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Abstract 

The identification of ferroptosis represents a pivotal advancement in the field of cell death research, revealing 
an entirely novel mechanism of cellular demise and offering new insights into the initiation, progression, and thera-
peutic management of various diseases. Ferroptosis is predominantly induced by intracellular iron accumulation, lipid 
peroxidation, or impairments in the antioxidant defense system, culminating in membrane rupture and consequent 
cell death. Studies have associated ferroptosis with a wide range of diseases, and by enhancing our comprehension 
of its underlying mechanisms, we can formulate innovative therapeutic strategies, thereby providing renewed hope 
for patients.
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Introduction
In 2012, the concept of ferroptosis—a unique kind of 
programmed cell death—was put forth. It is character-
ized by aberrant iron metabolism, excessive accumula-
tion of reactive oxygen species (ROS), and lipid peroxides 
that are dependent on iron [1]. Ferroptosis has recently 
gained attention in biomedical research, and emergent 
research elucidates the pivotal role ferroptosis assumes in 
myriad physiological and pathological episodes, includ-
ing cardiovascular diseases (CVDs), neurodegenerative 

diseases (NDs) and cancer. In these three disease types, 
oxidative stress and inflammation are critical factors that 
can lead to ferroptosis, which may interact with and exac-
erbate disease progression. Particularly during cancer 
treatment, chemotherapy and radiation can contribute to 
CVDs and NDs. Thus, ferroptosis could be a shared path-
ological mechanism among these conditions, and tar-
geting it may present a new therapeutic approach [2, 3]. 
Inhibiting iron ion aggregation, using antioxidants, and 
ferritin autophagy are the main goals of current treat-
ment approaches to ferroptosis [4, 5]. For clinical use, 
further research and inquiry are still required, despite 
certain studies demonstrating the promise of various 
treatment approaches.

Although research on ferroptosis in CVDs is still in 
its infancy, there is mounting evidence that it plays 
a part in their development and progression. At pre-
sent, the intricate relationship between ferroptosis and 
CVDs is mainly focused on cardiac ischemia–reperfu-
sion, atherosclerosis, and heart failure [6, 7]. Myocar-
dial cells are harmed by hypoxia and ischemia during 
myocardial infarction, which causes an imbalance in 
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iron metabolism that ultimately results in ferroptosis 
[8]. Aggregation of iron ions and oxidative stress may 
have aided in the death and destruction of endothelial 
cells in atherosclerotic lesions [9]. Cardiomyocyte dam-
age and death accompany the beginning and progres-
sion of heart failure, a complex clinical condition [10]. 
Thus, targeted ferroptosis becomes a hotspot in the 
treatment of cardiovascular disease.

Intense research focus also surrounds the role of fer-
roptosis in NDs. These conditions involve the progres-
sive deterioration of neurons and their myelin sheath, 
exemplified by Alzheimer’s disease (AD), Parkinson’s 
disease (PD), Huntington’s disease (HD), among others 
[11]. Ferroptosis is believed to significantly contribute 
to their advancement. For instance, AD patients often 
exhibit increased iron accumulation and reduced fer-
ritin levels in brain regions like the hippocampus and 
cortex. Treatment with the iron chelator deferriamine 
has shown potential in mitigating cognitive decline 
[12]. Similarly, animal models and HD patients have 
shown signs of lipid peroxidation, iron accumulation, 
and decreased glutathione (GSH) levels [13]. The reg-
ulatory mechanisms of ferroptosis are closely inter-
twined with treatment and intervention strategies for 
NDs. Thus, modulating ferroptosis may offer novel 
approaches for treating these diseases.

Ferroptosis has emerged as a new area of focus for 
cancer research, and it is anticipated that it will offer 
fresh approaches and methods for cancer treatment. 
The metabolism of tumor cells has a direct relationship 
to ferroptosis. To support their growth and prolifera-
tion, tumor cells need a lot of energy and material, so 
they must use minerals like iron efficiently. Due to the 
accumulation of iron ions and oxidative stress brought 
on by excessive iron use, this need may result in ferrop-
tosis [14]. A potential method of treating tumors that 
are drug-resistant and recurrent may involve ferropto-
sis. Inducing ferroptosis can successfully destroy tumor 
cells that are resistant to traditional therapies because 
they may be extremely sensitive to the condition [15, 
16]. At the same time, the exploration of ferroptosis in 
tumor immunotherapy is also increasing.

In conclusion, ferroptosis has a significant impact on 
both physiological and pathological processes of organ-
isms and is strongly linked to the onset and progression 
of numerous diseases, such as CVDs, NDs and cancer. 
To give a more informed and useful tool for the preven-
tion and treatment of linked diseases, this article delves 
into an in-depth examination of the regulatory pro-
cesses underlying ferroptosis and its intricate links to 
various pathological conditions.

Ferroptosis
The view of ferroptosis
In the panorama of programmed cell death modalities, 
ferroptosis emerges as a unique entity, differentiated 
from apoptosis, necrosis, and pyroptosis [17, 18]. Its car-
dinal mechanism rests upon the catalytic role of ferrous 
ions or lipoxygenase, instigating a cascade of lipid per-
oxidation on the cellular membrane, which teems with 
unsaturated fatty acids, resulting in membrane rupture 
and subsequent cell death. In addition, the reduction of 
glutathione peroxidase 4 (GPX4), a key enzyme in the 
antioxidant system (glutathione system) is also linked 
to ferroptosis [19] (Fig.  1). Morphologically, ferropto-
sis results in smaller mitochondria, heightened mem-
brane density, decreased cristae, and minimal changes 
in nuclear structure. In cellular components, ferroptosis 
is manifested by increased lipid peroxidation and ele-
vated ROS [20]. Ferroptosis is significantly different from 
necrosis, pyroptosis and autophagy in cell morphology 
and function (Table 1).

Molecular mechanisms of ferroptosis
Iron metabolism
Iron metabolism is the process by which organisms 
absorb, transport, distribute, store, utilize, transform, and 
excrete iron after absorption. Iron ions typically enter 
cells bound to transferrin as trivalent iron, are reduced to 
divalent iron by metal reductases, and then form various 
iron-containing complexes, exerting various physiologi-
cal functions [21]. When iron-binding complexes become 
saturated, excess divalent iron accumulates in cells, form-
ing unstable iron pools, and excess iron ions are stored 
in the heavy and light chains of ferritin [22].  Fe2+ can 
enter the cytoplasm via bivalent metal ion transporter-1 
(DMT1) or ZRT-IRT-like proteins. After that, part of the 
cytoplasm  Fe2+ binds to ferritin heavy chain 1 (FTH1) 
and is oxidized to  Fe3+, which binds to ferritin light chain 
(FTL) to form ferritin complex and is stored in the cell. 
At the same time, the remaining  Fe2+ forms free iron 
pools in the cytoplasm. On the one hand,  Fe2+ in the free 
iron pool binds to poly-binding proteins [23, 24]. On the 
other hand,  Fe2+ can bind to L-Cys residues of GSH to 
ensure the stability of  Fe2+. Additional  Fe2+ can be trans-
ported out of the cell via the ferroportin 1 (FPN1) and 
continues to participate in blood transport. Iron overload 
due to abnormal iron metabolism is a hallmark of ferrop-
tosis. Iron overload is characterized by increased TF sat-
uration and the formation of non-TF-bound iron (NTBI). 
NTBI is a potential iron that is a direct result of oxida-
tive stress and tissue iron loading. The most common 
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reason for the presence of NTBI is high TF saturation. 
However, the existence of NTBI cannot be considered a 
simple TF supersaturation phenomenon; Rather, it is the 
expression of a kinetic balance between iron excretion 
in serum, binding to TF, removal from circulation, and 
utilization in circulation [25]. In addition, some calcium 
channels may also be involved in intracellular  Fe2+ trans-
port. For example, L-type calcium channel blockers sig-
nificantly reduce the uptake of NTBI by cardiomyocytes. 

In contrast, the mechanism of iron uptake by thalassemia 
cardiomyocytes is mainly mediated by T-type calcium 
channels. The application of corresponding inhibitor 
channel inhibitors can significantly improve cardiac iron 
deposition and improve cardiac function [26, 27]. Fang 
et  al. discovered that a high-iron diet can cause cardiac 
damage and hypertrophic cardiomyopathy in mice, dis-
playing typical molecular features of ferroptosis [28]. 
Excessive ferrous ions can generate a large amount of 

Fig. 1 Molecular mechanism of ferroptosis. Ferroptosis primarily occurs due to iron overload within cells, lipid peroxidation, or disruptions 
in the antioxidant system, leading to membrane rupture and subsequent cell death. ACSL4 acyl-CoA synthetase long chain family member 4, 
ATF3/4 activating transcription factor ¾, ATG5/7 autophagy related 5/7, BH4 tetrahydrobiopterin, CoQ coenzyme Q, CoQ10 coenzyme Q10, DFO 
Deferoxamine, DHODH dihydroorotate dehydrogenase, DMT1 divalent metal transporter-1, Fer-1 ferrostatin-1, FPN1 ferroportin1, FSP1 ferroptosis 
suppressor protein 1, FTH ferritin heavy chain, GCH1 GTP cyclohydrolase 1, GCLC glutamate cysteine ligase, GPX4 glutathione peroxidase 4, GSH 
glutathione, GSSG glutathione (Oxidized), GTP guanosine triphosphate, Lip-1 liproxstatin-1, LOX lipoxygenase, LPCAT3 lysophosphatidylcholine 
acyltransferase 3, NCOA4 nuclear receptor coactivator 4, Nrf2 nuclearrespiratoty factor 2, PKCβII protein kinase CβII, PUFA polyunsaturated fatty acid, 
ROS reactive oxygen species, STEAP3 six-transmembrane epithelial antigen of the prostate 3, Tfr1 transferrin receptor 1

Table 1 The difference between ferroptosis and other cell death patterns

Ferroptosis Autophagy Necroptosis Pyroptosis

Biochemical Features lron accumulation and lipid per-
oxidation

DNA fagmentation Increased lysosomal actity Drop in ATP levels

Key genes GPX4, SLC7A11, Caspase, Bcl-2, Bax ATG5, ATG7, LC3 Caspase-1, IL-1β, IL-18

Morphological features Mitochondrial membrane density 
was concentrated, mitochondrial 
ridge was reduced or disappeared, 
and mitochondrial outer mem-
brane was ruptured

Formation of double 
membraned autolys-
osomes

Plasma membrane rupture; orga-
nelle swelling; moderate chromatin 
condensation

Karyopyknosis, cell 
edema and membrane 
rupture
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ROS through the Fenton reaction, disrupting the balance 
of redox reactions within cells, causing damage to lipids 
and proteins in cells, and triggering ferroptosis. FPN1 
is the only protein capable of transporting iron ions out 
of cells, which can inhibit the occurrence of the Fenton 
reaction within cells, reduce cellular oxidative stress 
levels, and ultimately inhibit ferroptosis. Knockdown 
or inhibition of ferritin can promote ferroptosis [29]. 
Nuclear receptor coactivator 4 (NCOA4) facilitates the 
transport of ferritin to lysosomes for degradation, rais-
ing cellular  Fe2+ levels and triggering ferroptosis. On the 
other hand, autophagy-related proteins 5 and 7 (ATG5/7) 
can inhibit NCOA4, thereby preventing this process. 
Additionally, iron chelation has been demonstrated to 
block erastin-induced cell death [30]. Therefore, the iron 
ion homeostasis within cells is crucial for regulating 
ferroptosis.

Lipid peroxidation
Lipid peroxidation refers to the reaction where the side 
chains of phospholipids, membrane receptors, enzyme-
associated polyunsaturated fatty acids (PUFAs), and 
nucleic acids, among other macromolecules, undergo 
peroxidation reactions with ROS [31]. PUFA-PEs are syn-
thesized from PUFAs on cell membranes and are mainly 
composed of arachidonic acid and adrenal acid [32]. The 
C-H bonds of PUFAs are more susceptible to erosion by 
a large number of oxygen free radicals, leading to the 
appearance of numerous hydroxyl groups on their sur-
face, thereby forming a peroxidation state. Free PUFAs 
do not initiate ferroptosis, only peroxidized PUFAs incor-
porated into lipids like phospholipids can activate fer-
roptosis [28]. Research has demonstrated that acyl-CoA 
synthetase long-chain family member 4 (ACSL4) and 
lysophosphatidylcholine acyltransferase 3 (LPCAT3) are 
vital for the cell membrane, facilitating the production 
of PUFA-PE. PUFA-PE is highly susceptible to oxidation 
induced by lipoxygenase (LOX), thereby inducing fer-
roptosis. ACSL4 and LOX are key to regulating lipid per-
oxidation in this process. For example, one study found 
that the ACSL4 gene was expressed at very high levels 
in breast cancer cells, and knocking out the ACSL4 gene 
reduced the production of PUFA-PEs (ferroptosis inhibi-
tors), thereby inhibiting RSL3-induced iron fall, and other 
studies have shown that Ablation and chemical inhibition 
of the ACSL4 gene increased resistance to RSL3-induced 
iron sag, while inhibition of 5-LOX and 15-LOX further 
inhibited RSL3-induced cell death [33, 34]. Furthermore, 
protein kinase CβII (PKCβII) can directly enhance the 
phosphorylation of ACSL4 at the Thr32 site, activating 
ACSL4, increasing lipid peroxidation, and thus inducing 
ferroptosis [35]. Therefore, suppressing the expression of 
ACSL4 and LPCAT3 can effectively prevent the excessive 

buildup of lipid peroxides in cells, thereby inhibiting 
ferroptosis.

Antioxidant system
GPX4/GSH/ solute carrier family 7 member 11 
(SLC7A11) constitutes a crucial antioxidant system in 
the human body. Disruption of this system accelerates 
lipid peroxide accumulation and increases ROS levels 
within cells, thereby inducing ferroptosis [36]. GPX4, a 
selenium protein, not only effectively reduces peroxides 
but also inhibits the activation of phospholipid peroxi-
dation enzymes during the process of arachidonic acid 
metabolism, thereby suppressing ferroptosis [37]. GSH, 
acting as an essential cofactor for GPX4, facilitates the 
conversion of lipid peroxides into alcohols, efficiently 
preventing lipid peroxide buildup and ultimately inhib-
iting ferroptosis [38]. SLC7A11 is the main subunit of 
system Xc-, which is a cystine transporter protein facili-
tating the exchange of cystine and glutamate within cells, 
thereby promoting GSH synthesis and inhibiting ferrop-
tosis. Nuclear respiratory factor 2 (Nrf2), as one of the 
transcription factors regulating ferroptosis, under oxida-
tive stress, binds to the antioxidant reaction element in 
the target gene promoter region, promoting SLC7A11 
transcription, accelerating GSH synthesis, and inhibit-
ing ferroptosis [39]. Additionally, P53 increases intracel-
lular levels of GSH and GPX4 by directly targeting GSH 
through regulating P21. P53 also decreases the expres-
sion of system Xc- by reducing the transcription level 
of SLC7A1 [30]. Additionally, some transcription fac-
tors also regulate ferroptosis through the GPX4 / GSH 
/ SLC7A11 pathway. Activating transcription factor 3 
(ATF3) represses the transcription of SLC7A11, leading 
to decreased GSH synthesis and ultimately facilitating 
ferroptosis. Conversely, activating transcription factor 4 
(ATF4) stimulates the expression of SLC7A11, enhancing 
GSH synthesis and thus inhibiting ferroptosis [40]. The 
above studies affirm the pivotal role of the GPX4/GSH/
SLC7A11 antioxidant system in suppressing ferroptosis 
through the regulation of pertinent proteins and tran-
scription factors.

Other
Besides the impact of iron metabolism, lipid peroxida-
tion, and the GPX4 / GSH / SLC7A11 system on ferrop-
tosis, other factors like ferroptosis suppressor protein 1 
(FSP1)/coenzyme Q10 (CoQ10), dihydroorotate dehy-
drogenase (DHODH), GTP cyclohydrolase 1 (GCH1)/
tetrahydrobiopterin (BH4), among others, also dem-
onstrate antioxidant effects independently of GPX4 
regulation [41]. CoQ10 is an endogenous lipid-soluble 
antioxidant that effectively combats the generation 
of lipid peroxides. When FSP1 is post-translationally 
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modified by geranylgeranylation, it can promote the re-
expression of reducible CoQ10, thereby inhibiting ferrop-
tosis [42]. DHODH, situated in the inner mitochondrial 
membrane, can convert coenzyme Q (CoQ) into its 
reduced state, thus exhibiting antioxidative properties 
that culminate in the suppression of ferroptosis. Further-
more, BH4, functioning akin to CoQ10 as a scavenger of 
free radicals, and GCH1, a pivotal enzyme controlling 
the synthesis of BH4, not only modulate BH4 production 
but also enhance CoQ10 synthesis by regulating tyrosine 
production. This dual action impedes the buildup of lipid 
peroxides, thereby ultimately thwarting ferroptosis [43].

Ferroptosis is a meticulously controlled mechanism 
that encompasses multiple organelles and intricate sign-
aling pathways, such as mitochondria, lysosomes, endo-
plasmic reticulum, and the Golgi apparatus. Among 
them, mitochondria and lysosomes are closely associated 
with ferroptosis. In most mammalian cells, mitochondria 
are significant sources of ROS, and several mitochondrial 
antioxidants play crucial roles in inhibiting ferroptosis. 
GPX4 can localize between the cytoplasm and mitochon-
drial intermembrane space, playing a role in alleviating 
lipid peroxidation during ferroptosis [44]. Lysosomes 
participate in selective autophagy pathways (includ-
ing ferritinophagy, chaperone-mediated autophagy, 
clock-mediated phagocytosis, and lipophagy), where 
lysosomes fuse with autophagosomes to promote fer-
roptosis by degrading various substrates (including fer-
ritin, SLC40A1, GPX4, ARNTL, and lipid droplets) [45]. 
When subjected to specific stimuli, endoplasmic reticu-
lum stress initiates the unfolded protein response, aiming 
to rectify protein equilibrium. However, if the cell cannot 
restore this equilibrium, it may also instigate ferroptosis. 
Endoplasmic reticulum stress inducers like AMF-26 and 
M-COPA can induce ferroptosis, but compared to other 
organelles, research on the association between the Golgi 
apparatus and ferroptosis remains limited [46].

CVDs
Ferroptosis in heart
Disturbances in iron metabolism stand as a significant 
contributor to cardiac ferroptosis. Elevated iron levels 
within cardiac cells precipitate lipid peroxide buildup, 
culminating in cell demise. Furthermore, pivotal anti-
oxidant systems like GPX4 and GSH within cardiac cells 
regulate ferroptosis. Reduced or exhausted antioxidant 
defenses make heart cells more vulnerable to ferroptosis 
[47]. Recent studies highlight that ferroptosis occurs in 
several heart conditions, including myocardial ischemia–
reperfusion injury and doxorubicin(DOX)-induced 
cardiomyopathy [48] (Fig.  2). Moreover, specific drugs 
or gene modifications have demonstrated efficacy in 
inhibiting ferroptosis in the heart, thereby ameliorating 

cardiac damage and enhancing function [49]. Investiga-
tions into the subcellular localization of ferroptosis in the 
heart reveal that in DOX-induced cardiac injury mod-
els, iron accumulation and lipid peroxidation predomi-
nantly occur within cardiomyocyte mitochondria rather 
than in the cytoplasm [50]. This suggests mitochondrial 
impairment is a crucial trigger for cardiac ferroptosis. 
Given the pivotal role of mitochondria in cardiac func-
tion, mitochondrial oxidative phosphorylation defects 
disrupt cellular oxidation–reduction reaction balance, 
exacerbating ROS production and activating numerous 
pro-inflammatory genes and transcription factors like 
NF-κB, p53, HIF-1α, PPAR-γ, β-catenin/Wnt, and Nrf2. 
This cascade of events leads to inflammation and contrib-
utes to various cardiovascular disease subtypes [50–52]. 
Studies suggest that mitigating iron ion accumulation or 
employing antioxidants can reduce ferroptosis incidence, 
thereby shielding the heart from damage [53], and more 
and more cardiovascular disease-related drugs targeting 
ferroptosis have been clinically applied (Table 2).

Ferroptosis and CVDs
Myocardial infarction (MI)
MI is myocardial ischemia caused by coronary artery 
narrowing or obstruction, leading to myocardial cell 
death. The injured heart tissue is substituted with fibrotic 
scars. When the fibrotic scar tissue cannot compensate 
for contractile function, it leads to heart failure [54, 55]. 
Research indicates that during myocardial infarction, 
mitochondria in myocardial cells are damaged and dys-
functional, with abnormal accumulation of iron ions and 
imbalance in redox reactions, further exacerbating myo-
cardial cell death [56]. Quantitative proteomic analysis 

Fig. 2 Cardiovascular disease due to ferroptosis
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indicates a significant downregulation of the glutathione 
metabolism and ROS pathways in the early and middle 
stages of myocardial infarction, along with a reduction 
in GPX4, confirming the presence of ferroptosis during 
this condition [57, 58]. Another study suggests that a 
high-iron diet induces ferroptosis, leading to severe car-
diac damage, hypertrophic cardiomyopathy, and even-
tual heart failure [59]. Thus, preventing ferroptosis could 
emerge as a novel approach to the prevention and treat-
ment of myocardial infarction. The mechanism target 
of rapamycin (mTOR) inhibits ferroptosis and improves 
left ventricular remodeling by reducing ROS produc-
tion, indicating that mTOR may be an effective thera-
peutic target for myocardial infarction by specifically 
managing iron homeostasis [60]. After heart ischemia–
reperfusion(I/R) in adult mice, iron accumulates in car-
diomyocytes surrounding myocardium scars. Excess iron 
leads to cardiac cell death, which can be inhibited by 
inhibiting the production of lipid-derived ROS. mTOR 
plays an important role in protecting cardiomyocytes 
from ferroptosis. mTOR targets a variety of iron trans-
porters, regulates transferrin receptor1, and increases the 
expression of transferrin [61]. Thus, mTOR can influence 
ferroptosis by controlling iron metabolism in cardiomyo-
cytes. Research has found that exosomes derived from 
pericardial adipose tissue can efficiently deliver lipids to 
myocardial tissue. Additionally, these exosomes interact 
with iron regulatory protein 2, leading to an increase in 
ferritin levels in the infarct border zone and a decrease 
in transferrin receptor levels. This regulation helps main-
tain iron balance and protects myocardial cells from fer-
roptosis [62]. Furthermore, miR-23a-3p delivered by 
umbilical cord blood-derived mesenchymal stem cell 
exosomes has been shown to inhibit myocardial cell fer-
roptosis and can be used to mediate myocardial repair 
in acute myocardial infarction [63]. Some antioxidants 

or free radical scavengers can also inhibit ferroptosis by 
regulating intracellular iron ion balance, inhibiting oxida-
tive stress responses, or intervening in ferroptosis-related 
signaling pathways. With further research into new types 
of cell death such as ferroptosis, more effective treatment 
methods may be developed in the future to improve the 
prognosis of myocardial infarction patients.

I/R
I/R is the most severe complication following acute myo-
cardial infarction, particularly during the reperfusion 
phase. During this phase, a significant amount of ROS 
and free radicals are produced, leading to myocardial cell 
damage, necrosis, and ferroptosis [64]. During rat myo-
cardial I/R injury, there’s an elevation in oxidized phos-
phatidylcholine (OxPCs) production. Fragmented OxPCs 
have the potential to trigger ferroptosis [65]. In a mouse 
myocardial ischemia–reperfusion injury model, non-
heme iron content in the myocardium increases, and 
markers of ferroptosis such as prostaglandin-endoper-
oxide synthase 2 (Ptgs2) mRNA expression are upregu-
lated. Inhibition of ferroptosis with Ferrostatin-1 and 
RSL3 can alleviate ventricular remodeling and damage 
[66]. In myocardial ischemia–reperfusion injury, there 
are no notable changes in the levels of ACSL4, GPX4, 
iron, and malondialdehyde. However, following myocar-
dial reperfusion, there’s an increase in ACSL4, iron, and 
malondialdehyde levels, alongside a decrease in GPX4 
levels. This suggests that ferroptosis predominantly takes 
place during the reperfusion phase [67]. I/R injury in 
the myocardium results in excessive iron accumulation 
caused by the engulfment of iron proteins, leading to iron 
leakage. Targeting iron protein engulfment with baicalin 
or the DNA (cytosine-5)-methyltransferase 1 inhibitor 
5-aza-CdR notably mitigates myocardial damage in rats 
[68, 69]. Liproxstatin-1 (Lip-1) shields the myocardium 

Table 2 Potential drugs and mechanisms of ferroptosis-targeted for CVDs

Reagents Key mechanisms References

DFO Reduce iron overload, inhibit fenton reaction [118]

DXZ Reduce iron overload、prevents lipid peroxidation [119]

Ferrostatin-1 Inhibit the iron accumulation, lipid peroxidation and increase the expressions of SLC7A11 
and GPX4

[120]

Liproxstatin-1 Reduce lipid ROS, activate Nrf2 pathway and increase GPX4 levels [121]

Mito TEMPO Suppress lipid peroxidation [122]

N-acetyl-l-cysteine Scavenges cellular ROS [123]

Puerarin Block iron overload and lipid peroxidation [124]

Rapamycin Target mTOR, activated autophagy [125]

Vitamin E Reduce lipid ROS, maintain cellular redox homeostasis [126]

XJB-5–131, JP4-039 Targeted mitochondrial clearance of ROS [127]

Zileuton Inhibit LOX and maintain cellular redox homeostasis [128]
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from I/R injury by diminishing voltage-dependent anion 
channel 1 activity on mitochondria, thereby reducing 
ROS levels and elevating GPX4 levels. Addressing iron 
overload using iron chelators represents a promising 
approach to preventing myocardial I/R injury. Clinical 
evidence supports the efficacy of the iron chelator defer-
oxamine (DFO) in this regard [70, 71]. Pre-reperfusion 
infusion of DFO in primary percutaneous coronary inter-
vention can significantly reduce oxidative stress [72]. Fer-
roptosis causes I/R damage by inducing ERS. ERS has an 
ATF4-CHOP pathway. The resulting CHOP can bind to 
the pro-apoptotic protein PUMA to induce the expres-
sion of PUMA and promote apoptosis [73]. An in-depth 
study of the mechanism revealed that ferroptosis induc-
ers can induce an unfolded protein response, which then 
activates the PERK/EIF2α/ATF4/CHOP pathway, thereby 
triggering ERS. The specific process involves the separa-
tion of PERK from immunoglobulin-binding proteins and 
then phosphorylation; PERK is then activated by dimers 
in the cytoplasm. The α subunit activated by eIF2α can 
promote the translation of ATF4, and then induce the 
expression of downstream CHOP molecules, inducing 
apoptosis and resulting in cell damage [74]. Ferroptosis 
can activate ERS by promoting the system xc (-). ERS, as 
a cellular response to ER dysfunction, can be triggered 
by ROS [75]. Thus, ferroptosis-induced ERS can act as a 
bridge between ferroptosis and I/R damage. One study 
found that during reperfusion injury caused by heart 
transplantation or coronary artery occlusion, cardiomyo-
cytes undergo ferroptosis and then release inflammatory 
mediators that activate Toll-like receptor 4 (TLR4) /TRI 
domain adapters to induce interferon (TRIF)/type I inter-
feron (IFN) inflammatory signaling pathways. Promote 
the adhesion and recruitment of neutrophils and coro-
nary endothelial cells, and aggravate heart injury. How-
ever, Fer-1, a ferroptosis inhibitor, reduces the PE level 
of cardiomyocytes, reduces the infarct size caused by 
coronary artery ligation, improves left ventricular systolic 
function, and reduces left ventricular remodeling [76]. 
Taken together, the above studies provide evidence that 
ferroptosis plays an important role in I/R injury.

Hypertrophic cardiomyopathy (HCM)
HCM stands as the prevalent primary myocardial con-
dition, distinguished by left ventricular hypertrophy. It 
represents the leading cause of sudden cardiac death 
among young adults and athletes [77]. Research has 
revealed that blocking ferroptosis in a mouse model of 
hypertrophic cardiomyopathy can shield mice from left 
ventricular hypertrophy, cardiac damage, and myocardial 
cell demise. This indicates the potential critical involve-
ment of ferroptosis in the development of HCM [47, 
78]. Ferroptosis mediated by Slc7a11 directly promotes 

the development of HCM in mice with FTH1 knock-
out, while promoting the expression of x-CT can pre-
vent angiotensin II-induced HCM in a mouse model by 
inhibiting ferroptosis, providing a new avenue for treat-
ing HCM [59, 79]. It’s noteworthy that Friedreich’s Ataxia 
(FRDA), a form of HCM, stems from mutations in the 
FXN gene and is linked to ferroptosis. Botticelli et  al. 
discovered that the ferroptosis inhibitor SRS11-92 can 
diminish cell mortality in primary fibroblasts from FRDA 
patients and in mouse fibroblasts carrying FRDA-related 
mutations [80, 81]. Ferroptosis assumes a pivotal role in 
DCM via modulation of the Nrf2/HO-1 pathway. Stimu-
lating and enhancing Nrf2 activity leads to elevated levels 
of GPX4 and HO-1 expression, thereby mitigating DCM 
symptoms [82].

DOX‑induced cardiomyopathy
DOX is renowned as one of the most efficacious chem-
otherapy agents for combatting a range of cancer types. 
Nevertheless, its profound cardiotoxic effects, including 
DICM and congestive heart failure, substantially curtail 
its clinical usage [83]. Studies suggest that DICM might 
be linked to apoptosis and autophagy of myocardial 
cells, mitochondrial impairment, oxidative stress, and 
excessive calcium accumulation [84]. Recent research 
has discovered that in a mouse model of DICM, DOX 
decreases GPX4 levels through the DOX-Fe2+ complex 
in mitochondria, triggering excessive lipid peroxidation 
and resulting in mitochondrial-dependent ferroptosis. 
This finding confirms that mitochondrial-dependent fer-
roptosis is the main driver of DOX-induced cardiac tox-
icity [83]. Moreover, in DOX-induced mouse models, 
the origin of myocardial cell death involves a significant 
upregulation of heme oxygenase-1 (HO-1) under Nrf2 
regulation, promoting the release of free iron and result-
ing in cardiac ferroptosis, while iron suppressor-1 sig-
nificantly reduces DICM [53]. It is reported that DOX 
increases oxidative phospholipids in myocardial cells. 
Ox-PL reduces cysteine intake and NADPH production, 
depleting GSH, and leading to GPX4 inactivation, ulti-
mately causing ferroptosis [85]. Liu et  al. explored the 
function of acyl-CoA thioesterase 1 (Acot1) in ferroptosis 
and discovered that Acot1 regulates the biosynthesis of 
PUFAs in a mouse model of DICM. Knocking out Acot1 
makes myocardial cells sensitive to ferroptosis, while 
overexpression significantly protects against ferropto-
sis [86]. Fibroblast growth factor 2-mediated protection 
of the myocardium against DOX requires activation of 
the mTOR/Nrf-2/HO-1 pathway. Fer-1 or DXZ can also 
reverse DOX-induced ferroptosis and cardiac toxicity 
[85, 87].
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Iron overload cardiomyopathy (IOC)
Iron overload in myocardial cells results in myocar-
dial dysfunction, referred to as IOC. Normally, iron is 
absorbed and transported via the TfR1-DMT1-FPN1 
pathway to regulate iron levels and prevent tissue damage 
[88, 89]. When a significant amount of free iron enters 
the mitochondria in myocardial cells, the ensuing ROS 
induces mitochondrial oxidative stress and lipid peroxi-
dation, ultimately causing ferroptosis. It has been shown 
that mice fed a high-iron diet are susceptible to ferrop-
tosis which can be rescued by the iron prolapse inhibi-
tors Fer-1 and DXZ, as well as by antiferrochelators and 
TTCC blockers, desferrioxamine, and efronedipine, 
which can also reduce cardiac  Ca2+ and iron levels [90, 
91]. Iron chelator and antioxidant combination therapy, 
compared to monotherapy, has a more significant pro-
tective effect on the hearts of iron-overloaded rats [92]. 
This is demonstrated by the normalization of cardiac iron 
levels, reduction of oxidative stress, and improvement in 
mitochondrial function. Furthermore, in the same model, 
this combination therapy reestablishes cardiac  Ca2+ bal-
ance and enhances myocardial contractility [93]. Chela-
tor combination therapy also reduces cardiac unstable 
iron in patients with severe Mediterranean anemia, low-
ering cardiac toxicity and improving heart function [94].

Septic cardiomyopathy (SCM)
Cardiac dysfunction caused by sepsis, known as SCM, 
not only results in heart failure but also commonly trig-
gers dysfunction or failure in other organs [95]. Previous 
research suggests that ferroptosis is a component of the 
pathogenic mechanism of SCM [96]. Li et al. discovered 
that lipopolysaccharide (LPS) can increase intracellular 
 Fe2+ levels by upregulating the expression of mitochon-
drial iron transporters. This leads to the transport of 
more cytoplasmic  Fe2+ into the mitochondria, resulting 
in the production of mitochondrial ROS and ferroptosis 
[97]. Cytokines like TNF-α, IL-1β, IL-6, and HMGB1, 
along with activators of TLRs and NF-κB, have been 
reported to contribute to the development of SCM and 
ferroptosis [98]. Jiang et  al. identified ZJ01, an inhibitor 
of the Keap1-Nrf2 protein interaction, characterized by 
a core structure of sub-amino coumarin benzothiazole. 
In vitro and in vivo, it can activate Nrf2, inhibiting LPS-
induced pro-inflammatory cytokines and ROS produc-
tion, thereby suppressing ferroptosis and slowing down 
SCM progression [99].

Diabetic cardiomyopathy (DCM)
DCM stands out as a primary factor contributing to heart 
failure and mortality in individuals with diabetes. Its 
characteristics encompass early dysfunction in ventricu-
lar diastole, delayed dysfunction in ventricular systole, 

cardiac hypertrophy, and fibrosis [100]. The onset mecha-
nism is closely linked to the excessive production of ROS 
and compromised antioxidant capabilities in diabetes 
[56]. Research has affirmed that ROS and oxidative stress 
can trigger myocardial necrosis, apoptosis, autophagic 
inflammation, and fibrosis. Recent evidence suggests 
a potential involvement of ferroptosis in diabetes and 
its associated complications [101–104]. In a transgenic 
mouse model, Baseler et  al. identified that GPX4 can 
ameliorate cardiac injury in diabetes [105]. Behring et al. 
observed that a diet rich in sugar and fat leads to mito-
chondrial lipid peroxidation and cardiac hypertrophy in 
mice [106]. Shu et  al. found a correlation between high 
glucose levels and iron overload, indicating a likelihood 
of ferroptosis in diabetic patients [107]. Additionally, 
Bruni et al. noted that iron apoptosis inducers like erastin 
or RSL3 can impact beta cell function in vitro, heighten-
ing sensitivity to ferroptosis by regulating GPX4 expres-
sion [108]. Recent studies emphasize that activating Nrf2 
can alleviate oxidative damage caused by high glucose 
levels in cultured myocardial cells, thus preventing the 
development of DCM [109]. Furthermore, overexpres-
sion of mouse HIF-1α has shown potential in averting 
cardiac damage in diabetic mice [110]. Hence, further 
exploration is warranted to understand and regulate fer-
roptosis for the prevention and treatment of DCM.

Radiation‑induced cardiomyopathy (RICM)
RICM refers to a persistent impairment of heart muscle 
function resulting from damage to the inner lining of 
blood vessels and the development of fibrous tissue in 
the myocardium [111]. Radiation exposure can result in 
diverse forms of cell demise, including apoptosis, necro-
sis, and autophagic cell death. Recently, researchers have 
also linked iron-dependent cell death, known as ferrop-
tosis, to radiation-induced cell death [112–114]. ROS 
trigger lipid peroxidation and serve as crucial regula-
tory factors in ferroptosis. In mouse models, the STING 
pathway, which detects cytoplasmic DNA, triggers inter-
feron-gamma production and controls the expression 
of the cyclooxygenase-2 (COX2) gene. Both STING and 
COX2 are linked to ferroptosis: STING activation pre-
serves GPX4 levels and cellular equilibrium, while COX2 
overexpression amplifies the neuroprotective properties 
of SH-SY5Y human neuroblastoma cells against iron-
induced apoptosis by activating miR-137 [115, 116]. In a 
mouse model of radiation-induced lung fibrosis (RILF), 
ferroptosis assumes a crucial role, and the ferropto-
sis inhibitor liproxstatin-1 alleviates RILF by inhibiting 
TGF-β1. Boerma et al. investigated the antioxidant vita-
min E in a rat model and found that it reduces radiation-
induced fibrosis by inhibiting ferroptosis [117].
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There are many types of cardiovascular disease, such 
as myocardial infarction, ischemia–reperfusion Injury, 
hypertrophic cardiomyopathy, DOX-induced cardiomyo-
pathy, iron overload cardiomyopathy, septic cardiomyo-
pathy, diabetic cardiomyopathy and radiation-induced 
cardiomyopathy, which are associated with ferroptosis.

NDs
Ferroptosis in brain
Iron, an essential intracellular element, participates in 
vital biological functions like oxygen transportation, 
storage, and utilization. Excessive iron levels can trig-
ger oxidative stress and lipid peroxidation within cells, 
potentially leading to ferroptosis. Ferroptosis is impli-
cated in various brain-related conditions such as cerebral 
I/R injury, traumatic brain injury, and neurodegenerative 
diseases [129]. For instance, in cerebral I/R injury, iron 
overload can induce brain damage, while mitochondrial 
ferritin, a crucial protein for storing iron in mitochon-
dria, can mitigate this damage by suppressing ferropto-
sis [130]. Likewise, the TrkB agonist N-acetyl serotonin 
facilitates functional recuperation following traumatic 
brain injury by inhibiting ferroptosis through the PI3K/
Akt/Nrf2/H-Ferritin pathway [131]. Neurodegenera-
tive diseases, characterized by progressive neuronal 

degeneration leading to cognitive and behavioral decline, 
may benefit from targeting ferroptosis [132] (Fig.  3). 
Strategies such as using iron chelators to diminish intra-
cellular iron levels or antioxidants to neutralize reactive 
oxygen species could effectively thwart ferroptosis and 
safeguard neurons [133]. Furthermore, nuclear transcrip-
tion factors like Nrf2 have emerged as pivotal players in 
both neurodegenerative disease treatment and ferropto-
sis regulation [134].

Ferroptosis and NDs
AD
AD is a neurological condition characterized by progres-
sive memory and behavioral decline, primarily attributed 
to the accumulation of β-amyloid β-protein (Aβ) and Tau 
protein [135]. Research has revealed elevated iron lev-
els and reduced ferritin levels in brain regions such as 
the hippocampus and cortex of AD patients, with iron 
concentrations positively correlated with disease pro-
gression. Excessive  Fe2+ levels trigger lipid peroxide pro-
duction via the Fenton reaction, promoting hippocampal 
neuron degeneration and exacerbating AD advance-
ment [136]. Aβ precipitation is also associated with iron 
buildup, with Aβ inducing pericellular mitochondria 
autophagy, leading to ferroptosis [137]. Furthermore, 

Fig. 3 Neurodegenerative diseases caused by ferrioptosis and mechanisms



Page 10 of 25Li et al. Journal of Translational Medicine         (2024) 22:1137 

research has detected reduced expression of FPN in the 
brains of APP/PS1 mice and individuals with AD, result-
ing in hippocampal atrophy and memory decline resem-
bling AD symptoms. This underscores the strong link 
between AD and ferroptosis. Specific inhibitors targeting 
ferroptosis effectively alleviate neuronal loss and memory 
deficits induced by Aβ aggregation [12]. Intramuscu-
lar desferriamine administration benefits AD patients, 
while nasal desferriamine administration reverses mem-
ory deficits in AD mice. Tetrahydroxy stilbene glycoside 
administration in AD model mice activates GPX4 and 
Nrf2, upregulating superoxide dismutase expression, 
ultimately alleviating AD symptoms [138]. Furthermore, 
hydroxylated chalcone compounds synthesized by Cong 
et al. inhibit Aβ accumulation and neuronal ferroptosis, 
enhancing AD patient behavior [139]. Study has shown 
that inhibiting ferroptosis by maintaining  Ca2+ homeo-
stasis is also an innovative target for the treatment of AD 
[140]. Hence, targeting neuronal ferroptosis holds prom-
ise as a potential AD treatment.

PD
The characteristic traits of PD involve the degeneration 
of dopamine neurons in the substantia nigra pars com-
pacta and the development of Lewy bodies within these 
neurons. Iron overload in the body triggers dopamine 
oxidation and free radical generation, disrupting oxida-
tive balance and accelerating dopaminergic neuron loss, 
thus contributing to PD pathophysiology [141, 142]. 
Neuroimaging and postmortem examinations show that 
there is a buildup of iron in the substantia nigra, and 
the remaining dopaminergic neurons have higher lev-
els of iron. This emphasizes the significant involvement 
of iron in the degeneration of dopaminergic neurons in 
PD [20, 143]. Studies suggest that in both animal mod-
els and patients with PD, there is an increase in lipid per-
oxide levels and impaired mitochondrial function in the 
substantia nigra pars compacta. This is accompanied by 
decreased levels of GSH, which ultimately triggers the 
initiation of ferroptosis [144]. A fascinating aspect is that 
α-synuclein, a crucial regulator in PD, has been linked to 
iron and lipid metabolism, contributing to neurodegen-
eration. Administering the iron chelator deferrone to 
PD mice diminishes α-synuclein’s harmful effects [145]. 
Pretreatment with ferroptosis inhibitors attenuates cell 
death in 6-hydroxy-dopamine-induced PD cell mod-
els [146]. Deferiprone significantly delays motor disor-
ders and enhances glutathione peroxidase activity in PD 
patients’ cerebrospinal fluid, showing promise in phase 
II clinical trials and animal models [129]. Research has 
demonstrated that rapamycin can counteract ferroptosis 
in PD models induced by MPTP/MPP + by enhancing 

autophagy [147]. Thus, targeting the iron metabolism-
mediated ferroptosis pathway holds promise as a thera-
peutic approach for PD.

HD
HD is a genetic neurodegenerative condition inherited 
in an autosomal dominant pattern. It is distinguished 
by the expansion of CAG repeats within the Huntingtin 
(HTT) gene. It is distinguished by neurodegeneration 
in the striatum, cortex, and cerebral cortex, manifesting 
clinically as dystonia, motor impairment, and cognitive 
decline [129]. Excessive iron levels are pivotal in ferrop-
tosis onset, as evidenced by iron supplementation exacer-
bating oxidative stress and hastening disease progression 
in newborn R6/2 HD mice [148]. Research indicates that 
individuals with HD exhibit elevated levels of lipid per-
oxidation in their plasma and reduced levels of GSH, ren-
dering them more vulnerable to ferroptosis. It has been 
observed that elevated lipid peroxidation occurs in cor-
ticostriatal brain slices of HD patients, where it coincides 
with mHTT inclusions in striatal neurons. This lipid per-
oxidation impairs axonal signal transmission, ultimately 
resulting in neuronal degeneration [149, 150]. Skouta 
et al. administered specific ferroptosis inhibitors to HTT 
striatal neurons, finding that Fer-1 and SRS11-92 signifi-
cantly enhanced neuronal survival in a dose-dependent 
manner [151]. Thus, comprehending ferroptosis’s role 
in HD development offers a promising avenue for HD 
treatment.

Amyotrophic lateral sclerosis (ALS)
ALS is a fatal and prevalent neurodegenerative disorder 
affecting the nervous system. Clinical manifestations 
primarily involve limb weakness and bulbar dysfunc-
tion, and death often within two years of diagnosis [152]. 
Research indicates elevated serum ferritin levels in the 
cerebrospinal fluid of ALS patients, with early neuronal 
iron accumulation observed in the corticospinal motor 
pathway preceding neuropathological changes and 
microglial activation. Treatment of SodG86R mice and 
ALS patients with iron chelators improves ALS symp-
toms, significantly reducing cerebrospinal fluid oxida-
tive stress levels without inducing iron deficiency anemia 
[153, 154]. ALS progression is characterized not only by 
disturbances in iron metabolism but also by mitochon-
drial impairment. Dynamin-related protein 1 (Drp1), a 
GTP enzyme involved in mitochondrial fission, disrupts 
intracellular fission–fusion equilibrium, induces oxida-
tive stress, and increases peroxide synthesis. Iron chela-
tors alleviate oxidative stress damage by inhibiting Drp1 
dephosphorylation activity [119, 120]. GPX4 deletion is 
evident in the spinal cords of ALS patients post-mortem 
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and is a common feature in early mouse models of trans-
genic ALS mutations like SOD1G93A, TDP-43, and 
C9orf72. GPX4 overexpression in SOD1G93A mice 
significantly delays ALS onset [155]. Edaravone exhib-
its antioxidant and lipid-stabilizing properties, inhibits 
ferroptosis, and thus mitigates ALS progression [156]. 
Treatments utilizing multifunctional small molecules 
that target various aspects of mitochondrial dysfunction, 
oxidative stress, as well as HIF and NF-κB activity, could 
potentially offer more effective and innovative therapy 
options compared to drugs that solely focus on a single 
target [157].

Multiple sclerosis (MS)
The characteristic pathological features of MS encom-
pass the development of plaques within the central nerv-
ous system, destruction of neuronal myelin sheaths, and 
hyperplasia of astrocytes [158]. In the initial stages of 
MS, there is frequently an association with inflamma-
tion. Prolonged inflammation leads to the accumulation 
of iron and subsequent lipid peroxide increase, ultimately 
resulting in the initiation of ferroptosis. Ferroptosis, in 
turn, facilitates T-cell activation-induced neurodegen-
eration in MS [159, 160]. Active and long-standing MS 
lesions, along with the cerebrospinal fluid of MS patients, 
displayed various indications of ferroptosis. This was 
indicated by increased levels of labile iron, peroxidized 
phospholipids, and lipid degradation byproducts [161]. 
Iron is predominantly stored in oligodendrocytes in the 
healthy brain and plays a role in myelin formation, sug-
gesting that iron release may contribute to demyelinating 
lesions. Research has demonstrated elevated iron levels 
in the brains of MS patients, particularly in gray matter 
and areas adjacent to MS lesions, which could contrib-
ute to myelin loss in MS [162]. Schwann cells, periph-
eral nerve glial cells involved in myelin formation, may 
also play a role. Knocking out DMT1 and FTH in mouse 
Schwann cells resulted in decreased axon proliferation, 
maturation, and myelination, suggesting that ferroptosis 
induced by abnormal iron metabolism is closely associ-
ated with MS [163].

Many neurodegenerative diseases are characterized by 
the accumulation of local iron in specific regions of the 

central nervous system and peripheral nervous system, 
and abnormalities in iron homeostasis in brain tissue 
can induce large production of ROS in brain cells [164]. 
This results in catastrophic oxidative damage to sensitive 
subcellular structures. In mice, GPX4 knockdown leads 
to age-dependent neurodegenerative changes and neuron 
loss, exacerbated by dietary vitamin E deficiency [165]. 
In recent years, with the clear mechanism of ferroptosis, 
ferroptosis-based ferroptosis inhibitors have developed 
rapidly. The main function of common ferroptosis inhibi-
tors is to inhibit lipid peroxidation, reduce the concentra-
tion of free iron, or inhibit the formation of oxygen free 
radicals (Table 3).

Neurodegenerative diseases like Alzheimer’s, Parkin-
son’s, Huntington’s, Amyotrophic Lateral Sclerosis, and 
Multiple Sclerosis are connected to ferroptosis. Ferrop-
tosis mainly arises from imbalances in iron, lipid peroxi-
dation, or oxidative stress. It can impact the interactions 
between nerve cells, and is associated with mitochondrial 
dysfunction, genetic mutations, inflammasome activity, 
autophagy deficits, alterations in the cholinergic path-
way, increased cholesterol levels, and other physiological 
changes.

Cancer
Ferroptosis in cancer
Cancer, a malignant growth arising from epithelial tis-
sue, is marked by irregular cell differentiation and prolif-
eration, unrestricted expansion, invasion, and metastasis. 
It stands as the second most common cause of death 
worldwide, overtaking CVDs in certain countries with 
high human development indexes, and emerging as the 
primary cause of premature mortality. The complex and 
multi-faceted nature of cancer development involves fac-
tors such as smoking, infection, occupational exposure, 
environmental pollution, unhealthy diet, and genetic 
predisposition [173]. According to the World Health 
Organization’s 2020 statistics, 9.95 million people world-
wide succumbed to cancer, with lung cancer being the 
most prevalent, accounting for 18.0% of all cancer deaths. 
Other notable contributors include colorectal cancer 
(9.4%), liver cancer (8.3%), stomach cancer (7.7%), and 
female breast cancer (6.9%) [174, 175]. The high mortality 

Table 3 Drugs and compounds associated with ferroptosis for neurodegenerative diseases treatment

Drugs Inhibitor Target References

Lipid peroxidation inhibitors Zileuton Inhibit 5-LOX [166, 167]

Antioxidants Ferrostatin-1 ROS scavenger, increase GSH level, [168]

Antioxidants SRS11–92 ROS scavenger, reduce lipid peroxides [169, 170]

Antioxidants SRS-16–86 ROS scavenger, reduce lipid peroxide [171, 172]

Lipid soluble antioxidant Vitamin E GPX4 [165]
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rates underscore the formidable challenge in the field of 
anticancer therapy.

Iron is an essential micronutrient in the human body, 
pivotal for physiological functions such as hemoglobin 
formation, DNA synthesis, and energy metabolism. Dis-
ruptions in iron metabolism can contribute to the prolif-
eration, infiltration, spread, and reappearance of cancer 
[176]. Iron deficiency leads to a decrease in red blood cell 
count, affecting the transport of oxygen and nutrients, 
resulting in hypoxia and ischemia in various organs and 
a weakened immune system. For cancer patients, anemia 
can diminish the effectiveness of chemotherapy and radi-
otherapy, foster tumor development, and increase tumor 
aggressiveness [177]. Conversely, cancer cells rely on iron 
as a raw material for reproduction. Excessive iron in the 
body becomes fuel for cancer cells, accelerating tumor 
growth and worsening the disease. This suggests a poten-
tial recommendation against iron supplementation or an 
excess intake of iron-rich foods for cancer patients [178]. 
Simultaneously, iron deficiency may impact immune cell 
activity and alter the tumor microenvironment, affect-
ing the immune system’s ability to defend against cancer 
[179].

Ferroptosis, a form of cell demise reliant on iron., is 
intricately linked to the onset, progression, metastasis, 
and treatment resistance of cancer [180]. Firstly, tumor 
cells exhibit a heightened demand for iron, termed "iron 
addiction," making them more vulnerable to ferroptosis 
when iron levels rise [181]. Secondly, during ferropto-
sis, iron ions can initiate the generation of ROS through 
the Fenton reaction, triggering lipid peroxidation and 
ultimately causing cell death. This phenomenon is par-
ticularly pronounced in tumor cells, characterized by 
elevated ROS levels and diminished antioxidant capac-
ity [182]. Nevertheless, the occurrence of ferroptosis 
releases pro-inflammatory factors, inducing inflamma-
tion and altering the tumor microenvironment. This, in 
turn, reduces the immune susceptibility of tumor cells, 
suggesting that ferroptosis may, to some extent, promote 
tumor growth and spread [183]. Ferroptosis participates 
in various crucial molecules and signaling pathways 
within cancer. Apart from iron and ROS, it is governed 
by additional pathways like the p53 pathway in cancer. It 
can be inhibited by several pathways including the FSP1-
CoQ10 pathway, GCH1-BH4 pathway, and the DHODH-
CoQH2 system [184]. Increasing evidence indicates the 
pivotal involvement of ferroptosis in cancer therapy, with 

Table 4 Clinical trial drugs inducing ferroptosis for antitumor treatment

Drugs Target Cancer type References

Sorafenib SLC7A11 Hepatocellular carcinoma, gastric cancer, clear cell renal cell carcinoma [216, 245, 246]

Sulfasalazine SLC7A11 Prostate cancer, lymphoma, lung cancer, colorectal cancer, head and neck cancer, pancre-
atic ductal adenocarcinoma, ovarian clear cell carcinoma, breast cancer

[129, 247–250]

Lapatinib Iron Breast cancer, pancreatic cancer [251, 252]

Neratinib Iron Breast cancer [253]

Salinomycin Iron Various solid tumour types [254]

Artesunate Iron Prostate cancer, pancreatic cancer, hepatocellular carcinoma, head and neck cancer [251, 253–255]

Cisplatin GSH Breast cancer, gastric cancer, head and neck cancer, ovarian cancer [256–259]

Gemcitabine GPX4 Pancreatic cancer, lung adenocarcinoma [260, 261]

Everolimus GPX4 Renal cell carcinoma [262]

Gefitinib GPX4 Triple negative breast cancer, lung cancer [263, 264]

Withaferin A GPX4 Neuroblastoma, hepatocellular carcinoma [265, 266]

Fluvastatin HMGCR Lung adenocarcinoma [267]

Pravastatin HMGCR Hepatocellular carcinoma [268]

Simvastatin HMGCR Triple-negative breast cancer [269]

Haloperidol DRD2 Hepatocellular carcinoma, glioblastoma [270, 271]

Zalcitabine DNA stress Pancreatic cancer [272]

β-Elemene TFEB Colorectal cancer, non-small cell lung cancer [272, 273]

Buthionine GCL Melanoma, neuroblastoma [274]

sulfoximine GCL Triple negative breast cancer [275]

Zileuton 5-LOX Head cancer [276]

Brequinar DHODH Cervical cancer, colon cancer, fibrosarcoma, lung cancer [277–280]

Cetuximab KRAS KRAS mutant colorectal cancer [263]

Curcumenol FTH1 Lung cancer [256]
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some anti-cancer medications designed to target ferrop-
tosis already being utilized in clinical settings (Table  4). 
The merging of classic chemotherapy agents such as cis-
platin with substances that trigger ferroptosis has proven 
to be a potent method for halting the growth of head and 
neck tumors by working together synergistically [185]. 
Inducing ferroptosis has the potential to hinder the 
emergence of resistance in cancer cells to diverse cancer 
treatments, such as lapatinib, erlotinib, and vemurafenib 
[186–188]. Significantly, radiation can initiate ferrop-
tosis, which holds comparable importance to apoptosis 
in thwarting radiation-induced tumors. This indicates 
that stimulating ferroptosis could potentially heighten 
the vulnerability of radioresistant cancer cells to radia-
tion therapy [186, 189]. Employing combination therapy 
centered around ferroptosis presents a highly promising 
approach that can augment the efficacy of standard treat-
ments, address drug-resistant tumors, and deter tumor 
recurrence [190]. In summary, the exploration of ferrop-
tosis holds significant research potential in the cancer 
field. A thorough understanding of its mechanisms and 
its role in tumor development is anticipated to offer novel 
insights and approaches for cancer treatment.

Ferroptosis and antitumor treatment
Lung cancer
Lung cancer stands as one of the most widespread can-
cers worldwide, and despite continuous progress in treat-
ment, the overall five-year survival rate for lung cancer 
patients remains around 16% [191]. Therefore, there is a 
pressing demand for innovative therapeutic approaches 
in the treatment of lung cancer. Bioinformatics increas-
ingly indicates a significant correlation between the 
occurrence of ferroptosis and lung cancer development 
[192]. The onset of ferroptosis depends on the buildup 
of iron ions and ROS. In the context of lung cancer 
cells, disrupted iron and mitochondrial metabolism may 
elevate intracellular levels of iron ions and ROS, creat-
ing favorable conditions for ferroptosis. Moreover, the 
GSH-dependent GPX4 reduction system stands out as 
a pivotal pathway. p53 is an oncogene that inhibits cell 
uptake of cystine by directly inhibiting the transcrip-
tion of SLC7A11, a key component of system Xc—in the 
p53-SAT1-ALOX15 pathway. Stimulation by erastin, for 
example, inhibits System Xc-, leading to the suppression 
of cysteine or selenocysteine, thereby reducing GPX4 
expression and inducing ferroptosis [193]. Adjusting 
the expression of genes associated with ferroptosis can 
impact the proliferation and spread of lung cancer cells. 
For instance, inhibiting GPX4 expression can prompt 
ferroptosis in lung cancer cells, effectively restraining 
tumor growth and metastasis [194]. RNA Binding Motif 
Single Stranded Interacting Protein 1, functioning as a 

translational enhancer of SLC7A11 in lung cancer, trig-
gers ferroptosis upon its loss, inhibiting lung cancer cell 
growth and heightening sensitivity to radiotherapy [195]. 
CoQ-FSP1, an essential element downstream of the 
KEAP1-Nrf2 pathway, presents itself as a promising tar-
get for therapy aimed at addressing KEAP1-mutant lung 
cancer [196]. As a tumor suppressor, TRIM3 can inhibit 
the occurrence of non-small-cell carcinoma (NSCLC) 
by degrading SLC7A11, suggesting a novel strategy for 
treating NSCLC [62]. Additionally, certain ferroptosis 
inducers like RSL3 and Erastin have been identified to 
impede lung cancer cell growth and induce ferroptosis. 
The manipulation of ferroptosis-related gene expression 
or the utilization of ferroptosis inducers may pave the 
way for innovative approaches in lung cancer treatment 
[197]. As a result, ferroptosis might become a compelling 
focus for treating lung cancer, and delving deeply into the 
mechanisms and clinical uses of ferroptosis in lung can-
cer could provide innovative approaches and strategies 
for managing this condition.

Colorectal cancer (CRC)
CRC is a malignant growth that impacts the digestive sys-
tem and ranks as the second most common cause of can-
cer-related deaths worldwide. The highly migratory and 
invasive nature of colorectal cancer cells, attributed to 
epigenetic and metabolic alterations, leads to a mere 12% 
5-year survival rate for metastatic colorectal cancer [198]. 
Recent studies increasingly highlight the clinical signifi-
cance of inducing ferroptosis in CRC by elevating  Fe2+ 
and ROS levels within CRC cells, diminishing the anti-
oxidant GSH levels, or deactivating GPX4. Conversely, 
inhibiting ferroptosis may contribute to tumor progres-
sion and treatment resistance in CRC [199]. By modulat-
ing relevant genes, such as the overexpression of serine 
and arginine-rich splicing factor 9, the induction of cell 
lipid peroxidation by erastin and sorafenib can be inhib-
ited, leading to a reduction in GPX4 expression and the 
suppression of ferroptosis [200]. Heat shock protein fam-
ily a member 5 also slows down the degradation of GPX4, 
providing colorectal cancer cells with more time to adapt 
to the toxicity of erastin [201]. Similarly, genes like IMCA 
and ACADSB, which down-regulate the expression of 
SLC7A11, result in decreased levels of cysteine and glu-
tathione. This significantly induces ferroptosis in colorec-
tal cancer cells, inhibiting their migration, invasion, and 
proliferation [202, 203]. Beyond coding genes, non-cod-
ing RNAs, including miRNAs, lncRNAs, and circRNAs, 
have been reported to mediate ferroptosis in CRC [204]. 
Intestinal microbiota participates in tumor progression 
by producing carcinogenic metabolites and can also pro-
mote the development of colorectal cancer by inhibit-
ing ferroptosis [205]. Whether administered alone or in 
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conjunction with other chemotherapy agents, ferroptosis 
inducers can effectively trigger ferroptosis in cancer cells, 
particularly those resistant to treatment [206]. Further-
more, ferroptosis can selectively target aggressive cancer 
stem cells, offering potential improvements in immuno-
therapy efficacy and overcoming resistance to immuno-
therapy [207].

Hepatocellular carcinoma (HCC)
HCC stands as the most prevalent type of primary liver 
cancer, with its origins linked to genetic, environmental, 
and behavioral factors [208]. A potential strategy to erad-
icate malignant liver cells involves safeguarding healthy 
cells while selectively inducing the death of tumor cells. 
Research has demonstrated that ferroptosis inhibits the 
growth and proliferation of HCC cells in both in  vitro 
and in  vivo xenotransplantation models [209, 210]. The 
mutation or abnormal expression of genes associated 
with ferroptosis, such as ACSL4, GPX4, Nrf2, SLCA711, 
heat shock protein family B (small) member 1, etc., may 
be implicated in the development of hepatocellular car-
cinoma [211, 212]. Radiotherapy is a primary method for 
treating hepatocellular carcinoma. In addition to trig-
gering ferroptosis, it also results in the increased expres-
sion of genes that inhibit ferroptosis, such as SLC7A11 
and GPX4. Tumor cells that overexpress SLC7A11 and 
GPX4 demonstrate substantial resistance to radiother-
apy. Therefore, the combination of radiotherapy with fer-
roptosis inducers is anticipated as a research direction 
[213]. Furthermore, ferroptosis plays a role in the drug 
resistance process of hepatocellular carcinoma, where 
certain chemotherapy drugs or targeted medications can 
impede the growth and spread of HCC cells by inducing 
ferroptosis. Sorafenib, a widely used multikinase inhibi-
tor for HCC treatment, has been found to have enhanced 
efficacy when combined with ferroptosis induction [214, 
215]. Studies suggest that inducing ferroptosis can aug-
ment the sensitivity of hepatocellular carcinoma to 
sorafenib, thereby overcoming drug resistance. Glu-
tathione S-transferase zeta 1 has been recognized as 
a factor that boosts sorafenib-triggered ferroptosis by 
suppressing the Nrf2/GPX4 pathway in HCC cells, sug-
gesting a potentially effective treatment approach for 
HCC that involves combining sorafenib with a ferropto-
sis inducer [216, 217]. Additionally, ferroptosis is linked 
to the prognosis of hepatocellular carcinoma, with 
some research indicating a negative correlation between 
the expression level of iron-death-related genes and 
the prognosis of HCC patients. In other words, higher 
expression of iron-death-related genes is associated with 
a worse prognosis for patients [218–220]. Traditional 
Chinese medicine research indicates that Polyphyllin I 
intervention can enhance mitochondrial damage and 

induce ferroptosis through the Nrf2/HO-1/GPX4 axis, 
thereby inhibiting the proliferation, invasion, and metas-
tasis of HCC cells [5]. In conclusion, there exists a signifi-
cant association between ferroptosis and hepatocellular 
carcinoma. A thorough exploration of the mechanism 
of ferroptosis in HCC holds great importance in under-
standing the onset and progression of hepatocellular 
carcinoma, unraveling drug resistance mechanisms, and 
developing novel therapeutic strategies.

Gastric cancer (GC)
GC is among the prevalent malignant tumors, holding 
the fifth position in terms of occurrence and fourth in 
mortality rates. Annually, worldwide, more than a mil-
lion individuals receive a diagnosis of stomach cancer. 
Risk elements encompass H. pylori infection, tobacco 
use, alcohol intake, a diet rich in salt, and insufficient 
physical activity [221, 222]. A study indicates that higher 
iron content increases the risk of cancer [223]. Ferrop-
tosis-associated RNA contributes to the expression pat-
terns of stomach cancer cells to different extents. For 
instance, miR103a-3p influences ferroptosis in GC cells 
by modulating intracellular GSH levels [224]. Addition-
ally, lncLASTR and Circ0000190 regulate the prolifera-
tion and migration of GC cells by controlling ferroptosis 
[225]. Manipulating functional proteins associated with 
ferroptosis, like GSH and GPX4 in GC cells, can influ-
ence the onset and progression of GC [226]. As an exam-
ple, da2, a novel derivative of Jiyuan oridonin A, has been 
discovered to selectively suppress the proliferation of GC 
cells by triggering ferroptosis. This is achieved by reduc-
ing GPX4 levels and leading to the accumulation of iron 
within subcellular compartments [227]. Studies indicate 
that ferroptosis contributes to the establishment of the 
tumor microenvironment. Assessing the levels of mac-
rophages and iron within the GC microenvironment may 
offer valuable insights into predicting the progression of 
tumors [228, 229].

Pancreatic cancer
Pancreatic cancer is one of the most lethal cancers in 
the world, characterized by late diagnosis, rapid metas-
tasis, chemotherapy resistance, and poor prognosis 
[230]. Acute pancreatitis ranks among the most preva-
lent acute abdominal conditions. In acute pancreatitis, 
the regulation of ferroptosis can control the excessive 
activation and release of pancreatic enzymes at the cel-
lular level. By regulating ferritin, ferroptosis in AP can 
be reduced, and inflammatory factors can be modulated 
[231, 232]. Pancreatic ductal adenocarcinoma (PDAC) is 
the most common pathological type of pancreatic cancer, 
accounting for approximately 90% of cases. Mutations in 
the KRAS signal lead to increased production of ROS, 



Page 15 of 25Li et al. Journal of Translational Medicine         (2024) 22:1137  

causing ferroptosis [233]. To avoid excessive ferroptosis 
in PDAC, substances like miR-125a, erastin, are used to 
reduce cysteine-induced ferroptosis in PDAC cells. The 
results confirm that systemic inhibition of x-CT can sup-
press tumor growth and metastasis [234]. Alternatively, a 
combination of cisplatin and dihydroartemisinin is used 
to synergistically inhibit the proliferation of PDAC cells 
and induce DNA damage. This outcome is mainly accom-
plished by heightening cellular susceptibility to ferrop-
tosis and elevating intracellular free iron levels, thereby 
impeding the proliferation of PDAC cells [235]. Lipid 
peroxidation regulation is also explored, and research 
indicates that microsomal glutathione transferase 1 can 
bind with arachidonate 5-lipoxygenase to inhibit can-
cer cell ferroptosis by reducing lipid peroxidation [236]. 
Additionally, LncRNA associated with ferroptosis can be 
used in PDAC to evaluate patient prognosis, molecular 
characteristics, and treatment modalities. Studies showed 
that high expression of SLCO4A1-AS1 in PDAC patients 
is associated with lower sensitivity to ferroptosis, directly 
leading to a poorer prognosis for patients [237, 238].

Ovarian cancer (OVCA)
OVCA is the leading cause of female reproductive can-
cer deaths worldwide, with a high recurrence rate [239]. 
A study has found that the occurrence of ovarian clear 
cell carcinoma depends on the acquisition of cysteine, 
and the absence of cysteine leads to the disruption of the 
main protective pathway for ferroptosis, the GPX4-GSH 
pathway, triggering oxidative stress-induced ferroptosis 
[240]. Ferroptosis has a significant connection with the 
clinical management of OVCA. Current studies suggest 
that ferroptosis plays a pivotal role in the chemotherapy 
of ovarian cancer, augmenting the anticancer efficacy of 
cisplatin in the treatment of this disease [241]. In plati-
num-resistant OVCA cells, the addition of inhibitors of 
ferroptosis-related protein GPX4 can increase cancer 
cell sensitivity to ferroptosis, opening up new avenues 
for platinum-resistant OVCA treatment [242]. The syn-
ergistic effect of erastin and docetaxel also makes drug-
resistant cancer cells more prone to ferroptosis [243]. 
Fortunately, researchers have analyzed and identified 
mRNA and genes associated with ferroptosis as both 
treatment targets and prognostic indicators, revealing 
new therapeutic vulnerabilities in OVCA patients and 
providing promising prognostic indicators [239, 244].

Ferroptosis and tumor immunotherapy
The immune system’s vital function involves identifying 
and eradicating cancerous cells, thereby actively monitor-
ing and managing tumor expansion. Tumor immunother-
apy involves utilizing the immune system’s capabilities 
to target and combat cancer cells, garnering significant 

attention and research efforts in recent years. An illus-
trative example is CAR T-cell therapy, a technique that 
modifies T cells to identify and eliminate tumor cells, 
demonstrating success, particularly in treating leuke-
mia and lymphoma [281]. Nevertheless, challenges exist 
within the realm of tumor immunotherapy. Firstly, not all 
patients exhibit a positive response to this treatment, and 
some show no response whatsoever. Secondly, immuno-
therapy may induce adverse effects such as inflamma-
tion and autoimmune reactions. Furthermore, the field 
must address challenges like overcoming tumor immune 
escape mechanisms and the diverse nature of tumor cells 
[282, 283]. In conclusion, while tumor immunotherapy 
holds promise and has achieved notable successes in 
treating various cancers, ongoing research and enhance-
ments are imperative to refine its effectiveness and safety.

The identification of ferroptosis has opened up new 
avenues for tumor immunotherapy. On one hand, ferrop-
tosis can eliminate tumor cells, disrupt the tumor’s blood 
supply, incite the immune system’s attack, and enhance 
the responsiveness of tumor cells to other treatments. On 
the other hand, ferroptosis can also release pro-inflam-
matory factors, triggering an inflammatory response, 
altering the tumor’s microenvironment, and diminish-
ing the immune resistance of tumor cells [284, 285]. By 
integrating immunotherapy with strategies that bolster 
ferroptosis, such as radiotherapy and targeted therapy, 
it’s possible to collaboratively trigger ferroptosis. This 
approach can either boost anti-tumor immune reactions 
or inhibit detrimental immune responses [286] (Fig. 4).

Tumor immune checkpoint inhibitors (ICI)
It has been reported that ICI can significantly improve 
the treatment efficiency of advanced cancer, including 
PD-1 inhibitors and cytotoxic T lymphocyte-associ-
ated antigen-4 inhibitors. These drugs work by block-
ing checkpoint molecules on the surface of tumor cells, 
thereby activating immune cells and enabling them 
to better attack tumours [287, 288]. Several immune 
checkpoint inhibitors have been approved for use in the 
treatment of a wide range of tumors, for example, PD-1 
inhibitors are widely used in tumours such as lung can-
cer, melanoma, renal cell carcinoma and Hodgkin’s lym-
phoma [289]. The effectiveness of immune checkpoint 
blockade therapy in generating a widespread anti-tumor 
response for numerous cancers remains limited, primar-
ily due to the complexity of the tumor microenvironment 
and inadequate stimulation of the host immune system 
[290]. Ferroptosis has recently been discovered to play a 
role in the effectiveness of  CD8+ T cells against tumors 
and also affects how well anti-PD-1/PD-L1 immunother-
apy works. Studies have shown that when  CD8+ T cells 
are activated by anti-PD-L1 immunotherapy, they trigger 
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ferroptosis in tumor cells by releasing interferon-γ (IFN-
γ) following PD-L1 blockade. The released IFN-γ nota-
bly decreases the expression of SLC7A11 in tumor cells, 
which reduces their ability to take up cystine, increases 
lipid peroxidation, and ultimately leads to ferropto-
sis [291, 292]. The combined action of cystathionine/
cysteine enzymes alongside anti-PD-L1 treatment can 
generate potent anti-tumor immune responses by trig-
gering ferroptosis [293, 294].

Revers radiotherapy resistance
Radiotherapy is a commonly used cancer treatment that 
destroys cancer cells through high-energy radiation. 
Nonetheless, certain tumor cells develop resistance to 
radiation therapy, often leading to tumor recurrence and 
metastasis, posing significant challenges in treatment 
[295]. Previous research has demonstrated that radio 
resistance in cancer cells was facilitated by increased 
DNA damage repair, reduced apoptosis, and accelerated 
autophagy [296–298]. Recent years have seen the devel-
opment of a novel and significant method for increasing 
the sensitivity of tumor radiation and immunotherapy: 
triggering ferroptosis in cancer cells [299]. Effector T cells 

and radiotherapy engage in a collaborative interaction 
via ferroptosis to enhance tumor elimination. The use 
of IFN and  CD8+ T lymphocytes encourages tumor cell 
ferroptosis and causes radio sensitization. By generating 
IFN in conjunction with radiotherapy-activated ataxia 
telangiectasia mutated protein targeting SLC7A11 to pre-
vent cystine uptake, immune therapy-activated  CD8+T 
cells cause tumor cells to undergo ferroptosis [189, 197]. 
In certain mouse models receiving combined treatment 
of radiation alongside PD-L1/PD-1 or cytotoxic T lym-
phocyte-associated antigen-4 inhibition, this results in 
robust tumor immunity, induction of tumor ferroptosis, 
and subsequent tumor regression [300]. This indicates 
that tumor ferroptosis represents a new convergence 
point between radiotherapy and adaptive immunity.

Iron‑laden macrophages
Macrophages are a type of leukocyte that are signifi-
cant components of the tumor microenvironment and 
have a significant impact on the tumor immune system 
and immune response. It is involved in the develop-
ment, proliferation, metastasis, and resistance to drugs 
of tumors, as well as interactions with ferroptosis and 

Fig. 4 Ferroptosis in combination with immunotherapy. Immunotherapy combined with the regulation of ferroptosis: ①tumor immune 
checkpoint inhibitors; ②revers radiotherapy resistance; ③iron-laden macrophages; ④tumor metabolism; ⑤damage-related molecular patterns; 
⑥cancer cell differentiation plasticity
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other pathways [301–303]. Normally, the immune sys-
tem identifies cancer cells and macrophages eliminate 
them, however, in acidic environments, ferritin phago-
cytosis facilitates the maximal release of iron, which is 
eliminated by cancer cells and subsequently assimilated 
by macrophages to generate iron-laden macrophages 
[304, 305]. Not only does the presence of iron-laden 
macrophages in the tumor microenvironment have 
prognostic significance, but it also represents a sig-
nificant functional deficit in macrophages’ capacity to 
combat cancer cells. The ability of iron-loaded mac-
rophages to combat cancer cells decreases with increas-
ing iron loading. Reduced serum iron concentration 
from increased iron uptake by macrophages causes an 
iron deficit in nearby normal cells, which in turn low-
ers the activity of iron-dependent enzymes in numer-
ous iron metabolic pathways and generally impairs 
normal cell function [306, 307]. Accordingly, research-
ers have demonstrated that using iron chelating agents 
to reduce the iron load in macrophages can restore 
the decreased anti-cancer action of iron-laden mac-
rophages and the corresponding iron deficit in normal 
cells. The most effective iron mobilizer of ferritin and 
hemosiderin is 1,2-Dimethyl-3-hydroxypyrid-4-one, 
which has also been demonstrated to remove iron from 
macrophages and many other cell types during con-
centration-dependent iron mobilization mediated by 
chelating agents in inflammatory and cancerous disor-
ders [308–311]. Thus, early after cancer diagnosis, we 
can introduce iron chelation therapy, which can reduce 
the iron effect of cancer cells and improve the anti-can-
cer activity of macrophages and other related therapeu-
tic interventions, in the anti-cancer targeting related to 
the regulation of iron-laden macrophages. In a similar 
vein, chelating medications working in tandem with 
immune agents can enhance cancer treatment.

Tumor metabolism
Tumor cells require a large amount of energy to support 
their rapid growth and proliferation, which comes mainly 
from the process of glucose fermentation, however, this 
metabolism produces large amounts of ROS and iron 
ions, which, when at a certain concentration within the 
cell, can trigger tumor cell ferroptosis [14]. In this pro-
cess, on the one hand, ferroptosis can induce tumor cells 
to release intra-cellular substances, such as proteins, 
DNA, and RNA, which can activate the NF-κB signal 
pathway in immune cells, thereby promoting immune 
cell activation and anti-tumor immune response. On 
the other hand, ferroptosis can also cause tumor cell 
membrane breakage, making it easier for immune 
cells to identify and attack tumor cells. Research has 

demonstrated that small-cell lung cancer cells and triple-
negative breast cancer cells are susceptible to ferropto-
sis [312, 313]. Therefore, some drugs and gene therapies 
can induce an immune response by inducing ferroptosis, 
which kills tumor cells.

Clever use of damage‑related molecular patterns (DAMPs)
DAMPs are endogenous molecules that interact with 
immune cell receptors, triggering dendritic cell matura-
tion and  CD8+ T cell activation, leading to IFN-γ produc-
tion. Targeting DAMPs holds promise for novel therapies 
in conditions like sepsis and cancer. Various forms of cell 
demise, including apoptosis, ferroptosis, and necroptosis, 
facilitate the liberation of DAMPs [10, 284, 314]. These 
molecules can also be actively ejected from viable cells 
through processes such as lysosomal or exosomal secre-
tion, exocytosis of exosomes, and the activation of cell 
membrane channel pores. In the context of renal fibro-
sis, ferroptosis is more immunogenic than apoptosis, 
given the signaling release and activation of DAMPs [315, 
316]. Ferroptosis entails the release of cellular compo-
nents, including DAMPs, which, when outside the cell, 
serve as immune stimulants, triggering activation of both 
the innate and adaptive immune systems through bind-
ing to pattern recognition receptors. In heart injury, 
DAMPs release occurs when toll-like receptor 4 (TLR4) 
signaling is triggered by ferroptosis. This phenomenon is 
observed in  situations such as kidney and brain ferrop-
tosis, wherein cells undergoing ferroptosis release fac-
tors that robustly activate the innate immune system [76, 
317]. Furthermore, the high mobility group protein B1 
(HMGB1) plays a crucial role in DNA regulation, encom-
passing repair, transcription, and replication. Agents that 
induce ferroptosis, such as erastin, sorafenib, RSL3, and 
FIN56, can trigger the release of HMGB1. Subsequently, 
HMGB1 interacts with the immune system, thereby 
impacting cancer treatment [318, 319]. As a result, the 
buildup of DAMPs can trigger tissue inflammation and 
regulate ferroptosis through an automatic cascade [320]. 
Strategically utilizing DAMPs can trigger favorable 
immune responses, hindering tumor proliferation.

Targeting cancer cell differentiation plasticity
Cancer cell plasticity refers to the flexible nature of can-
cer cells as they change states, affecting tumor growth, 
spread, and response to treatment. The increasing diver-
sity of cancer cells helps them adapt to the environment 
and evade anticancer therapies, presenting a major chal-
lenge in cancer treatment [321, 322]. Tsoi et al. demon-
strate that melanoma can be classified into four subtypes 
based on a differentiation trajectory. Each subtype exhib-
its distinct sensitivity to ferroptosis induction, suggesting 
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a therapeutic strategy to target differentiation plasticity. 
This approach aims to enhance the effectiveness of tar-
geted and immune therapies for melanoma treatment 
[186]. Changes in cancer metabolism facilitate invasion 
and metastasis but render cells vulnerable to lipid peroxi-
dation during oxidative stress. Cancers exhibiting mesen-
chymal characteristics, such as sarcomas found in bone, 
soft tissue, ovary, and kidney, heavily depend on the lipid 
peroxidase pathway. They display heightened sensitiv-
ity to ferroptosis-inducing agents like RSL3, ML-162, 
ML210, ML239, and statins compared to cancers origi-
nating from epithelial tissues like the esophagus and 
urinary tract. This implies that ferroptosis inducers may 
be more efficacious in treating mesenchymal-derived 
cancers than those derived from epithelial tissues [188]. 
Under certain metabolic and oxidative stress conditions, 
cancer cells can evade destruction, and by targeting this 
distinctive defense mechanism, it becomes possible to 
selectively eliminate cancer cells [323]. In the treatment 
of metastatic cancers that exhibit resistance and immune 
evasion, it is crucial to focus on regulating the GPX4, 
NF2-YAP signaling pathway, reversible epithelial-to-mes-
enchymal transition, and the pathways associated with 
blebbishield metastatic switch. Targeting these processes 
is essential for inducing ferroptosis and other forms of 
cell death, addressing the challenges posed by metastatic 
cancers [324–327].

Conclusion and future direction
Ferroptosis has emerged as a significant research focus in 
life sciences in recent years. Its discovery not only broad-
ens our understanding of cell death diversity but also 
introduces new strategies and ideas for treating various 
diseases. Current research indicates that ferroptosis plays 
a crucial regulatory role in the onset and progression of 
cardiovascular diseases, neurodegenerative diseases, 
cancer, and other conditions. Modulating the ferropto-
sis pathway could potentially slow disease progression, 
offering innovative treatment approaches. However, 
there are challenges associated with ferroptosis, such as 
its lack of high specificity and difficulty in distinguishing 
it from other cell death modes. Treatments targeting fer-
roptosis can have side effects, including the unintended 
death of immune cells. Additionally, clinical applications 
face obstacles like targeted drug delivery and off-target 
effects.

Looking ahead, ferroptosis research can be further 
explored in several areas: Understanding the molecular 
mechanisms, including gene regulation, iron metabo-
lism, and lipid metabolism interactions, will enhance 
our comprehension of ferroptosis in biology and medi-
cine. Clinically, developing ferroptosis-targeting drugs 
and exploring drug combinations, along with identifying 

molecular markers for disease risk prediction and treat-
ment evaluation, are crucial. Interdisciplinary research, 
integrating fields such as chemistry, materials science, 
and computer science, will advance ferroptosis research 
using new technologies and methods. In summary, fer-
roptosis, as a novel form of programmed cell death, holds 
significant research and clinical potential. With ongoing 
research and technological advancements, ferroptosis 
is expected to make substantial contributions to human 
health.
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