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Electronic Engineering, Shandong Agricultural University, Taian, Shandong, China, 3Crop Technology
Promotion Department 1, Shandong Agricultural Technology Extension Center, Jinan, Shandong, China
In order to achieve precise discrimination of leaf diseases in the Maize/Soybean

intercropping system, i.e. leaf spot disease, rust disease, mixed leaf diseases, this study

utilized hyperspectral imaging and deep learning algorithms for the classification of

diseased leaves of maize and soybean. In the experiments, hyperspectral imaging

equipment was used to collect hyperspectral images of leaves, and the regions of

interest were extracted within the spectral range of 400 to 1000 nm. These regions

included one or more infected areas on the leaves to obtain hyperspectral data. This

approach aimed to enhance the accurate discrimination of different types of diseases,

providing more effective technical support for the detection and control of crop

diseases. The preprocessing of hyperspectral data involved four methods: Savitzky-

Golay (SG), Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC) and

1st Derivative (1st Der). The 1st Der was found to be the optimal preprocessing method

for hyperspectral data ofmaize and soybeandiseases. Competitive Adaptive Reweighted

Sampling (CARS), Successive Projections Algorithm (SPA) and Principal Component

Analysis (PCA) were employed for feature extraction on the optimal preprocessed data.

The Support Vector Machines (SVM), Bidirectional Long Short-Term Memory Network

(BiLSTM) and Dung Beetle Optimization-Bidirectional Long Short-Term Memory

Network (DBO-BiLSTM) were established for the discrimination of maize and soybean

diseases. Comparative analysis indicated that, in the classification of maize and soybean

diseases, the DBO-BiLSTM model based on the CARS extraction method (1st Der-

CARS-DBO-BiLSTM)demonstrated thehighest classification rate, reaching 98.7%on the

test set. The research findings suggest that integrating hyperspectral imaging with both

traditional and deep learning methods is a viable and effective approach for classifying

diseases in the intercropping model of maize and soybean. These results offer a novel

method and a theoretical foundation for the non-invasive, precise, and efficient

identification of diseases in the intercropping model of maize and soybean, carrying

positive implications for agricultural production.
KEYWORDS

hyperspectral feature extraction, crop disease detection, machine learning, intelligent
optimization, non-invasive identification
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1 Introduction

Corn (Zea mays L.), commonly known as maize, boasts

cultivation acreage and yield surpassed only by wheat and rice,

ranking third among global cereal crops. Its yield per unit area

claims the top spot worldwide (Sun et al., 2021). As one of primary

grain crops, corn plays a pivotal role not only as a crucial feedstock

for the livestock industry but also as an industrial raw material

(Vapnik and Cortes, 1995). Its quality and yield significantly impact

the development of national economy. Diseases represent a critical

factor influencing corn production and quality. Soybean (Glycine

max (L.) Merr.), a perennial herbaceous plant belonging to the

legume family and Glycine genus, originated in China and is

extensively cultivated nationwide, as well as globally. As a vital

grain crop in China with a long cultivation history, soybean is

predominantly grown in the northeast regions of China (Wu et al.,

2022). The seeds of soybean is rich in plant proteins, with a content

ranging from 35% to 40%. Soybean, being an agricultural product,

have garnered widespread attention worldwide.

As the population continues to increase and the overall demand

for agricultural economic development grows, enhancing the yield

and quality of maize and soybean has become increasingly urgent

(Xiong et al., 2016). Traditional agricultural planting methods and

technologies are gradually falling behind in terms of crop yield,

necessitating the introduction and application of new planting

techniques (Yuan et al., 2021). Intercropping, as a comprehensive

planting model that integrates green environmental practices,

resource optimization, and balanced development, has

successfully achieved efficient utilization of resources such as land,

water, fertilizers, light, and space (Jinchi et al., 2005). It stands out as

a crucial planting model for building resource-efficient and

environmentally friendly ecological agriculture. The intercropping

model of maize and soybean significantly improves the utilization of

planting space while reducing the input of planting and labor costs.

This not only promotes an increase in crop yield but also enhances

the economic returns of crops.

With the promotion of the intercropping mode of maize and

soybean, one of the primary factors affecting yield during the

planting process is pests and diseases (Yuan P. et al., 2021)

Therefore, the ensuing challenge is how to address the issue of

pests and diseases specifically and effectively in maize and soybean.

To tackle this problem with greater recall and efficiency, the

discrimination and detection of the types of pests and diseases in

the intercropping systems become particularly crucial (Zhang F.

et al., 2023). Currently, Plant disease detection commonly relies

on two primary methods: manual experience judgment and

physicochemical testing. However, both methods have their

limitations. Manual experience judgment is susceptible to

subjective and objective factors such as weather conditions, health

status, and emotions, potentially leading to misjudgments (Wu

et al., 2023). On the other hand, while physicochemical testing

yields more accurate results, it demands higher operational skills

and suffers from drawbacks like complexity, sample destructiveness,

and poor timeliness. These shortcomings significantly restrict the

application of both methods in practical production, necessitating
Frontiers in Plant Science 02
the search for more applicable detection techniques (Razzaq

et al., 2019).

Currently, non-destructive measurement technologies are rapidly

advancing and finding applications in various aspects of agriculture

(Fu et al., 2019). Hyperspectral imaging is a typical application in this

field, with applications in both large-scale remote sensing and precise

spectral imaging. In large-scale remote sensing, this technology is

used to measure the yield, soil nutrient conditions, and drought levels

of extensive crop areas (Zhang F. et al., 2023). In the domain of

precise spectral imaging, hyperspectral imaging enables detailed

analysis of plant conditions and provides comprehensive

diagnostics for diseases. This opens up new avenues for finding

more accurate and efficient methods for plant disease detection (Hao

et al., 2017; Yu et al., 2019).

Hyperspectral imaging has been extensively developed in rapid and

non-destructive plant disease detection (Shu et al., 2022; Jung et al.,

2022). For instance, it has been employed to detect beech leaf disease

using SVM and Random Forest algorithms (RF) (Fearer et al., 2022)

and to identify Tobacco mosaic virus (TMV) and Potato virus Y

disease (PVY) (Chen et al., 2023). However, due to the complex

redundancy of hyperspectral data, the accuracy of direct detection

using classification models still requires improvement (Wang F. et al.,

2019). Therefore, many researchers currently adopt preprocessing and

feature extraction of hyperspectral data to enhance its accuracy. For

example, multivariate scatter correction has been utilized to preprocess

the rice bacterial stripe disease spectra, achieving a maximum

classification accuracy of 95.24% with an RF classifier (Yuan P. et al.,

2021). Similarly, various preprocessing methods have been applied to

enhance the stability of the citrus disease leaf detection model (Wu

et al., 2021). To further simplify hyperspectral data, spectral feature

extraction is performed on processed data, such as constructing a

model for identifying cotton pest-infested leaves using Principal

Component Analysis (PCA) combined with SVM (Wang et al.,

2019b). As machine learning continues to evolve, intelligent

optimization algorithms are introduced to enhance the performance

of classificationmodels. For example, Genetic Algorithm (GA), Particle

Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO) have

been employed to optimize an SVM classification model for the

categorization of 27 Oolong tea varieties, achieving an optimized

classification rate of 99.91% (Cao et al., 2023).In addition to

integrating traditional learning methods with hyperspectral data,

numerous studies explore combining deep learning algorithms with

hyperspectral imaging for non-destructive plant disease detection.

Examples include the detection of PVY infection in potato plants

(Polder et al., 2019), identification of cotton aphid disease (Yan et al.,

2021), detection of maize diseases (Fu et al., 2022), early diagnosis of

strawberry gray mold disease (Jung et al., 2022), and accurate

identification of maize varieties (Zhang F. et al., 2023). Researchers

also used SVM, Logistic Regression (LR), and Convolutional Neural

Networks (CNN) to construct classification models based on different

levels of fusion, and the results showed that the CNN model

outperformed the SVM and LR models (Feng et al., 2020).

Collectively, these studies highlight the significant effectiveness of

combining hyperspectral imaging with both traditional and deep

learning approaches for crop disease detection. In addition, currently,
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most studies focus on the identification and detection of single-crop

and single-pathogen or a limited number of pathogens in monoculture

systems, such as maize leaf spot disease in monoculture (Wang et al.,

2019a; Xu et al., 2020) and soybean mildew (Zhang F. et al., 2023).

Additionally, studies address single-crop, dual-disease scenarios like

soybean’s angular leaf spot and bacterial spot (Liu et al., 2023), and

cotton’s aphid and red spider mite pests. However, there is relatively

less research on intercropping systems involving multiple crops and

multiple diseases (Yuan R. et al., 2021). This is mainly due to the need

for the model to first identify leaf types before detecting diseases on the

leaves,making the identification process more complex compared to

monoculture systems (Zhang Y. et al., 2023). Additionally, the number

of disease types increases in intercropping systems compared to

monoculture. Therefore, the focus of this study is to identify different

disease types in intercropping patterns of maize and soybean based on

hyperspectral identification and to be able to discriminate the diseases

under different environmental factors.

This paper addresses the problem of fewer research on detection

of multiple species in intercropping mode. Based on hyperspectral

imaging technology, this paper established a classification model for

multi-crops and diseases in the maize/soybean intercropping

system in order to improve the yield and quality of the two crops

and to provide a basic method for the detection of multi-crop

diseases in subsequent intercropping. The main research includes:
Fron
1. Multiple preprocessing methods and feature extraction

techniques are used to process hyperspectral data, and the

set is divided into a training set and a test set, establishing

multiple classification and detection models, and selecting

the combination of methods with optimal classification

performance through comparison.

2. Optimizing the BiLSTM neural network model using the

DBO algorithm to find the best parameter settings. The

DBO-BiLSTM leaf disease classification model was

established, which effectively improved the accuracy of

disease classification and detection in the corn/soybean

intercropping system.

3. A classification model capable of identifying various types of

crops and diseases in the intercropping model was

established, thus improving the efficiency of disease

classification for different crops. This lays a solid

foundation for targeted management of crop diseases.
2 Materials and methods

The research framework of this paper consists of four main

steps, the framework diagram is shown in Figure 1. The first step

involves sample preparation and data acquisition. In the second

step, four preprocessing methods—SG, SNV, MSC, and 1st Der—

are employed to preprocess the raw hyperspectral data. The

processed data is then fed into the model to obtain the optimal

preprocessing method. The third step involves employing CARS,

SPA, and PCA methods for feature selection on the preprocessed
tiers in Plant Science 03
data, further enhancing the model’s accuracy. The fourth step

encompasses establishing SVM, BiLSTM, and DBO-BiLSTM

models using the feature-extracted hyperspectral data. The model

combination with the highest classification accuracy is selected

through comparative analysis.
2.1 Test materials and hyperspectral
data acquisition

The samples for this experiment were acquired on September 13,

2023, from maize-soybean intercropping fields in Fei Cheng City,

Tai’an City, Shandong Province, China, the maize-soybean

intercropping field is shown in Figure 2. The acquired samples

include maize leaves with leaf spot disease as shown in Figure 3B,

rust-infested maize leaves as shown in Figure 3C, rust-infested

soybean leaves as shown in Figure 3F, as well as normal maize

leaves as shown in Figure 3A, and normal soybean leaves as shown in

Figure 3E. In addition, the samples also included a mixture of maize

diseases as shown in Figure 3D. After collection, the samples were

placed in sealed bags and transported to the laboratory for processing

immediately. Following the removal of surface dust, hyperspectral

images were acquired using a hyperspectral spectrometer.

To obtain hyperspectral images of the samples, a hyperspectral

data acquisition system based on a hyperspectral spectrometer was

established. The system comprises the following main components:

hyperspectral imaging spectrometer (Brand U.S.A. SOC Model

SOC710VP®), lenses, two symmetrically distributed halogen

linear light sources, a full-diffuse polytetrafluoroethylene

calibration whiteboard, a tripod, an experimental platform, a dark

box, and computer equipment, as depicted in Figure 4.

When obtaining hyperspectral images, the process involved

securing the hyperspectral spectrometer on a tripod and ensuring

the lens was perpendicular to the sample, inserted into a dark box to

ensure complete imaging of the maize and soybean leaf samples.

Simultaneously, it was ensured that the halogen linear light source

was the sole light source during collection, focusing the light onto

the leaves. The hyperspectral spectrometer was preheated for 30

minutes until both the current and intensity of the halogen linear

light source were stabilized. Finally, the relevant acquisition

parameters were set using the Spec View software. To mitigate

the impact of the uneven distribution of the halogen linear light

source and eliminate noise caused by the dark current of the

hyperspectral spectrometer, black and white correction was

applied to the acquired hyperspectral images (Chi et al., 2021; Qu

and Liu, 2017). The reflection correction formula is articulated as

follows:

Rci =
Sampleci � darkci
Whiteci � darkci

(1)

where Rci, Sampleci, darkci, and Whiteci represent the calibrated

hyperspectral image, the uncalibrated hyperspectral image, the

reflectance intensity of the blackboard reference, and the reflectance

intensity of the standard whiteboard reference, respectively.
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FIGURE 2

Maize-Soybean intercropped fields.
FIGURE 1

Framework diagram.
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This study collected hyperspectral images of 80 maize leaves

and 40 soybean leaves. In the maize leaf group, there were 20

healthy leaves, 20 leaves with leaf spot disease, 20 leaves with rust

disease, and 20 leaves with both diseases simultaneously. In the

soybean group, there were 20 healthy leaves and 20 leaves with rust

disease. ENVI 5.3 software was used to select regions of interest

(ROIs) containing infected areas. Some leaves had multiple lesions,

so it was ensured that only one type of lesion was present in each

ROI. For instance, when selecting ROIs for leaves with leaf spot

disease, regions with only leaf spots were chosen, and for mixed

leaves, regions with both diseases were selected. The average

spectrum of each ROI was considered as an individual sample. As

the average spectrum was used for ROI selection, there was no

limitation on the size of the ROIs. Following this approach, 400

maize data samples and 200 soybean data samples were obtained.
Frontiers in Plant Science 05
Specifically, each type of maize and soybean leaf disease obtained

100 samples.
2.2 Hyperspectral data preprocessing

The initially collected spectra exhibit diverse noise interference

and redundant information, posing a substantial impact on the

accuracy of established model. Various methods have been

employed to mitigate the influence of noise, spectral drift, and

other interferences (Esquerre et al., 2012; Silalahi et al., 2018;

Wu et al., 2019). In this investigation, the initial hyperspectral

data underwent preprocessing utilizing four techniques: SG, MSC,

SNV, and 1st Der.
FIGURE 4

Hyperspectral data acquisition system.
FIGURE 3

Sample image of a portion of a diseased leaf. (A) Corn Normalcy; (B) Corn Leaf Spot; (C) Corn Rust; (D) Corn Hybrid; (E) Soybean Normalcy; (F)
Soybean Rust.
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2.3 Spectral data feature extraction

Critical spectral identification information is concentrated within

specific feature wavelengths. The extraction of these feature

wavelengths from the preprocessed full spectral bands diminishes

data dimensionality, alleviates computational load, and amplifies the

pace of model development and classification accuracy.

The Competitive Adaptive Reweighted Sampling (CARS)

algorithm, introduced by Li et al., serves as a feature variable

selection method (Li et al., 2014). The combination of Monte

Carlo sampling and partial least squares regression modeling is

an important aspect of this algorithm, mirroring the concept of

“survival of the fittest” from Darwinian theory (Wang et al., 2021).

In the CARS algorithm, adaptive weighted sampling is iteratively

performed, retaining points with more significant absolute weight

coefficients from the PLS model to form a new subset while

discarding points with smaller weights. Subsequently, a new PLS

model is established based on this updated subset. After multiple

iterations, the algorithm identifies the wavelengths from the subset

with the smallest Root Mean Square Error of Cross-Validation

(RMSECV) as the feature wavelengths (Shao et al., 2021; Xu et al.,

2022; Tian et al., 2022).

The Successive Projections Algorithm (SPA) is a widely

employed technique for selecting feature bands, renowned for its

resilience against interference (Shi et al., 2021; He et al., 2022). SPA, a

variable selection method for multiple linear regression, utilizes an

iterative, forward-selection-based approach. The algorithm computes

the projection of variables onto the unselected variables through

systematic iterations. Consequently, the wavelengths chosen as

candidates for selection are those associated with the most

significant projection vectors (Yuan P. et al., 2021; Meng et al., 2021).

Principal Component Analysis (PCA), also referred to as the

Hotelling transform or K-L transform, has been widely utilized for

extracting characteristic wavelengths from multi-band hyperspectral

data. PCA involves transforming strongly correlated n-dimensional

original variables into k-dimensional new variables that are both

representative and uncorrelated, achieved through an orthogonal

transformation. These k-dimensional variables are organized based

on their contribution rate, from highest to lowest, facilitating the

extraction of several mutually uncorrelated and representative bands

from the hundreds of spectral bands. This method aims to address the

issue of spectral data correlation, allowing the extraction of

characteristic wavelengths while retaining the original spectral

information as much as possible (Tian et al., 2020; Feng L. et al., 2020).

This study employs three methods for feature wavelength

extraction: CARS, SPA and PCA.
2.4 Model establishment

2.4.1 Bidirectional long short-term
memory network

The Bidirectional Long-Term Memory (BiLSTM) represents an

enhanced version of the Long Short-Term Memory (LSTM)

network. In contrast to the conventional LSTM, which exclusively
Frontiers in Plant Science 06
extracts sequential forward information, potentially overlooking

valuable backward information, the BiLSTM network integrates

both forward and backward outputs at each time step. This

architectural improvement proves more efficient in capturing

correlations between preceding and subsequent data points,

thereby augmenting the model’s capacity to extract sequential

information (Liu et al., 2020; Shi et al., 2023). The specific

structural details are illustrated in Figure 5.

As shown in Figure 5, data enters into BiLSTM through the

input layer. From left to right (S
0
0 → S

0
1) the data processed is

the forward LSTM layer, performing forward computation to

obtain hrt . Simultaneously, instead processing the data from right

to left (S0 → S1) is the backward LSTM layer, conducting backward

analysis to get hlt . After processing all time sequences, the hidden

states of the two LSTM layers are concatenated, resulting in the final

output yt for the BiLSTM model.

The calculation formula is as follows:

hrt = f (wr
xxt + wr

hh
r
t−1 + brh)

hlt = f (wl
xxt + wl

hh
l
t−1 + blh)

yt = f (wr
xh

r
t + wl

hh
l
t + by)

(2)

where hrt and hlt represent the hidden states of the forward and

backward LSTM layers, respectively; yt is the current output of the

BiLSTM; f, w, and b correspond to the activation function, weights,

and biases, respectively.

2.4.2 DBO-BiLSTM model
Due to the inclusion of multiple network parameters in the

BiLSTM network, it is challenging to set the optimal parameters for

the classification of maize and soybean diseases. Therefore, an

optimization algorithm is needed to search for the best parameter

values. However, simple optimization algorithms may face

limitations in finding the optimal parameters. In this regard, this

paper introduces the firefly algorithm to optimize the five

parameters of the bidirectional long short-term memory network.

These five parameters are the number of hidden units, maximum

training epochs, mini-batch size, initial learning rate, and L2

regularization parameter.

The Dung Beetle Optimization (DBO) algorithm is an

innovative swarm intelligence optimization technique inspired by

the collective behaviors observed in dung beetle populations (Xue

and Shen, 2023). These behaviors encompass various activities such

as rolling, dancing, foraging, breeding, and stealing. Unlike

traditional algorithms like Particle Swarm Optimization and

Genetic Algorithms, the DBO algorithm introduces specific

survival tasks within the dung beetle population. The population

is categorized into four types of dung beetles: rollers, breeders

(involved in breeding balls), small dung beetles, and thieves (Razzaq

et al., 2019).

The rolling dung beetle is updated in position as it rolls, and the

rolling mathematical model can be expressed as:

xi(t + 1) = xi(t) + a� k� xi(t − 1) + b� Dx

Dx = xi(t) − XW
�� �� (3)
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where t represents the current iteration count, xi denotes the

position information of the i dung beetle at the i iteration, k ∈
(0,0.2] stands for the constant of deviation, b is a constant within the

range (0, 1), a is a natural coefficient assigned either -1 or 1, XW

represents the global worst position, and Dx is used to simulate

variations in light intensity.

The breeding dung beetles select suitable areas for egg-laying

based on the dung balls. Breeding dung beetle spawning areas in this

process resembles a boundary selection strategy. The strategy is

shown in Figure 6, and its mathematical model is as follows:

Lb∗ = max (X∗ � (1 − R), Lb)

Ub∗ = max (X∗ � (1 − R),Ub)
(4)

where X∗ represents the current local best position, Lb∗ andUb∗

signify the lower and upper bounds of the oviposition area, while Lb

and Ub respectively denote the lower and upper limits of the

optimization problem.

Selection of optimal spawning areas based on a boundary

selection strategy, the female dung beetles will opt to lay their

breeding balls within this designated region. Equation 3 distinctly

illustrates that the boundaries of the oviposition area are
Frontiers in Plant Science 07
dynamically variable, primarily determined by the R-value.

Therefore, the position of the breeding balls during the iterative

process is also dynamic, demonstrated by the following iteration:

Bi(t + 1) = X∗ + b1 � (Bi(t) − Lb∗) + b2 � (Bi(t) − Ub∗) (5)

where Bi(t) refers to points of the compass of the i breeding ball

at the t iteration, b1 and b2 r represent two random vectors of

disjoint size and belonging to the 1� D, with D representing the

dimension of the optimization problem.

After breeding, newborn juvenile dung beetles similarly crawl

out of the ground in search of dung balls, guided by optimal

foraging areas. This simulates the natural foraging process of

these beetles in their habitat. The boundaries of the optimal

foraging area are defined as follows:

Lbb = max (Xb � (1 − R), Lb)

Ubb = max (Xb � (1 − R),Ub)
(6)

where Xb represents the global best position, Lbb and Ubb

denote the optimal foraging area’s lower and upper limits. The

position of the dung beetle is updated with the following equation:
FIGURE 5

BiLSTM single neuron calculation process.
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xi(t + 1) = xi(t) + C1 � (xi(t) − Lbb) + C2 � (xi(t) − Ubb) (7)

where xi(t) indicates the position information of the i dung

beetle at the t iteration, C1 represents a random number following a

normal distribution, and C2 is a random number with values in the

range (0,1).

The stealing dung beetles search for the best food source and

conduct theft. From Equation 6, Xb represents the global best

position, which denotes the best food source. Hence, during the

stealing process, the position information of the stealing dung

beetles will be updated as follows:

xi(t + 1) = xb + S� u� xi(t) − X∗j j + xi(t) − Xb
�� ��� �

(8)

where xi(t) represents the orientation of the i stealing dung

beetle at the t iteration, u is a random vector of size 1� D obeying a

Gaussian distribution, and S denotes a fixed variable.

Following the preprocessing of raw data, dimensionality

reduction through feature extraction algorithms, and parameter

optimization for the BiLSTM model using the Dung Beetle

Optimization algorithm, the optimal hyperparameters are
Frontiers in Plant Science 08
implemented in the model, giving rise to the DBO-BiLSTM

model. The positions are updated through four dung beetle

behaviors: rolling dung, breeding, foraging, and theft. Ultimately,

the best solution and its fitness value are determined. The optimal

solution, representing the most effective hyperparameter

configuration for the bidirectional BiLSTM model, is then

validated on test set and applied to real-world data analysis tasks.
3 Results and analysis

3.1 Hyperspectral data preprocessing

3.1.1 Preprocessing results and analyses
Upon extracting regions of interest from the collected samples,

we obtained the reflectance of the original spectral data depicting

normal maize leaves, leaves with spots, leaves infected with rust, a

combination of both diseases, as well as normal and rust-infected

soybean leaves (refer to Figure 7A). Additionally, Figure 7B displays

the average spectra of various maize and soybean samples. The

research findings reveal that, across all leaf types, the reflectance

undergoes a rapid increase within the 700-800 nm range, stabilizing

beyond 800 nm. Significantly, noticeable troughs appear in the 550-

700 nm range, with distinct variations in trough values among

different leaf types. Spectral curves of normal maize and soybean

leaves exhibit similar trends with roughly equivalent values in this

range. In contrast, spectral data from various diseased leaves deviate

significantly from the normal within this wavelength band,

establishing a crucial foundation for subsequent classification

efforts. Variations among the six leaf types are also apparent in

the 700 nm to 1000 nm range, underscoring specific wavelength

segments where maize and soybean leaves with different diseases

demonstrate distinctions in their spectral information. This aids in

constructing classification models utilizing their spectral

information and provides essential conditions for further research

on maize and soybean diseases.

The initial spectral data of maize and soybean underwent three

preprocessing methods: SG, SNV and MSC, aimed at mitigating
FIGURE 7

Spectrogram of maize-soybean diseased leaves. (A) Raw Spectral Curve; (B) Original average spectral curve.
FIGURE 6

Conceptual model of the boundary selection strategy.
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noise introduced during the spectral data collection process.

Figure 8 illustrates the preprocessing results. In comparison to the

raw spectra, the SG-processed spectral curves appear smoother,

indicating a relative reduction in the impact of noise. MSC and SNV

methods effectively alleviate the scattering effects caused by non-

uniform sample distribution and variable particle sizes,
Frontiers in Plant Science 09
simultaneously addressing baseline drift and shifts induced by the

collection environment. Spectral curves after SNV and MSC

processing exhibit a more compact form, effectively reducing

spectral differences caused by varying scattering levels, thereby

enhancing the correlation within the spectral data. Furthermore,

after first derivative (1st Der) processing, the spectral curve features
FIGURE 8

Spectral preprocessing map of diseased maize-soybean leaves. (A)SG processing; (B) SG average spectral curve; (C) SNV processing; (D) SNV
average spectral curve; (E)MSC processing; (F) MSC average spectral curve; (G) 1 st Der processing; (H) 1 st Der average spectral curve.
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become more prominent, alleviating baseline drift, eliminating

background interference, and providing higher resolution.
3.1.2 Comparison of preprocessing
modelling results

To identify the optimal preprocessing method, spectral data

processed through various techniques were employed as

independent variables, with disease categories serving as the

dependent variable. The training set comprised 450 samples,

while the test set consisted of 150 samples, maintaining a ratio of

3:1. In this modeling the DBO algorithm dung beetle population

size is 10 and the maximum number of iterations is 5. The

optimized BiLSTM network parameters are set as shown in

Table 1. Classification models, including SVM, BiLSTM, and

DBO-BiLSTM, were established.

In this paper, two evaluation indexes are introduced, namely,

Accuracy to judge the overall classification ability of the model and

Recall to judge the classification ability of the model for a certain

disease type, with Accuracy as the main index and Recall as the

secondary index to judge the classification effect of the model, and

their calculation formulas are as follows:

Accuracy: the proportion of all correctly predicted samples to

the total sample.

Accuracy =
x1 + x2 + · · · + xi
y1 + y2 + · · · + yi

� 100% =
x
y
� 100% (9)

Recall: the proportion of samples predicted to be in a particular

category as a percentage of such samples.

Recall =
xi
yi
� 100% (10)

where x and y denote the number of correctly predicted samples

and the total number of all samples, respectively; i denotes the

category; xi denotes the number of categories predicted to be i,

which is actually the number of categories; and yi denotes the total

number of samples in the i categories.

The classification results are shown in Tables 2–4. The data in

the three tables show that DBO-BiLSTM outperforms SVM and

BiLSTM in terms of classification accuracy. Compared to the other

two models, DBO-BiLSTM consistently achieves higher

classification accuracies for both the training set and the test set

under different preprocessing methods. After 1st Der processing,

the model performance exceeded the other three methods, so the 1st

Der preprocessing method was chosen in this study considering the

modelling effect and the classification accuracy of each disease.

Also, the lower accuracy of the three classification models when
Frontiers in Plant Science 10
constructed directly using preprocessed hyperspectral data

emphasis the importance of feature wavelength extraction.
3.2 Spectral feature extraction

3.2.1 CARS
When applying the CARS algorithm for feature wavelength

extraction on 1st Der preprocessed spectral data, 50 Monte Carlo

sampling iterations were conducted to identify the iteration count

with the minimum RMSECV value to determine the optimal feature

wavelengths. The outcomes of the CARS algorithm are presented in

Figure 9. In Figure 9A, the RMSECV value attains its minimum at

the 16th iteration and subsequently exhibits fluctuations. This

implies that wavelengths excluded after the 16th iteration contain

significant valuable information. Therefore, at the 16th iteration,

the optimal feature wavelength set was selected, consisting of 33

different wavelengths. The location information of these extracted

feature wavelengths is illustrated in Figure 9B.

3.2.2 SPA
In order to determine the optimal number of features, the SPA

algorithm introduces the variable RMSE, through the size of this

variable, to control the number of feature wavelengths that are most

suitable for the 1st Der processed maize-soybean data, and if the

RMSE reaches the lowest value, the selected feature wavelength at

this time is the optimal feature wavelength. The results obtained

through SPA are illustrated in Figure 10. It is observed that when

the number of feature wavelengths is dataset to 27, the RMSE value

approaches its minimum. As the number of feature wavelengths

exceeds 27, the RMSE value does not exhibit significant changes.

Therefore, 27 feature wavelengths are selected based on the final

RMSE. The location information of the selected feature wavelengths

is depicted in Figure 10B.

3.2.3 PCA
Determining the number of principal components that can

provide a more comprehensive overview of the information

contained in the maize-soybean dataset after 1st Der processing is

the first step in principal component analysis. This is achieved by

ensuring that the cumulative contribution rate of these components

reaches a relatively high value, typically not less than 85%.

Subsequently, based on the weight coefficients of each wavelength

in the principal components, wavelengths are selected at the peaks

(or troughs) of the weight coefficient curve as feature wavelengths.

The results obtained through PCA are shown in Figure 11. As

depicted in Figure 11A, the cumulative contribution rate of the first
TABLE 1 DBO optimization of BiLSTM network parameter values.

Training
parameter

Parameters
selection

Training
parameter

Parameters
selection

Training
parameter

Parameters
selection

number of hidden units 158 mini-batch size 15 L2Regularization 0.0057

maximum
training epochs

102 initial learning rate 0.03
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TABLE 2 SVM maize-soybean diseased leaf identification model based on different spectral preprocessing methods.
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TABLE 4 DBO-BiLSTM maize-soy

Model Method
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The Bold values mean the best results.

TABLE 3 BiLSTM maize-soybean

Model Method

n

BiLSTM

SG

SNV

MSC

1st Der
General
accuracyean

t
Maize

normalcy
Ma
sp

3 84.2 100.0 86

9 87.8 100.0 72
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principal components exceeds 85%, reaching 90.9184%. Therefore,

this study selected the first 4 principal components to represent the

spectral information of maize and soybean leaves. Finally, 5 peaks

are selected for each principal component, resulting in a total of 20

feature wavelengths. The distribution of the selected feature

wavelengths is illustrated in Figure 11B.
3.3 Establishment and analysis of the
classification model

To identify the most effective feature extraction method and the

model with the best classification performance, SVM, BiLSTM, and

DBO-BiLSTM classification models were established using a
Frontiers in Plant Science 12
training set and a test set, maintaining a sample ratio of 3:1. This

implies that the training set consists of 450 samples, while the test

set comprises 150 samples. In this modeling the DBO algorithm

dung beetle population size is 10 and the maximum number of

iterations is 5. The optimized BiLSTM network parameters are set

as shown in Table 5.

The classification results of the models are shown in Tables 6–8.

Compared with the overall classification accuracies of the test set

with only the 1st Der treatment in Tables 2–4, the accuracies in

Tables 6–8 were improved after feature extraction. This indicates

that feature extraction plays an important role in improving the

performance of disease classification in maize and soybean. From

the point of view of different diseases, the test set of corn rust and

mixed corn leaf rust had the lowest classification accuracy among
FIGURE 9

Wavelength map of CARS extraction characteristics for maize-soybean. (A) Process of selecting CARS feature wavelengths; (B) Distribution of
feature wavelengths.
FIGURE 10

SPA extracted characteristic wavelength map of maize-soybean. (A) Represents the wavelength retention trend; (B) Illustrates the distribution of
feature wavelengths.
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the three models. Observation of Figures 3C, D reveals that both

types of leaves are almost always covered by rust and are difficult to

differentiate even with leaf spots, leading to challenging

classification of these two types. On the contrary, maize and

soybean were classified with 100% accuracy due to the significant

difference between healthy and diseased leaves.

The classification accuracy of the DBO-BiLSTM model is

visually presented in Figure 12, showcasing its robust

performance across different disease categories. These findings

highlight the effectiveness of combining the CARS feature

extraction method with the DBO-BiLSTM model and provide

valuable insights for improving the accuracy of maize and

soybean leaf disease discrimination.
4 Discussion

In this paper, after processing the hyperspectral data using four

preprocessing methods: 1st Der, MSC, SNV, and SG, it can be seen

through Tables 2, 3, and 4 that there is a slight difference in the

classification performance of the models in the hyperspectral data

preprocessed by MSC and SNV, with the accuracy of the MSC test

set being slightly better than that of the SNV. This advantage is

attributed to the fact that the MSC is able to maximally retain the

original spectral information associated with the disease type. After

1st Der processing, the model performance exceeded the other three

methods, so 1st Der was chosen as the preprocessing method in this

paper. In addition, SG preprocessing was the least effective,

probably due to the fact that SG only smoothed the data. It can
Frontiers in Plant Science 13
also be observed from the table that the classification performance

of the mixed disease samples involving maize rust and rusty leaf

spot was significantly lower than the other samples, indicating that

the results were relatively unstable. This is mainly attributed to the/

d fact that the surface of the spots on the mixed disease leaves was

covered by rust, which negatively affected the classification of

the model.

Among the different feature extraction methods, as shown in

Tables 6, 7, and 8, the classification accuracy based on the PCA

algorithm was lower than those based on the CARS algorithm and

the SPA algorithm, indicating that the PCA algorithm was less

effective in extracting maize and soybean disease features in this

study. Notably, the CARS algorithm performed the best,

highlighting the applicability of CARS in this study. Figure 9

shows that CARS selects feature bands in a more dispersed

manner, aiming to represent most of the information, thus

reducing the loss of important information bands. In terms of

model classification performance, Tables 6-8 show that the DBO-

BiLSTM model significantly outperforms SVM and BiLSTM. when

combined with the CARS algorithm, the DBO-BiLSTM model

achieves a classification accuracy of 98.7% on the test set, whereas

the classification accuracy of SVM and BiLSTM is only 88.0% and

89.3%, respectively, which indicates a significant improvement in

classification accuracy. This also highlights the strong optimization

performance of the DBO algorithm in classification of the corn-

soybean disease. Combining the DBO-BiLSTM model with the SPA

and PCA feature extraction algorithms also resulted in higher

classification performance than the other two models. This

emphasis that the DBO-BiLSTM model outperforms the SVM
FIGURE 11

PCA extracted characteristic wavelength map of maize-soybean. (A) Cumulative contribution curve; (B) Weight coefficient curve.
TABLE 5 DBO optimization parameter values.

Training
parameter

Parameters
selection

Training
parameter

Parameters
selection

Training
parameter

Parameters
selection

number of hidden units 98 mini-batch size 24 L2Regularization 0.0031

maximum
training epochs

85 initial learning rate 0.007
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TABLE 6 SVM maize-soybean diseased leaf identification model based on different feature extraction methods.
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BiLSTM models when combining the different feature extraction

methods, with classification accuracies of 98.7%, 96.0% and

94.0%, respectively.

5 Conclusion

This study focuses on maize leaf spot disease, rust disease, their

combination, and soybean rust disease in an intercropping system

of maize and soybean. Hyperspectral imaging technology was

employed to collect hyperspectral data within the 400 to 1000 nm

wavelength range. Through various preprocessing methods and

models, significant results were achieved in the classification of

maize and soybean samples.
Fron
1. Four preprocessing methods were applied to the raw spectral

data: 1st Der, MSC, SNV, and SG. Modeling analysis
tiers in Plant Science 15
determined that, the 1st Der preprocessing method

exhibited the optimal processing performance.

2. CARS, SPA, and PCA were employed as feature extraction

methods to extract feature wavelengths, resulting in 33, 27,

and 20 feature wavelengths, respectively. As a result, the

CARS feature extraction method demonstrated the most

effective extraction performance.

3. Using the DBO optimization algorithm, five parameters of

BiLSTM, were optimized to construct the DBO-BiLSTM

neural network model, exhibiting significantly improved

performance compared to SVM and BiLSTM models.

4. Among various model combinations, the 1st Der-CARS-

DBO-BiLSTM model exhibits the best classification

performance. This combination achieved a classification

accuracy of 98.7% for the classification of maize and

soybean diseases in the intercropping systems, providing
FIGURE 12

DBO-BiLSTM classification effect diagram (1, 2, 3, and 4 represent healthy, leaf spot, rust, and mixed leaf spot rust leaves for maize, and 5 and 6
represent healthy and rusted leaves for soybean). (A) Training set line chart; (B) Test set line chart; (C) Confusion matrix plot for the training set; (D)
Confusion matrix plot for the test set.
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Fron
a solid theoretical foundation and technical support for the

accurate and non-destructive identification of various crops

and diseases in intercropping systems.
The leaves collected in this study were from natural growing

conditions, but the hyperspectral images were obtained in the

laboratory after the leaves were harvested rather than in situ,

which introduces some degree of idealized experimental

conditions. In addition, due to the experimental conditions, this

study only focused on several diseases in intercropped maize and

soybean. Future research could further expand the experimental

setting to include field collection of crop leaf hyperspectral images

from field plantings and inclusion of additional crops and diseases,

aiming to improve the utility of the model for high crop yields

and quality.
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