
Variables, median(range) before FD after FD p
PRA titers (%)(N = 28) 22.5(3.3–54.5) 11.5(0-37.3) 0.002
 Class I HLA 19.5(2.5–41.0) 7.5(0–31.0) 0.003
 Class II HLA 0(0-15.5) 0(0-1.8) 0.043
Lymphocyte subsets (N = 46)
WBC (×109/L) 6.4(4.4, 8.6) 3.3(2.3, 5.0) < 0.001
LYM (×109/L) 2.5(1.9, 3.6) 0.6(0.5, 1.0) < 0.001
TCL (cells/uL) 1746.7(1370.7, 2147.3) 521.0(337.9, 782.4) < 0.001
BCL (cells/uL) 501.4(289.9, 900.2) 35.8(8.3, 112.2) < 0.001
NK (cells/uL) 218.8(163.6, 358.8) 84.4(54.9, 112.5) < 0.001
CD3 + CD4+ (cells/uL) 827.7(650.2, 1068.1) 231.6(158.1, 370.6) < 0.001
CD3 + CD8+ (cells/uL) 662.2(489.9, 899.1) 217.8(142.8, 308.2) < 0.001
CD4+/CD8+ 1.14(0.95, 1.50) 1.20(0.88, 1.62) 0.701
Abbreviations: FD, courses of dexamethasone (Dex) and fludarabine (Flu); PRA, panel reactive antibody; HLA, Human leukocyte antigen; WBC, white blood cell; LYM, 
lymphocyte; TCL, T-cell; BCL, B-cell; NK, natural kill cell; CD, cluster of differentiation. Median (range) refers to the median value and the interquartile range

Fig. 5 Immune reconstitution in 41 patients with thalassemia undergoing hematopoietic stem cell transplantation based on the novel conditioning 
regimen
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the lymphocytes from the recipients, resulting in stable 
implantation, less AIHA, and less graft failure, while the 
immune reconstitution post-transplantation was not 
impaired.

TDT is characterized by hypercellular bone marrow, 
which may contribute to higher risk of graft failure [11, 
12]. Therefore, the ideal conditioning regimen must 
enhance the suppression of marrow hyperplasia, as well 
as the heighten immune system, to achieve stable engraft-
ment. Bu-Cy has been the cornerstone conditioning 
regimen in most studies, although it is associated with 
hepatic and vascular complications. Various centers have 
endeavored to optimize protocols to minimize organ 
damage and enhance graft success. In a recent interna-
tional study, the TCI score was developed as a new tool 
to define and measure the intensity of the conditioning 
regimen [33]. The NF-08-TM protocol reduced the dose 
of both Cy and Bu, but added Thiotepa (TT), with a TCI 
score of 4.5. The reported OS and TFS for matched and 
mismatched unrelated donor HSCT were 93.6% vs. 84.6% 
(p = 0.058), 90.4% vs. 82.1% (p = 0.089) [34]. In a study 
conducted at the Guangzhou Women and Children’s 
Medical Centre, 257 patients underwent a modified NF-
08-TM conditioning regimen for both fully-matched and 
mismatched donor grafts, with the high incidence of 
immune-related complications, including AIHA rang-
ing from 19.17 to 25.37%, PRES from 6.74 to 11.94%, 
and PTLD from 0.52 to 1.49%. Notably, patients receiv-
ing grafts with two or more HLA-allele mismatches were 
more susceptible to develop AIHA (40.91% vs. 17.78%, 
p = 0.041) [7]. A study from India also reported a higher 
incidence of PRES and immune-mediated cytopenia in 
patients undergoing unrelated donor transplantation 
[24]. In this study, all transplants received a myeloabla-
tive conditioning regimen consisting of Bu, Cy, Flu, and 
ATG. Our previous study based on CCR had observed a 
high incidence of serious bacterial infections and fungal 
pneumonia, which could be related to the immunosup-
pression of high-dose ATG. In addition, Cy had shown 
dose-related cardiotoxicity [35]. Therefore, in the NCR 
group, the lower dose of Cy (120 mg/kg instead of 180–
200  mg/kg) has the same TCI score as the NF-08-TM 
protocol. Considering that a lower dose of Cy could have 
a negative impact on the maintenance of donor engraft-
ment [11, 12], PTIS plays the role of providing additional 
immunosuppression prior to conditioning regimen with-
out compromising immune reconstitution. It’s worth 
noting that the incidence of immune-related complica-
tions decreased significantly. Interestingly, the propor-
tion of mixed chimerism was significantly lower in the 
NCR group compared to the CCR group for MSD trans-
plants, which might be attributed to the prolonged and 
intensive suppression of recipient immune cells before 
transplantation. Furthermore, URD transplantation was 

comparable to MSD transplantation for TDT under the 
novel conditioning regimen. In the setting of UD-HSCT, 
reducing the intensity of the conditioning regimen did 
not affect OS and TFS. The novel conditioning regimen is 
able to be applied cost-effectively and accessibly in devel-
oping countries.

In addition to addressing the early transplantation 
complications, we place significant emphasis on the long-
term outcomes for pediatric transplant recipients, which 
includes monitoring and managing issues such as iron 
overload, endocrine function and growth development, 
as well as quality of life and psychological well-being 
post-transplantation. Each pediatric patients performed 
growth development and endocrinology assessments 
prior to transplantation, and it is recommended that 
they attend regular outpatient follow-ups to monitor 
their growth and development post-transplantation. Our 
group had revealed that thalassemia patients with iron 
overload were at an increased risk of developing abnor-
mal glucose metabolism before transplantation [36]. 
Additionally, premature ovarian failure was observed in 
some patients. Numerous studies have documented a sig-
nificant depletion of the primordial follicle pool following 
CTX treatment [37, 38], which partly underpins our deci-
sion to reduce the single dose of CTX in novel condition-
ing regimen. Therefore, we will continue to pay attention 
to the effect of preconditioning regimen on growth and 
development post transplantation in future follow-up.

In conclusion, URD transplantation in patients with 
TDT can achieve a comparable prognosis to MSD trans-
plantation without increasing the treatment-related 
mortality or graft failure rate by PTIS and modified 
myeloablative conditioning regimen. Based on the favor-
able outcome in the high-risk subpopulation with mis-
matched unrelated donors in this study, mismatched 
unrelated donors PBSC transplantation may be an opti-
mized alternative for patients with TDT in the absence of 
MSD or MUD.
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