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Abstract 

Periodontal ligament fibroblasts (PDLFs) play a crucial role in the etiology of periodontitis and periodontal tissue 
regeneration. In healthy periodontal tissues, PDLFs maintain the homeostasis of periodontal soft and hard tissues 
as well as the local immune microenvironment. PDLFs also have the potential for multidirectional transdifferentiation 
and are involved in periodontal tissue regeneration. On the other hand, PDLFs can become dysfunctional and acquire 
an inflammatory phenotype to secret various inflammatory cytokines when affected by pathological factors. These 
cytokines further trigger immune and inflammatory events, and lead to destruction of periodontal soft and hard 
tissues as well as damage to the regenerative potential of PDLFs. This review summarizes the physiological functions 
of PDLFs. Meanwhile, this review also highlights recent insights into the pathological mechanisms driving the devel-
opment of periodontitis through dysfunctional PDLFs and the negative impact on periodontal tissue regeneration. 
Additionally, this paper summarizes strategies for targeting PDLFs to treat periodontitis, involving blocking multiple 
stages of the inflammatory response induced by PDLFs and promoting the multidirectional transdifferentiation 
of PDLFs. Future research directions are proposed to address important questions that have not yet been answered 
in this field. This article provides a reference for understanding the important role of PDLFs in the pathological mecha-
nisms of periodontitis and for developing new strategies for targeting PDLFs in periodontitis treatment.
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Introduction
Periodontal disease is an inflammatory disease that is 
caused by an imbalance between the subgingival flora 
and the host immune response, and characterized by 
damage of the tooth-supportive tissues, which can lead 
to destruction of the alveolar bone, cementum and peri-
odontal ligament [1]. From 2011 to 2020, it was estimated 
that more than 62% of the adult population worldwide 
suffered from periodontitis [2]. Moreover, the collective 
occurrence of moderate to severe periodontitis is esti-
mated to be 53.2% [2]. Periodontitis can not only dam-
age oral function and reduce patient quality of life but 
also increase the risk of systemic health complications 
and have adverse economic and social impacts [2]. There-
fore, the prevention and treatment of periodontitis have 
become global public health issues [2]. However, the cur-
rently available strategies for preventing and treating per-
iodontitis are not satisfactory [3]. This is primarily due 
to the complex pathogenesis of periodontitis, which, in 
addition to factors related to genetics and the subgingival 
flora, involves the dysfunction of multiple histiocytes and 
immune cells, including periodontal ligament fibroblasts 
(PDLFs) [4].

PDLFs, which are periodontal-specific histiocytes, play 
a pivotal role in maintaining periodontal tissue integrity 
[5]. Physiologically, PDLFs can maintain the homeostasis 
of periodontal soft and hard tissues as well as the local 
immune microenvironment [4, 6, 7]. As mesenchymal 
cells, PDLFs can undergo multidirectional differentiation, 

which allows PDLFs to contribute to the restoration and 
regeneration of periodontal tissues after injury [8]. How-
ever, PDLFs can become dysfunctional and acquire an 
inflammatory phenotype when affected by pathological 
factors, such as stimulation by subgingival flora [9], par-
acrine actions of immune cells [10] and abnormal glucose 
metabolism [11]. PDLF dysfunction subsequently triggers 
a cascade of immunoinflammatory events, which lead 
to the destruction of periodontal soft and hard tissues 
and inhibit periodontal regeneration [12, 13]. Given the 
importance of PDLFs in the pathogenesis of periodonti-
tis, new therapeutic strategies that combine traditional 
periodontal treatment with PDLF-targeted treatment 
have been developed, and these strategies have shown 
initial, predictable effects in clinical practice [14].

Numerous studies have highlighted the significant role 
of PDLFs in the etiology of periodontitis and periodon-
tal tissue regeneration. However, these results have not 
been well summarized. This review provides a compre-
hensive summary of recent in-depth insights into PDLFs, 
including their growth and development, physiological 
function, and identification and characterization. In addi-
tion, this paper focuses on the potential mechanisms by 
which dysfunctional PDLFs promote the development 
of periodontitis and negatively impact periodontal tissue 
regeneration. Moreover, this paper summarizes strategies 
for targeting PDLFs to periodontitis treatment, includ-
ing strategies that block multiple stages of the inflamma-
tory response associated with PDLFs and promote the 
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multidirectional transdifferentiation of PDLFs to facili-
tate tissue regeneration after periodontal injury. Finally, 
future research directions for this field are proposed 
based on issues that have not yet been elucidated.

Physiology of PDLFs
Sources
PDLFs are spindle-shaped, elongated, connective his-
tiocytes that are located in periodontal tissue, and they 
account for 50–60% of the total number of periodon-
tal cells [15]. In adult human premolars, PDLFs occupy 
approximately 25% of the periodontal ligament space, 
while in rodent molars, they occupy approximately 35% 
of the space [15]. PDLFs originate from the ectomesen-
chyme tissue of dental follicles during embryonic devel-
opment [16, 17]. Subsequently, epithelial–mesenchymal 
interactions induce the differentiation of ectomesen-
chyme tissue into dental follicle cells, and then, the 
enamel organ induces the differentiation of dental follicle 
cells into PDLFs [18]. In contrast, during the healing of 
periodontal injuries in adult rodents, PDLFs are derived 
from a paravascular population of progenitor cells [19], 
including periodontal  ligament  stem  cells [20]. These 
progenitor cells migrate from the endosteal spaces of the 
alveolar bone to reach the periodontal tissue and further 
differentiate into PDLFs [17, 20].

Growth and development
During the normal development of rodent molar roots, 
mesenchymal stem cells (MSCs) are enriched in the 
population of newly formed periodontal ligament cells at 
the root diaphragm [18]. These MSCs undergo division 
and form daughter cells that migrate toward the crown, 
where they subsequently develop into fibroblasts with 
secretory functions [18, 21]. The fibroblasts then con-
tinue to migrate along collagen fibers to the cementum 
and alveolar bone with tooth eruption, migrating in the 
direction of the crown to differentiate into PDLFs [21]. 
Afterward, the PDLFs are aligned in a discrete linear 
fashion and parallel to collagen fiber bundles, forming an 
extensive cellular network between the cementum and 
alveolar bone [22].

In adults, PDLFs can regenerate and remodel peri-
odontal tissue that is destroyed by periodontitis [1] via 
an alternative developmental mechanism [15]. In mice, 
following periodontal tissue destruction, a distinct para-
vascular population of progenitor cells is present within 
200 µm of the trauma margin [19]. Within 30 – 72 h after 
injury, these progenitor cells undergo multiple divisions, 
and the resulting daughter cells migrate to the damaged 
site and divide again during the following 70 – 120  h 
[19]. Interactions between the fully differentiated enamel 
organ and the overlying connective tissue induce these 

dividing cells to eventually differentiate and develop into 
PDLFs [18].

Studies in rodent models have provided morphologi-
cal evidence for the growth and development of PDLFs. 
However, the underlying mechanisms that regulate the 
cell division, migration, and functional arrangement of 
PDLFs are largely unknown. A better comprehension of 
these underlying molecular mechanisms will increase 
our understanding of the functional properties of PDLFs, 
which is very important for developing strategies to pro-
mote tissue-engineered regeneration in adult individuals 
in the future.

Physiological functions
Physiologically, PDLFs can maintain the homeostasis 
of periodontal soft and hard tissues, as well as the local 
immune microenvironment, to maintain periodontal 
health [4, 6, 7]. First, PDLFs can remodel the extracellular 
matrix (ECM) and regulate the differentiation and migra-
tion of gingival epithelial cells, maintaining soft tissue 
homeostasis [21]. PDLFs can secrete collagen and organ-
ize it into fibers to form the ECM [22, 23]. Moreover, 
PDLFs can secrete matrix metalloproteinases (MMPs) 
and tissue inhibitors of metalloproteinases (TIMPs) to 
regulate ECM degradation, thereby dynamically remod-
eling the ECM [24]. PDLFs can secrete keratinocyte 
growth factor and hepatocyte growth factor [25], thus 
regulating the differentiation and migration of gingival 
epithelial cells and maintaining soft tissue boundaries 
[21]. The combined effects of these two aspects help to 
maintain local soft tissue homeostasis in periodontal tis-
sues [21].

In addition, PDLFs can secrete a range of cytokines 
that regulate the functions of both osteoclasts (OCs) and 
osteoblasts (OBs), thereby maintaining alveolar bone 
homeostasis. PDLFs can promote the proliferation and 
differentiation of OC precursor cells by increasing the 
nuclear factor receptor activator-κB ligand (RANKL)/
osteoprotegerin (OPG) ratio [22]. PDLFs can also secrete 
high levels of transforming growth factor-β (TGF-β) to 
promote the activity of OBs, which are involved in physi-
ological alveolar bone remodeling [26]. To control the 
degree of osteogenesis that occurs during physiological 
alveolar bone remodeling, thereby preserving the width 
of the periodontal ligament and preventing ankylosis, 
PDLFs secrete prostaglandin E2 (PGE2) to control the 
excessive differentiation of OB precursors in the peri-
odontal ligament [27]. These functions of PDLFs ensure 
the maintenance of periodontal soft and hard tissue 
homeostasis in the resting state or during physiological 
tooth movement [28, 29].

In addition to maintaining soft and hard tissue home-
ostasis, PDLFs also play a pivotal role in balancing the 
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local periodontal immune microenvironment [7]. PDLFs 
can promote the migration of immune cells, such as den-
dritic cells (DCs) and macrophages to periodontal tissues 
and induce their maturation, increasing phagocytosis by 
professional antigen-presenting cells (APCs) [7]. This 
function of PDLFs can maintain the balance between the 
local pro- and anti-inflammatory responses in periodon-
tal tissues [7].

It is well known that subgingival flora homeostasis is 
critical for the maintenance of periodontal health [30, 
31]. However, whether PDLFs play a role in maintaining 
this homeostasis has not been reported. Research has 
shown that gingival fibroblasts can secrete antimicro-
bial peptides and chemokines [32]. Antimicrobial pep-
tides can directly eliminate subgingival flora [33], and 
chemokines can attract immune cells to resist bacterial 
infection, thus maintaining a balance in the subgingi-
val flora [32, 34]. Therefore, we hypothesize that PDLFs 
can also maintain subgingival flora homeostasis through 
similar mechanisms. This possibility warrants further 
investigation.

PDLFs also play a very important role in periodontal 
tissue regeneration. Cytokines, growth factors, and drugs 
can induce the transdifferentiation of PDLFs into OBs 
and cementoblasts [8], which are crucial for periodontal 
tissue regeneration. Therefore, in the field of tissue engi-
neering, PDLFs are increasingly being recognized as tar-
gets for promoting periodontal regeneration [1, 35, 36].

Identification and characterization
There are currently no accepted markers for identifying 
and characterizing PDLFs [37]. Only a limited number of 
studies have reported specific gene expressed by PDLFs 
in particular environments [37]. For instance, one study 
showed that PDLFs exhibit high expression of the PDLs-
5, PDLs-17, PDLs-22, PDLs-25 and PDLs-31 genes under 
resting conditions, and this gene expression pattern can 
be used to distinguish PDLFs from other cell types [37]. 
Among these genes, PDLs-17 is thought to be important 
for the differentiation of PDLFs [37]. However, the func-
tions of the PDLs-5, PDLs-22, PDLs-25 and PDLs-31 
genes are not known. Further research is needed to char-
acterize the functions of these genes and determine their 
validity as specific markers of PDLFs.

Furthermore, researchers have identified secretory 
proteins that are specifically produced by PDLFs in dif-
ferent functional states and can be used as markers. For 
instance, during ECM remodeling, PDLFs exhibit high 
expression of α-smooth muscle actin and XII-collagen 
[17]. Moreover, during the osteogenic differentiation and 
mineralization of bone tissues [37], PDLFs express signif-
icant levels of osteoblast-specific factor 2 (OSF2) [38] and 
calcium-binding protein (S100A4) [39].

Currently, the absence of reliable and specific markers 
is a major limitation in the study of PDLFs. Detection 
technologies such as RNA sequencing, tissue single-cell 
mapping, and spatial transcriptomic technologies are 
advancing quickly and have been used to identify fibro-
blasts in rheumatoid  arthritis (RA) and inflammatory 
bowel disease [40]. The identification and characteriza-
tion of PDLFs are anticipated to be feasible in the future 
with the help of these technologies.

Underlying mechanisms of dysfunctional PDLFs 
involved in periodontitis
Factors leading to dysfunction of PDLFs
As previously mentioned, the main functions of PDLFs 
are the secretion of various cytokines to regulate local 
periodontal homeostasis and self-differentiation to pro-
mote periodontal regeneration. However, PDLFs can 
acquire an inflammatory phenotype following dysfunc-
tion, leading to the excessive secretion of tissue destruc-
tion-related cytokines, decreased secretion of tissue 
repair-related cytokines, as well as impaired self-differ-
entiation and even programmed cell death (PCD), which 
promote the occurrence and development of periodon-
titis. It is currently thought that PDLF dysfunction can 
be caused by various factors, such as stimulation by sub-
gingival flora, the paracrine effects of immune cells and 
abnormal glucose metabolism.

Stimulation by subgingival flora
Dysbiosis of the subgingival flora can lead to increased 
numbers of pathogenic  bacteria and an increase in the 
levels of their toxic products, which in turn, can modu-
late pattern recognition receptors (PRRs) to promote the 
generation of inflammatory phenotypes (Fig. 1a) and also 
induce the PCD of PDLFs (Fig. 1b), ultimately resulting in 
dysfunction of PDLFs.

PDLFs express a range of PRRs, such as Toll-like recep-
tors (TLRs) on the cell surface and nucleotide-binding 
oligomerization domain (NOD)-like receptors (NLRs) 
in the cytoplasm [41]. Bacteria and their toxic products 
can interact with these receptors to initiate inflamma-
tory responses [16]. The virulence factor lipopolysaccha-
ride (LPS), which is secreted by gram-negative bacteria, 
including Porphyromonas gingivalis, Prevotella interme-
dia, Fusobacterium nucleatum and Aggregatibacter actin-
omycetemcomitans, is a potent activator of TLR4 on the 
surface of PDLFs [16]. The virulence factor peptidogly-
can, which is secreted by gram-positive bacteria, such as 
Actinomyces viscosus [9], as well as major surface protein 
(MSP), which is secreted by Treponema denticola [42], 
can bind to and activate TLR2 [43]. Activated TLR2/4 
trigger an intracellular signaling cascade that is mediated 
by MyD88 and tumor necrosis factor receptor-associated 
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factor 6 (TRAF-6) [9], which promotes the ubiquitina-
tion of downstream ECSIT proteins in the mitochondrial 
outer membrane [44] and the expression of NOX4 on the 
mitochondrial inner membrane [45] to increase reactive 
oxygen species (ROS) production [46]. Activated TLR2/4 
upregulate the mitogen-activated protein kinase (MAPK) 
pathway, which can increase MMP1 and MMP3 expres-
sion, leading to ECM degradation [47]. Additionally, the 
ERK pathway is also activated, which inhibits  Ca2+ influx 
and further upregulates RASA4 expression, leading to 
fibrin cleavage and promoting the development of peri-
odontitis [24].

Notably, activation of TLR2/4 signaling can also lead to 
an autonomous autocrine amplification loop in PDLFs, 
which is a key mechanism that drives the amplification of 
inflammation [40]. Activation of NF-κB, which is down-
stream of TLR2/4 [48], results in the secretion of inter-
leukin-6 (IL-6) [49]. IL-6 can bind to extracellular soluble 
IL-6R (sIL-6R) produced by PDLFs and immune cells; 
this interaction further activates the gp130 coreceptor/

STAT3 pathway in PDLFs [50], ultimately increasing the 
synthesis and secretion of other inflammatory factors, 
such as MMP-9, interleukin-1β (IL-1β), tumor necrosis 
factor (TNF-α), and cyclooxygenase (COX-2) [48], via a 
positive feedback mechanism [50].

In addition to TLRs, PDLFs also express NLRs in 
the cytoplasm [41]. Research has shown that pan-
nexin-1 (panx-1) is released from the surface of PDLFs 
in response to bacterial stimulation [51]. The muramyl 
dipeptide MurNAc-L-Ala-D-isoGln (MDP) originates 
from the cell wall of gram-negative bacteria, such as P. 
gingivalis, P. intermedia, A. actinomycetemcomitans and 
F. nucleatum [52], and can enter the cytoplasm of PDLFs 
via panx-1, binding to and activating NOD1 and NOD2 
[53, 54]. Activation of NOD1 and NOD2 can upregulate 
the NF-κB and ERK pathways, promoting the synthesis 
and secretion of IL-6 and interleukin-8 (IL-8) [53]. The 
opening of panx-1 can also trigger the exocytosis of cyto-
plasmic  K+ via the P2X7 receptor (P2X7R) [51], thus acti-
vating NLRP3, which contains an NLR structural domain 

Fig. 1 Stimulation by oral pathogenic bacteria induce dysfunctional PDLFs. a Toxic products, secreted by pathogenic bacteria, lead 
to the production of inflammatory factors and the activation of multiple signaling pathways through pattern recognition receptors. b Metabolites 
and virulence factors produced by pathogenic bacteria induce inflammatory death in PDLFs, resulting in the release of inflammatory factors. The 
black arrows indicate activation. Gram− gram-positive bacteria, Gram +  gram-negative bacteria, TD Treponema denticola, LPS lipopolysaccharide, PG 
peptidoglycan, MSP major surface protein, MDP muramyl dipeptide MurNAc-L-Ala-D-isoGln, TLR toll-like receptor, panx1 Pannexin-1, P2XR7 P2RX7 
receptor, MyD88 myeloid differentiation factor 88, TRIF6 Tumor necrosis factor receptor associated factor 6, NLR NOD-like receptor, NLRP3 NLRP3 
inflammasome, ROS Reactive oxygen species, NCOA4 cargo receptor nuclear receptor coactivator 4, HIF-1α Hypoxia-inducible factor-1 α, DAMPs 
death-associated molecular patterns, RIPK3 receptor-interacting protein serine-threonine kinases-3, MLKL mixed lineage kinase domain-like protein, 
VCAM-1 vascular cellular adhesion molecule-1, RANKL receptor activator of nuclear factor-kappa B ligand, MMP Matrix metalloproteinase, NOD 
nucleotide-binding oligomerization domain, ECSIT, evolutionarily conserved signaling intermediate in Toll pathways, NOX NADPH Oxidases, ERK 
Extracellular signal-regulated kinases, COX-2 cyclooxygenase-2, GP130 Glycoprotein 130, sIL-6R soluble interleukin-6 receptor, TNF-α Tumor necrosis 
factor α, IL-1 interleukin-1, IL-1β interleukin-1β, RASA4 RAS p21 protein activator 4, MCP-1 Monocyte chemoattractant protein-1
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[51, 55], and ultimately leading to pro-caspase-1 matu-
ration [41]. Mature caspase-1 can promote the develop-
ment of periodontitis by inducing the maturation and 
release of IL-1β and interleukin-18 (IL-18) [9, 41].

In addition to promoting an inflammatory phenotype 
in PDLFs, the toxic products of subgingival flora can 
cause PCD of PDLFs, such as ferroptosis, pyroptosis, and 
necrotic apoptosis [56–58]. For instance, the metabolite 
butyrate from P. gingivalis can activate the p38/hypoxia-
inducible factor-1α (HIF-1α) pathway in PDLFs, thus 
inducing the upregulation of nuclear receptor coactivator 
4 (NCOA4) and subsequently leading to ferritinophagy 
and ferroptosis of PDLFs [57]. LPS can activate NLRP3 
in PDLFs, which recruits pro-caspase-1 and induces 
its proteolytic cleavage to form active caspase-1, lead-
ing to pyroptosis [56]. Furthermore, P. intermedia can 
trigger the release of death-associated molecular pat-
terns (DAMPs) from monocytes, which then induce the 
necroptosis of PDLFs through receptor-interacting pro-
tein serine-threonine kinase-3 (RIPK3) and mixed line-
age kinase domain-like protein (MLKL) [58]. The PCD of 
PDLFs results in osmotic lysis, which leads to the release 

of IL-1β, MCP-1, IL-6, IL-8 and IL-18, promoting the 
destruction of periodontal tissues [56].

The occurrence of PCD of PDLFs is a fascinating sub-
ject, and available evidence from in  vitro studies pro-
vides a solid foundation for an in-depth understanding 
the roles of these PCD mechanisms in the development 
of periodontitis. Future studies should further validate 
the importance of the PCD of PDLFs in periodonti-
tis through in  vivo experiments and analysis of clinical 
samples.

Paracrine actions of immune cells
During the development of periodontitis, innate and 
adaptive immune cells may induce PDLFs to acquire 
an inflammatory phenotype in a paracrine manner 
[10] (Fig. 2). Research has demonstrated that circulating 
monocytes/macrophages and DCs can be recruited to 
and invade periodontal tissues, where they can secrete 
IL-1β and TNF-α [10]. IL-1β can bind to the IL-1 type 
I receptor on the surface of PDLFs and activate activa-
tor protein-I, which upregulates MMP-1 and MMP-13 
to degrade collagen [59–61] and increases the synthesis 

Fig. 2 Paracrine actions of immune cells induce dysfunctional PDLFs. Innate immune cells associated with periodontitis, such as macrophages 
and dendritic cells, and adaptive immune cells, such as Th17 cells, regulate the induction of an inflammatory phenotype in PDLFs in a paracrine 
manner. The black arrows indicate activation, and the red horizontal lines indicate inhibition. DC Dendritic cell, Th17 T helper cell 17, TNF-α tumor 
necrosis factor α, IL-8 interleukin-8, IL-1β interleukin-1β, IL-17 interleukin-17, TNF-R1 tumor necrosis factor receptor 1, IL-6 interleukin-6, RANKL 
receptor activator of nuclear factor-kappa B ligand, AT1 angiotensin II type 1 receptor, IL-1R interleukin-1R, IL-17R interleukin-17R, NF-κB nuclear 
factor-kappa B, MAPK mitogen-activated protein kinase, PKA protein kinase A AP-1, activating protein-1, C/EBPβ acetylated CCAAT/enhancer binding 
protein β, MMP matrix metalloproteinase, IL-23 interleukin-23, OPG Osteoprotegerin
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and secretion of interleukin-23 (IL-23) to promote matu-
ration of OCs [62, 63]. Furthermore, IL-1β can also bind 
to the angiotensin II type 1 receptor (AT1) on the cell 
surface, upregulating IL-6 and IL-8 and leading to the 
destruction of alveolar bone [64]. In addition, TNF-α can 
upregulate IL-6 through the NF-κB pathway [65], which 
is an efficient activator of OC precursors [10].

In the adaptive immune system,  CD4+ T lymphocytes, 
including helper T lymphocytes (Th17), recognize anti-
gens presented by DCs, and then, these cells leave the 
lymph nodes, enter circulation and infiltrate infected 
periodontal tissues [66]. Th17 helper lymphocytes 
secrete interleukin-17 (IL-17), which can bind to IL-17R 
on the surface of PDLFs and activate the MAPK pathway, 
ultimately increasing RANKL expression and decreas-
ing OPG expression [67]. The binding of IL-17 to IL-
17R can also upregulate the transcription of NF-κB and 
CCAAT/enhancer-binding protein β (C/EBP β) [68, 69], 
thus increasing the secretion of MMP-1 [68]. In addition 
to Th17 cells, Th22 cells are also important lymphocytes 
that are associated with periodontitis [70, 71]. However, 
until now, no study has examined whether Th22 cells can 
mediate the participation of dysfunctional PDLFs in the 
progression of periodontitis, and this topic should be fur-
ther explored in future studies.

Abnormal glucose metabolism
Clinically, diabetic patients often exhibit severe inflam-
mation and periodontal destruction, which is associated 
with dysfunctional PDLFs induced by the production of 
advanced glycation end products (AGEs) due to hypergly-
cemia [72, 73]. AGEs can bind to receptor for advanced 
glycation end products (RAGE) on the surface of PDLFs 
[72], which activates the NF-κB pathway and upregulates 
the expression of CXCL2, RANKL, IL-6, and ROS [11], 
thereby enhancing neutrophil recruitment [74], increas-
ing OC-mediated bone resorption and leading to oxida-
tive stress [65, 75].

In fact, patients with abnormal glucose metabolism 
often have abnormal lipid metabolism [11], which may 
also be an important factor that contributes to dys-
functional PDLFs [72]. Clinically, the levels of oxidized 
low-density lipoprotein (ox-LDL) are increased in the 
gingival crevicular fluid of hyperlipidemic patients, and 
these levels are closely associated with periodontitis [76, 
77]. Moreover, PDLFs express the structural domains of 
oxidized LDL receptor 1 (LOX-1), named LDL receptor-
related protein 4 (LPR4) and LPR5 [78]. In studies of 
dysfunctional synovial fibroblasts, it was reported that 
ox-LDL can bind to LOX-1 and activate the NF-κB sign-
aling pathway, further leading to the secretion of MMP-1 
and MMP-3 [79, 80]. Thus, we hypothesize that elevated 
levels of ox-LDL in gingival crevicular fluid may cause 

dysfunctional PDLFs through a similar mechanism. This 
hypothesis requires further testing in future studies.

Underlying mechanisms involved in periodontitis
Alveolar bone resorption
Animal studies have shown that dysfunctional PDLFs can 
secrete excessive levels of inflammatory cytokines, which 
promote OC differentiation and lead to alveolar bone 
destruction by modulating various signaling pathways 
[81] (Fig. 3).

NF-κB pathway: The NF-κB pathway is a crucial signal-
ing pathway that induces the formation of mononuclear 
OCs from OC precursors, resulting in the destruction of 
alveolar bone. It was reported that dysfunctional PDLFs 
can secrete excessive amounts of TNF-α, IL-1β, IL-18, 
IL-8, and RANKL [82–87]. TNF-α can bind to the type 
I p55 TNF receptor (TNF-R1) on the surface of OC pre-
cursors and activate TNF receptor-associated factor 2/5 
(TRAF2/5), thus upregulates the NF-κB pathway [82]. In 
contrast, the binding of IL-1β to the type I receptor (IL-
1RI) on the surface of OC precursors can activate Toll 
and IL-1R-like (TIR) intracellular interface proteins to 
phosphorylate TRAF6, subsequently leading to upregula-
tion of the NF-κB pathway [83]. IL-18, which is a member 
of the IL-1 family [84], can bind to IL-1R7 and activate 
the NF-κB pathway by recruiting the IL-18Rβ chain [85]. 
Similarly, IL-8 can activate the NF-κB pathway by bind-
ing to the CXCR1 precursor on the surface of OCs [86]. 
Additionally, RANKL can bind to RANK on the sur-
face of OC precursors and recruit TRAF2, TRAF5 and 
TRAF6, which work together to upregulate the NF-κB 
pathway, ultimately promoting the formation of mononu-
cleated OCs from OC precursors and inducing alveolar 
bone resorption [87].

PI3K/Akt pathway: Inflammatory cytokines that are 
produced by dysfunctional PDLFs, such as M-CSF [88], 
TNF-α [89] and RANKL [90], can promote the prolif-
eration of OC precursors and their differentiation into 
mature OCs through activation of the PI3K/Akt path-
way, leading to bone resorption [91]. It was found that 
M-CSF can bind to colony-stimulating factor-1 (c-Fms) 
on the surface of OC precursors and recruit growth fac-
tor receptor-bound protein 2 (Grb2) [91], which activates 
the PI3K/Akt pathway, upregulating the transcription 
factor PU.1 and MITF to promote OC proliferation [90]. 
TNF-α can bind to TNF-R1, and RANKL can bind to 
RANK on OC precursors [91], and both of these recep-
tors recruit the adaptor c-src to activate the PI3K/Akt 
pathway, subsequently upregulating B-lymphocyte-
induced maturation protein-1 (Blimp1) and promoting 
maturation of OCs [88]. Furthermore, as previously men-
tioned, dysfunctional PDLFs can generate excessive levels 
of ROS [46]. ROS can not only directly activate the PI3K/
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Akt pathway but also indirectly enhance it by inactivating 
phosphatase and tensin homolog (PTEN), thus promot-
ing the differentiation and maturation of OCs [89].

MAPK pathway: The MAPK pathway is also regulated 
by a variety of cytokines derived from dysfunctional 
PDLFs, such as TNF-α, M-CSF, IL-1β, and RANKL; these 
cytokines induce the differentiation of OC precursors 
into mature OCs and lead to alveolar bone destruction 
[91]. TNF-α can bind to TNF-R1 on the surface of OC 

precursors and recruit the small G protein cdc42, acti-
vating p38 to induce NFATc1-dependent maturation of 
OCs [89]. The interaction of M-CSF with c-Fms can acti-
vate Grb2, which upregulates ERK expression, leading to 
MAPK pathway activation [91]. IL-1β can bind to type 
I (IL-1RI) to activate TRAF-6, which recruits TGF-β-
activated protein kinase (TAK-1) [83]. TAK-1 upregulates 
JNK and p38 expression, resulting in maturation of OCs 
and alveolar bone destruction [83]. RANKL can bind to 

Fig. 3 Mechanisms by which inflammatory factors derived from dysfunctional PDLFs modulate alveolar bone destruction. Multiple inflammatory 
factors secreted by PDLFs promote the maturation and differentiation of osteoclast precursors, leading to the resorption of alveolar bone. PDLFs 
Periodontal ligament fibroblasts, IL-8 interleukin-8, IL-18 interleukin-18, IL-1β interleukin-1β, TNF-α Tumor necrosis factor α, IL-6 interleukin-6, RANKL 
receptor activator of nuclear factor-kappa B ligand, M-CSF macrophage colony-stimulating factor, TNF-R1 Tumor necrosis factor receptor 1, NOX 
NADPH Oxidases, IL-1R interleukin-1R CXCLR, C-X-C motif ligand receptor; IL-1R7 IL-1 receptor 7, IL-6R interleukin-6 receptor, ROS Reactive oxygen 
species, TRAF TNF receptor associated factor, IL-18Rβ interleukin-18 receptor β, Grb2 growth factor receptor-bound protein-2, TAK1 transforming 
growth factor-β-activated kinase 1, PTEN Phosphatase and tensin homolog, NF-κB nuclear factor-kappa B, PI3K phosphatidylinositol 3-phosphate 
kinase, AKT serine/threonine kinas, MAPK mitogen-activated protein kinases, JAK Janus kinase, STAT3 signal transducer and activator of transcription 
3, P38 p38 Mitogen-Activated Protein Kinases, JNK The c-Jun N-terminal kinase, ERK Extracellular signal-regulated kinases, Blimpl a transcription 
factor, AP-1 activating protein-1, NFATcl nuclear factor of activated T cells cl, PU.1 an ETS-family transcription factor, MITF microphthalmia-associated 
transcription factor, c-Fms colony-stimulating factor-1



Page 9 of 17Huang et al. Journal of Translational Medicine         (2024) 22:1136  

RANK on the surface of OC precursors to activate the 
junction molecule TRAF6, which then recruits TAB1, 
TAB2, and TAK1 and activates the three MAPK signaling 
cascades, inducing the differentiation of OC precursors 
into mature OCs [92].

JAK/STAT pathway: The JAK/STAT pathway in OC 
precursors can modulate NFATc1 to induce the differ-
entiation of these cells into mature OCs, thus playing a 
crucial role in the alveolar bone resorption that is regu-
lated by dysfunctional PDLFs [93]. IL-6, which is secreted 
by dysfunctional PDLFs, can bind to the IL-6 receptor 
(IL-6R) on the surface of OC precursors, upregulates the 
JAK/STAT3 pathway [94], thereby promoting the differ-
entiation and maturation of OCs [95].

The studies mentioned above reported that inflamma-
tory cytokines that are secreted by dysfunctional PDLFs 
can induce the formation of mononuclear OCs. How-
ever, a key step in OC maturation and bone resorption is 
the fusion of mononuclear OCs to form multinucleated 
OCs [96]. The mechanism by which these cytokines pro-
mote the multinucleation of mononuclear OCs is cur-
rently unknown. Research has shown that the process of 
OC multinucleation is initiated by two transmembrane 
proteins, namely DC-STAMP and OC-STAMP, that are 
localized to the surface of mononuclear OCs [96]. Fur-
ther studies are necessary to determine whether the 
inflammatory cytokines secreted by dysfunctional PDLFs 
induce OC multinucleation through these two receptor-
mediated signaling pathways.

Cementum destruction
Physiologically, the cementum is divided into two main 
components: acellular and cellular cementum [97]. Acel-
lular cementum is mainly composed of hydroxyapatite 
and collagen, while cellular cementum contains a small 
number of cementoblasts [97]. Dysfunctional PDLFs 
secrete multiple cytokines that can destroy hydroxyapa-
tite in the cementum and inhibit the differentiation and 
mineralization of cementoblasts, thereby preventing res-
toration of the cementum [98].

It has been demonstrated that dysfunctional PDLFs can 
secrete MCP-1 to recruit circulating monocytes/mac-
rophages into periodontal tissues, which then migrate to 
the surface of the cementum [99]. In the inflammatory 
microenvironment, these monocytes/macrophages fur-
ther differentiate into mature OCs, which directly destroy 
hydroxyapatite, leading to resorption of the cementum 
[98].

Additionally, cytokines that are produced by dysfunc-
tional PDLFs, such as IL-1β and TNF-α, can inhibit 
the differentiation and mineralization of cemento-
blasts. Research has shown that excess IL-1β can bind 
to IL-1R2 on the surface of cementoblasts [100] and 

increase the transcription of miR-325-3p [101]. The lat-
ter inhibits runt-related transcription factor 2 (Runx2), 
thus suppressing the differentiation of cementoblasts 
[101]. TNF-α can inhibit both cementoblast differentia-
tion and cementum mineralization. TNF-α can bind to 
TNF-R1 on the surface of cementoblasts, upregulate 
miR-155-3p transcription and inhibit the expression of 
potassium channel tetramerization domain containing 1 
[101]. Kctd1 regulates the classic Wnt/β-catenin pathway, 
inhibiting cementoblast differentiation [101]. Further-
more, TNF-α not only activates the p53 [102] and STAT3 
pathways [103] in cementoblasts to induce autophagy but 
also activates the NF-κB pathway to inhibit the expres-
sion of bone sialoprotein (BSP), collagen type I (COL 
I), and OPG, thus inhibiting cementum mineraliza-
tion [104]. To date, few studies have been conducted on 
cementoblasts differentiation and cementum mineralisa-
tion inhibited by dysfunctional PDLFs, and the underly-
ing mechanisms have not been fully elucidated; thus, this 
topic warrants further attention in future studies.

Periodontal ligament breakage
The periodontal ligament is primarily composed of type 
I, III, and XII collagen fibers as well as ECM [105]. Dys-
functional PDLFs can secrete various MMPs, which 
degrade collagen fibers and ECM, ultimately leading to 
periodontal ligament breakage [106].

MMP-14 and MMP-13 that are produced by dysfunc-
tional PDLFs can undergo autoactivation [107, 108]. 
Activated MMP-14 can continue to activate MMP-8 
[105], and activated MMP-8 can combine with activated 
MMP-13 to cleave the natural triple-helix molecules of 
type I, type III and type XII fibrillar collagen [109] into 
multiple denatured collagen fragments [108]. Subse-
quently, MMP-13 can activate MMP-2 and MMP-9 [110], 
thus facilitating the further cleavage of denatured colla-
gen fragments into smaller protein fragments [111]. Fur-
thermore, MMP-13 can also upregulate MMP-3, which 
degrades proteoglycans and matrix glycoproteins in the 
ECM into small organic molecules, ultimately leading to 
the destruction of the periodontal ligament [112].

The integrity of periodontal ligaments does not rely on 
collagen fibers alone, but Malassez epithelial remnant 
cells also play an important role. Malassez epithelial rem-
nant cells can secrete matrix proteins and collagenases 
to maintain periodontal  ligament  integrity [113, 114]. 
Research has shown that during the initial stages of peri-
odontitis, PDLFs can interact with Malassez epithelial 
cells, resulting in the loss of attachment and the forma-
tion of periodontal pockets [115]. This phenomenon 
may be related to the negative impact of dysfunctional 
PDLF-derived inflammatory cytokines on the secretory 
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function of Malassez epithelial cells. However, further 
studies are needed to confirm this hypothesis.

Mechanisms of inhibiting periodontal regeneration
The multidirectional differentiation of PDLFs is crucial 
for the regeneration of periodontal tissue. However, the 
transdifferentiation potential of dysfunctional PDLF is 
attenuated, and thus, periodontal tissue regeneration is 
inhibited.

The MAPK pathway is activated in dysfunctional 
PDLFs, which leads to the downregulation of osteogenic 
differentiation marker genes, such as ColA1, osteocal-
cin (OCN), OPN and BSP, and the inhibition of PDLFs 
transdifferentiation into osteoblasts [13]. On the other 
hand, LPS derived from Pg suppresses the transdifferen-
tiation of PDLFs by regulating their epigenetic mecha-
nisms, such as DNA methylation, histone modifications, 
and changes in non-coding RNA expression. Studies 
have found that LPS can enter the nucleus of PDLFs and 
induce the hypermethylation of RUNX2 DNA, decreas-
ing RUNX2 expression and inhibiting osteogenic differ-
entiation in PDLFs [116]. Additionally, LPS can induce 
the posttranslational modification of histone 1 lysine 2 
(H1K2) and H5K1 in the promoters of matrix-associated 
genes, such as COL3A27, COL3A4, and RUNX1, as well 
as osteogenic genes, such as COL1A1, COL3A1, and 
RUNX2 [116]. As a result, the transcriptional program 
that is associated with the transdifferentiation of PDLFs 
is suppressed [116], and alveolar bone regeneration is 
inhibited [117]. Furthermore, LPS derived from Pg can 
upregulate the expression of the long noncoding RNA 
MIAT, which subsequently modulates miR-204-5p/Dic-
ckopf-1 (DKK1) axis, thereby inhibiting transdifferentia-
tion of PDLFs [118].

Interestingly, a recent study has documented that Pg-
LPS can actually facilitate the osteogenic differentiation 
of PDLFs at concentrations below 0.01  μg/mL and with 
exposure times shorter than 8  h [119], which seems 
to contradict the aforementioned research. Pg-LPS, 
secreted by Gram-negative bacteria as a virulence factor, 
modulates cellular functions by time and concentration-
dependent factors. Research has demonstrated that low 
concentration and short-term stimulation of Pg-LPS has 
been shown to initiate autophagy, which enhance the 
proliferative capacity of cells [120]. This phenomenon 
may be linked to the activation of the integrated stress 
response, which helps to sustain the cells’ capacity for 
proliferation and regeneration [121]. Conversely, under 
the influence of prolonged and high-concentration stim-
uli, the cellular stress response becomes imbalanced, ulti-
mately leading to the inhibition of regeneration [121]. Xi 
Wu et al [47] reported that Pg-LPS, exceeding a concen-
tration of 0.1  μg/mL and an exposure duration beyond 

8 h, can suppress the osteogenic differentiation of PDLFs. 
This finding consists with the phenotype observed in 
patients with periodontitis in clinical. Uncontrolled dys-
biosis of subgingival flora leads to continuous stimulation 
of PDLFs by Pg-LPS, exceeding the stress compensatory 
capacity of PDLFs, ultimately inhibiting their osteogenic 
potential and contributing to the destruction of alveolar 
bone and the progression of periodontitis.

In summary, many studies have shown that transdif-
ferentiation is inhibited in dysfunctional PDLFs, thereby 
impeding alveolar bone formation. In fact, cementum 
regeneration and the subsequent functional periodontal 
ligament reconstruction are considered the gold stand-
ards for periodontal tissue regeneration [101, 122]. 
However, only in  vitro experiments have reported that 
the transdifferentiation of PDLFs into cementoblasts is 
blocked after exposure to stimuli such as bacteria [122]. 
The relationship between the pathological changes and 
transdifferentiation into cementoblast of PDLFs have 
not been reported in vivo. Further research is needed to 
thoroughly investigate the impact of dysfunctional PDLFs 
on their transdifferentiation into cementoblast and the 
underlying mechanisms involved.

Periodontal treatment strategies targeting PDLFs
Here, we described insights into the pathological mech-
anism by which dysfunctional PDLFs are involved in 
periodontitis, and these insights may provide a novel 
potential strategy for periodontal treatment. Periodontal 
treatment strategies that target PDLFs have good clini-
cal results following conventional periodontal treatment 
[123]. Such treatments include reducing periodontal 
inflammation by inhibiting the autonomous autocrine 
amplification loop of PDLFs, preventing the synthesis 
and secretion of inflammatory cytokines by PDLFs, and 
inducing the transdifferentiation of PDLFs to promote 
periodontal tissue regeneration (Fig. 4).

Inhibition of the autonomous autocrine amplification loop
Persistent activation of the proinflammatory phenotype 
in PDLFs can be inhibited by blocking the autonomous 
autocrine amplification loop, which effectively reduces 
the synthesis of inflammatory cytokines. Tocilizumab 
(TCZ)® is a commercial drug that has been shown to 
block the binding of IL-6 to IL-6R, exerting anti-inflam-
matory effects in the treatment of rheumatoid arthritis 
[124]. Research has also shown that TCZ, when used to 
treat patients with chronic periodontitis, can specifically 
inhibit the IL-6-mediated autonomous autocrine ampli-
fication loop [124, 125], thereby inhibiting the inflam-
matory phenotype of PDLFs and significantly reducing 
periodontal inflammation [125].
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Despite the predictable anti-inflammatory effects, 
there are relatively few therapeutic strategies that target 
the autonomous autocrine amplification loop. A possible 
reason is that researchers have not fully recognized the 
autonomous autocrine amplification loop as a key step in 
the development of periodontitis. Future studies should 
focus on this topic.

Blockade of inflammatory cytokine synthesis and secretion
As previously stated, the synthesis and secretion of 
inflammatory cytokines by PDLFs involve receptor and 
postreceptor signaling pathways as well as epigenetic 
regulation. Treatments that target these three steps 
have been reported to effectively control periodontal 
inflammation.

First, blocking receptors on PDLFs inhibits the syn-
thesis and secretion of inflammatory cytokines, attenu-
ating local periodontal inflammation in  vivo [64, 126, 
127]. Losartan was shown to block the AT1 receptor on 
the surface of PDLFs, thereby inhibiting the NF-κB path-
way and suppressing IL-8 expression [64]. Under hyper-
glycemic conditions, the RAGE inhibitor FPS-ZM1 can 
prevent the binding of AGEs to RAGE on the surface of 
PDLFs and inhibit the activation of the NF-κB pathway, 
which downregulates TNF-α [126]. Additionally, rhein 
can block the NLR in PDLFs, inhibit NLRP3 inflamma-
some formation and activation, and decrease IL-1β syn-
thesis and secretion [127].

In addition to receptor blockers, a series of drugs can 
target the postreceptor signaling pathway in PDLFs to 
inhibit inflammatory cytokine synthesis and secretion. 
Oral or topical administration of silymarin [128] can 
inhibit the NF-κB pathway in PDLFs, downregulating 
TNF-a, IL-1β, MCP-1, and IL-18 [128]. Andrographolide 
can inhibit the JAK/STAT3 pathway in PDLFs, down-
regulating IL-1β and TNF-α mRNA expression [129]. 
Although these drugs can suppress periodontal inflam-
mation, their long-term efficacy remains uncertain. In 
the future, it will be necessary to focus on how effective 
therapeutic concentrations of these drugs can be main-
tained locally in periodontal tissues in the long term. The 
use of nanocarriers may help to address these issues [130, 
131]. Optimizing the conditions of nanocarriers con-
sidering their order of drug release, release rate [132], 
and degradation rate can help to increase the local anti-
inflammatory effects of these drugs in periodontal tissue 
[130].

In recent years, several studies have shown that epi-
genetic regulation can suppress the production of 
inflammatory cytokines in PDLFs. For instance, small-
molecule inhibitors of histone deacetylases can suppress 
histone deacetylation in the nucleus of PDLFs, leading 
to decreases in TNF-α and IL-1β expression and ROS 
production [116, 133]. However, previous studies have 
not focused sufficiently on epigenetics, and research 
has been limited to in  vitro experiments. In contrast, 

Fig. 4 Strategies for targeting PDLFs in the treatment of periodontitis. a The synthesis of inflammatory factors can be reduced by blocking 
the sIL-6R signaling pathway and inhibiting the autonomous autocrine amplification loop in PDLFs. b The synthesis and secretion of inflammatory 
factors can be reduced by targeting and inhibiting the PDLF surface receptor, the postreceptor signaling pathway and epigenetic inheritance. c 
Biomaterials and pharmacological agents can promote the regeneration of inflamed periodontal tissues by inducing osteogenic differentiation 
in PDLFs and cementoblast differentiation. The black arrows indicate activation, and the red horizontal lines indicate inhibition. IL-6, interleukin-6, 
sIL-6R soluble interleukin-6 receptor, gp130 Glycoprotein 130, TCZ, tocilizumab, NLR NOD-like receptor, AT1 angiotensin II type 1 receptor, RAGER 
receptor for advanced glycation end products; FPS-ZM1 RAGE inhibitor, SB Silibinin, AG andrographolide, HDACis small molecule inhibitors of histone 
deacetylases, NF-κB nuclear factor-kappa B, PI3K phosphatidylinositol 3-phosphate kinase, AKT serine/threonine kinase, JAK Janus kinase, STAT3 signal 
transducer and activator of transcription 3, PTM posttranslational modification, IL-1β interleukin-1β, TNF-α tumor necrosis factor α, IL-8 interleukin-8, 
IL-18 interleukin-18
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epigenetic modulation has been reported to have great 
potential in the treatment of inflammatory diseases. For 
instance, azacitidine can inhibit DNA methylation in syn-
ovial fibroblasts and thus ameliorate rheumatoid arthritis 
[134]. Therefore, targeting epigenetic regulation in PDLFs 
for the treatment of periodontitis is an area that warrants 
further investigation.

Promotion of periodontal regeneration
Biomaterials
Currently, the use of biomaterials that target PDLFs to 
promote periodontal tissue regeneration is receiving 
widespread attention. Some of these biomaterials can 
directly promote transdifferentiation of PDLFs, while 
others act as carriers for exogenous signaling molecules 
that indirectly promote transdifferentiation of PDLFs, 
ultimately leading to periodontal tissue regeneration.

Nanoscale biomaterials are now known to have benefi-
cial biological effects, which directly induce the transdif-
ferentiation of PDLFs [135, 136]. Studies have reported 
that nanohydroxyapatite particles are internalized by 
PDLFs and then stimulate increased alkaline phosphatase 
(ALP) expression, promoting the proliferation and trans-
differentiation of PDLFs [135]. In contrast, metal nano-
particles appear to be more effective at regulating the 
transdifferentiation of PDLFs [136]. It has been demon-
strated that metal nanoparticles, including silver nano-
particles (AgNPs), when internalized by PDLFs, elicit 
a dose-dependent activation of the RhoA-TAZ signal-
ling pathway, thereby promoting transdifferentiation of 
PDLFs [136]. In a rat model of periodontitis, MgO nan-
oparticles promoted the transdifferentiation of PDLFs, 
which in turn increased neoplastic periodontal tissue for-
mation [137].

Some biomaterials can incorporate exogenous signal-
ing molecules as hybrid scaffolds which can be implanted 
into periodontal defects to induce the transdifferentia-
tion of PDLFs and the regeneration of alveolar bone [138, 
139]. COMP-Ang1 scaffolds loaded with angiopoietin-1 
have been demonstrated to stimulate osteogenesis and 
the transdifferentiation of PDLFs by releasing angiopoi-
etin-1 [138]. Similarly, biocompatible alginate/nano bio-
active glass ceramic composite scaffolds were shown to 
release significant amounts of silicon and calcium, upreg-
ulating ALP and OPN expression in PDLFs and inducing 
their transdifferentiation into OCs [139]. All these mate-
rials mentioned above have been suggested to be effective 
in promoting alveolar bone regeneration in vivo.

Notably, the biomaterials mentioned above are con-
structed as bilayer or hybrid scaffolds and show excel-
lent potential for inducing the differentiation of PDLFs 
to promote alveolar bone regeneration [138]. However, 
ideal periodontal tissue regeneration should mimic 

physiological developmental processes, which can 
achieve the multidirectional differentiation and func-
tional regeneration of alveolar bone, cementum and 
periodontal ligament in a spatiotemporal sequence 
[139]. From this point of view, periodontal regeneration 
strategies that target PDLFs have significant potential 
for research and development [139]. A trilayered nano-
composite hydrogel scaffold structure has been reported 
to induce the differentiation of dental follicle stem cells 
into OBs, cementoblasts, or fibroblasts, which ultimately 
promote the regeneration of periodontal soft and hard 
tissues [140]. Multiphase nanocomposite scaffolds have 
the potential to induce the multidirectional transdiffer-
entiation of PDLFs to promote the complete and orderly 
regeneration of periodontal tissues. Future studies on 
periodontal tissue regeneration should focus on this area.

Pharmaceutical agents
In addition to biomaterials, certain biologics and herbal 
preparations can target PDLFs to promote periodontal 
tissue regeneration.

Among the biologics, calcitonin can activate the 
BMP-2/4 pathway in PDLFs [141], which upregulates 
the expression of type I and type III collagen, OCN and 
ALP and promotes transdifferentiation [141]. Pigment 
epithelium-derived factor can bind to lipoprotein recep-
tor-related protein 6, inhibit Wnt/β-catenin signaling 
and promote transdifferentiation and mineralization in 
PDLFs thus facilitating alveolar bone regeneration [142].

Recently, herbal preparations have been shown to tar-
get PDLFs to promote alveolar bone regeneration. For 
example, icariin [143] and proanthocyanin [144] have 
been shown to inhibit the TLR-4/NF-κB pathway in 
PDLFs, enhancing their transdifferentiation and inhibit-
ing their apoptosis in in vivo experiments [143, 144].

In fact, other biological agents, such as etanercept 
[145], and herbal agents, such as tripterine and metho-
trexate [146], are used to target synovial fibroblasts to 
treat rheumatoid arthritis and have shown significant 
efficacy [145–147]. However, despite their potential effi-
cacy, these agents have not attracted widespread atten-
tion in the treatment of periodontitis. In the future, the 
development or identification of new pharmacological 
agents that target PDLFs could be very beneficial for the 
treatment of periodontitis.

Limitations and prospects
At present, fibroblasts are mesenchymal cells that are 
receiving increasing amounts of attention due to their 
important roles in the pathological mechanisms of a vari-
ety of inflammatory diseases [40]. The identification of 
fibroblast subtypes has become a popular topic in recent 
years. Different fibroblast subtypes are closely associated 
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with disease progression and regression [40]. In the oral 
cavity, subtypes of gingival fibroblasts were identified 
and characterized by single-cell sequencing, and cor-
relations between these subtypes and periodontitis have 
been reported [148–150]. However, no studies have been 
conducted on the subtypes of PDLFs and the associations 
between these subtypes and periodontitis. It is hypoth-
esized that different subtypes of PDLFs may emerge in 
response to different pathological stimuli. Identifying 
subtypes of PDLFs is crucial for understanding the path-
ological mechanisms involved, developing treatments 
that target inflammation and promoting periodontal 
regeneration. Therefore, future studies should carefully 
consider the potential impact of PDLF subtypes on peri-
odontal health.

The microbiota is always present in the periodontal 
microenvironment. The state of periodontal health is 
determined by the interplay between subgingival flora 
and surrounding histiocytes and immune cells [151]. 
Numerous studies have focused on the interactions 
between microbiota dysbiosis and immune cells [16]. 
However, little is known about the regulatory relation-
ship between the subgingival flora and histiocytes, such 
as PDLFs. Previous studies have reported only the effect 
of toxic products of the subgingival flora on PDLF func-
tion [116]. However, how cytokines or other products 
that are secreted by PDLFs affect the homeostasis of the 
subgingival flora is unclear. Further exploration will help 
us understand the importance of PDLFs in periodontal 
tissues from a bacterial microecological perspective.

The oral cavity is an important organ that performs 
the function of mastication, and periodontal tissue is 
subjected to various mechanical stresses, including 
masticatory forces [152, 153]. PDLFs are among the 
most important cell types for withstanding mechani-
cal forces [154]. Therefore, mechanical factors should 
not be neglected in periodontitis treatment with tar-
geted PDLFs. However, current therapeutic strategies 
that target PDLFs have not yet considered the influence 
of mechanical forces. Controlling mechanical forces in 
order to allow PDLFs to function optimally during the 
treatment of periodontitis and promotion of periodontal 
tissue regeneration will be a new strategy for future peri-
odontal treatments.
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